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Abstract. Community detection is of great importance for understand-
ing graph structure in social networks. The communities in real-world
networks are often overlapped, i.e. some nodes may be a member of
multiple clusters. How to uncover the overlapping communities/clusters
in a complex network is a general problem in data mining of network data
sets. In this paper, a novel algorithm to identify overlapping communi-
ties in complex networks by a combination of an evidential modularity
function, a spectral mapping method and evidential c-means clustering
is devised. Experimental results indicate that this detection approach
can take advantage of the theory of belief functions, and preforms good
both at detecting community structure and determining the appropri-
ate number of clusters. Moreover, the credal partition obtained by the
proposed method could give us a deeper insight into the graph structure.

Keywords: Evidential modularity; Evidential c-means; Overlapping com-
munities; Credal partition:

1 Introduction

In order to have a better understanding of organizations and functions in the
real networked system, the community structure, or the clustering in the graph
is a primary feature that should be taken into consideration [3]. As a result, com-
munity detection, which can extract specific structures from complex networks,
has attracted considerable attention crossing many areas from physics, biology,
and economics to sociology [1], where systems are often represented as graphs.

Generally, a community in a network is a subgraph whose nodes are densely
connected within itself but sparsely connected with the rest of the network [17].
Many of the community detection approaches are in the frame of probability
theory, that is to say, one actor in the network can belong to only one commu-
nity of the graph [9,4]. However, in real-world networks, each node can fully or
partially belong to more than one associated community, and thus communities
often overlap to some extent [11,15]. For instance, in collaboration networks, a
researcher may be active in many areas but with different levels of commitment,
and in social networks, an actor usually has connections to several social groups
like family, friends, and colleagues. In biological networks, a node might have
multiple functions [11].

http://arxiv.org/abs/1501.01780v1
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In the last decades, for identifying such clusters that are not necessarily
disjoint, there is growing interest in overlapping community detection algorithms.
Zhang et al. [17] devised a novel algorithm to identify overlapping communities
in complex networks based on fuzzy c-means (FCM). Nepusz et al. [8] created an
optimization algorithm for determining the optimal fuzzy membership degrees,
and a new fuzzified variant of the modularity function is introduced to determine
the number of communities. Havens et al. [5,6] discussed a new formulation of
a fuzzy validity index and pointed out this modularity measure performs better
compared with the existing ones.

As can be seen, most of methods for uncovering the overlapping community
structure are based on the idea of fuzzy partition, which subsumes crisp partition,
resulting in greater expressive power of fuzzy community detection compared
with hard ones. Whereas credal partition [2], which is even more general and
allows in some cases to gain deeper insight into the structure of the data, it has
not been applied to community detection.

In this paper, an algorithm for detecting overlapping community structure
is proposed based on credal partition. An evidential modular function is intro-
duced to determine the optimal number of communities. Spectral relaxation and
evidential c-means are conducted to obtain the basic belief assignment (bba) of
each nodes in the network. The experiments on two well-studied networks show
that meaningful partitions of the graph could be obtained by the proposed de-
tection approach and it indeed could provide us more informative information
of the graph structure than the existing methods.

2 Background

2.1 Modularity-based community detection

Let G(V,E,W ) be an undirected network, V is the set of n nodes, E is the set of
m edges, andW is a n×n edge weight matrix with elements wij , i, j = 1, 2, · · · , n.
The objective of the hard (crisp) community detection is to divide graph G into
c clusters, denoted by

Ω = {ω1, ω2, · · · , ωc}, (1)

and each node should belong to one and only one of the detected communities [8].
Parameter c can be given in advanced or determined by the detection method
itself.

The modularity, which measures the quality of a partition of a graph, was
first introduced by Newman and Girvan [10]. This validity index measures how
good a specific community structure is by calculating the difference between the
actual edge density intra-clusters in the obtained partition and the expected one
under some null models, such as random graph. One of the most popular form
of modularity is given by [3]. Given a partition with c group shown in Eq. (1),
and let ‖W‖ =

∑n

i,j=1
wij , ki =

∑n

j=1
wij , its modularity can be defined as:

Qh =
1

‖W‖

c∑

k=1

n∑

i,j=1

(wij −
kikj
‖W‖

)δikδjk, (2)
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where δik is one if vertex i belongs to the kth community, 0 otherwise.
The communities of graphG can be detected by modularity optimization, like

spectral clustering algorithm [13], which aims at finding the optimal partition
with the maximum modularity value [3].

2.2 Belief function theory and evidential c-means

The credal partition, a general extension of the crisp and fuzzy ones in the theo-
retical framework of belief function theory, has been introduced in [2,7]. Suppose
the discernment frame of the clusters is Ω as in Eq. (1). Partial knowledge re-
garding the actual cluster node ni belongs to can be represented by a basis belief
assignment defined as a function m from the power set of Ω to [0, 1], verifying∑

A⊆Ω m(A) = 1. Every A ∈ 2Ω such that m(A) > 0 is called a focal element.
The credibility and plausibility functions are defined in Eq. (3) and Eq. (4).

Bel(A) =
∑

∅6=B⊆A

m(B), ∀A ⊆ Ω, (3)

Pl(A) =
∑

B∩A 6=∅

m(B), ∀A ⊆ Ω. (4)

Each quantity Bel(A) represents the degree to which the evidence supports
A, while Pl(A) can be interpreted as an upper bound on the degree of support
that could be assigned to A if more specific information is available [12]. The
function pl : Ω → [0, 1] such that pl(ω) = Pl({ω}) is called the contour function
associated to m.

The bbas in the credal level can be expressed in the form of probabilities by
pignistic transformation [2], which is defined as

BetP (ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (5)

where |A| is the number of elements of Ω in A.
Evidential c-means (ECM) [7] is a direct generalization of FCM. The optimal

credal partition is obtained by minimizing the following objective function:

JECM =

n∑

i=1

∑

Aj⊆Ω,Aj 6=∅

|Aj |
αmi(Aj)

βd2ij +

n∑

i=1

δ2mi(∅)
β , (6)

constrained on ∑

Aj⊆Ω,Aj 6=∅

mi(Aj) +mi(∅) = 1, (7)

where mi(Aj) is the bba of ni given to the nonempty set Aj , while mi(∅) is the
bba of ni assigned to the emptyset. The value dij denotes the distance between ni

and the barycenter associated to Aj , and |·| is the cardinal of the set. Parameters
α, β, δ are adjustable and can be determined based on the requirement.
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3 Evidential community detection

Before presenting the credal partition of a graph G(V,E,W ), the hard and fuzzy
partitions are firstly recalled. The crisp partition can be represented by a matrix
Uh = (uik)n×c, where uh

ik = 1 if the ith node ni belongs to the kth cluster ωi

in the partition, and uh
ik = 0 otherwise. From the property of this partition, it

clearly should satisfy that
∑c

k=1
uh
ik = 1, i = 1, 2, · · · , n. The generalization of

the hard partition, following that a node may belong to more communities than
one but with different degrees, can be described by the fuzzy partition matrix
Uf = (uik)n×c, where uf

ik is not restricted in {0, 1} but can attain any real

value from the interval [0, 1]. The value uf
ik could be interpreted as a degree of

membership of ni to community ωk.
The credal partition of G, which refers to the framework of belief func-

tion theory, can be represented by a n-tuple: M = (m1,m2, · · · ,mn). Each
mi = {mi1,mi2, · · · ,mi2c} is a bba in a 2c-dimensional space, where c is the
cardinality of the given discernment frame of communities Ω = {ω1, ω2, · · · , ωc}
as before, and ωi denotes the ith detected community. Note that Ω is the dis-
cernment frame in the framework of belief function theory.

3.1 The evidential modular function

Similar to the fuzzy modularity by Nepusz et al. [8] and by Havens et al. [5],
here we introduce an evidential modularity:

Qe =
1

‖W‖

c∑

k=1

n∑

i,j=1

(wij −
kikj
‖W‖

)plikpljk, (8)

where pli = {pli1, pli2, · · · , plic} is the contour function associated to mi, which
describes the upper value of our belief to the proposition that the ith node
belongs to the kth community.

Let k = (k1, k2, · · · , kn)
T , B = W − kTk/ ‖W‖, and PL = (plik)n×c, then

Eq. (8) can be rewritten as:

Qe =
trace(PL B PLT )

‖W‖
. (9)

Qe is a directly extension of the crisp modularity function (2). When the credal
partition degrades into the hard one, Qe is equal to Qh.

3.2 Spectral mapping

White and Smyth [13] showed that optimizing the modularity measure Q can be
reformulated as a spectral relaxation problem and proposed spectral clustering
algorithms that seek to maximize Q. By eigendecomposing a related matrix,
these methods can map graph data points into Euclidean space, the clustering
problem on which space is of equivalence to that on the original graph.
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Let A = (aij)n×n be the adjacent matrix of the graph G. The adjacency
matrix for a weighted graph is given by the matrix whose element aij repre-
sents the weight wij connecting nodes i and j. The degree matrix D = (dii)
is the diagonal matrix whose elements are the degrees of the nodes of G, i.e.
dii =

∑n

j=1
aij . The eigenvectors of the transition matrix M = D−1A are used.

Verma and Meila [14] and Zhang et al. [17] suggested to use the eigenvectors
of a generalised eigensystem Ax = λDx, and pointed out that it is mathemati-
cally equivalent and numerically more stable than computing the eigenvectors of
matrix M [14]. To partition the nodes of the graph into c communities, the top
c− 1 eigenvectors of the above eigensystem are used to map the graph data into
points in the Euclidean space, where the traditional clustering methods, such as
c-means (CM), FCM and ECM can be evoked.

3.3 Evidential community detection scheme

Let C be the upper bound of the number of communities. The evidential com-
munity detection scheme is displayed as follows:

S.1 Spectral mapping:
For 2 ≤ c ≤ C, Find the top c generalized eigenvectors Ec = [e1, e2, · · · , ec]
of the eigensystem Ax = λDx, where A and D are the adjacent and the
degree matrix respectively.

S.2 Evidential c-means:
For each value of c (2 ≤ c ≤ C), let Ec = [e2, · · · , ec]. Use ECM to partition
the n samples (each row of Ec is a sample data on the c − 1 dimensional
Euclidean space) into c classes. And we can get a credal partition M for the
graph.

S.3 Choosing the number of communities:
Find the suitable number of clusters and the corresponding evidential par-
tition scheme by maximizing the evidential modular function Qe.

In the algorithm, C can be determined by the original graph. It is an empirical
range of the community number of the network. If c is given, we can get a credal
partition using the proposed method and then the evidential modularity can
be derived. The modularity is a function of c and it should peak around the
optimum value of c for the given network. As in ECM, the number of parameters
to be optimized is exponential in the number of communities and linear in the
number of nodes. When the number of communities is large, we can reduce the
complexity by considering only a subclass of bbas with a limited number of focal
sets [7].

4 Experimental results

To evaluate the proposed method in this paper, two real-world networks are
discussed in this section. A comparison for the detected communities by credal,
hard and fuzzy partitions is also illustrated to show the advantages of evidential
community structure over others.
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4.1 Zachary’s Karate Club

The Zachary’s Karate Club [16] is an undirected graph which consists of 34
vertices and 78 edges, describing the friendship between members of the club
observed by Zachary in his two-year study. This club is visually divided into
two parts, due to an incipient conflict between the president and instructor (see
Fig. 2-a).

The modularity peaks around c = 2 or c = 3 as shown in Fig. 1-a. Let
c = 3, the detected communities by CM, FCM and ECM are displayed in Fig. 2.
As it can be seen, a small community separated from ω1 is detected by all
the approaches. The result by FCM shown here is got by partitioning nodes to
the cluster with the highest membership. Zhang et al. [17] suggested to use a
threshold λ to covert the fuzzy membership into the final community structure.
For node i, let the fuzzy assignment to its communities be µij , j = 1, 2, · · · , c.
Node i is regarded as a member of multiple communities ωk with µik > λ. But
there is no criterion for determining the appropriate λ. However, in ECM we
can directly get the imprecise classes indicating our uncertainty on the actual
cluster of some nodes by hard credal partitions [7].

As we can see in Fig. 2-c, for ECM, node 1,9,10,12,31 belong to two clusters
at the same time. This is coincident with the conclusion in [17] apart from the
fact that a significant high membership value is given to ω1 for node 12 by
FCM. Actually, the case that node 12 is clustered into ω12 , {ω1, ω2} seems
reasonable when the special behavior of this node is considered. The person
12 has no contact with others except the instructor (node 1). Therefore, the
most probable class of node 12 should be the same as that of node 1. It is
counterintuitive if the person 12 is partitioned into either ω1 or ω2, as it has no
relation with any member in these two communities at all. The credal partition
can reflect the fact that ω1 and ω2 is indistinguishable to node 12, while the
fuzzy method could not. Furthermore, the mass belief assigned to imprecise
classes reflects our degree of uncertainty on the clusters of the included nodes.
As illustrated in Fig. 3-b, the mass given to imprecise clusters for node 1 is
larger than that to the other four nodes. This reflects our uncertain on node 1’s
community is largest. As node 1 is the instructor of the club, this fact seems
reasonable.

Actually, the concept of credal partitions suggests different ways of summa-
rizing data. For example, the data can be analysed in the form of fuzzy partition
thanks to the pignistic probability transformation shown in Eq. (5). It is shown
in Fig. 3-a pignistic probabilities play the same role as fuzzy membership. A crisp
partition can then be easily obtained by partitioning each node to the commu-
nity with the highest pignistic probability. In this sense, the proposed method
could be regarded as a general model of hard and fuzzy community detection
approaches.
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Fig. 1. Modularity values with community numbers.
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4.2 American football network

The network we investigate in this experiment is the world of American college
football games between Division IA colleges during regular season Fall 2000 [4].
The vertices in the network represent 115 teams, while the links denote 613
regular-season games between the two teams they connect. The teams are divided
into 12 conferences containing around 8-12 teams each and generally games are
more frequent between members from the same conference than between those
from different conferences.

In ECM, the number of parameters to be optimized is exponential in the
number of clusters [7]. For the number of class larger than 10, calculations are
not tractable. But we can consider only a subclass with a limited number of focal
sets [7]. In this example, we constrain the focal sets to be composed of at most two
classes (except Ω). Fig. 1-b shows how the modularity varies with the number of
communities. For credal partitions, the peak is at c = 10. This is consensus with
the original network (shown in Fig. 4-a) composed of 10 large communities (more
than 8 members) and 2 small communities (8 members or less than 8 members).
Set c = 10 in ECM, we can find all the ten large communities, eight of which
are exactly detected. For the nodes in small communities, ECM partitions most
of them into imprecise classes. As there are more than 10 communities in this
network, we use ωi+j to denote the imprecise communities instead of ωij in the
figures related to this experiment to obviate misunderstanding.

For hard partitions, nodes in small communities are simply partitioned into
their “closest” detected cluster, which will certainly result in a loss of accuracy
for the final results. Credal partitions make cautious decisions by clustering nodes
which we are uncertain into imprecise communities. The introduced imprecise
clusters can avoid the risk to group a node into a specific class without strong
belief. In other words, a data pair can be clustered into the same specific group
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only when we are quite confident and thus the misclassification rate will be
reduced.
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Fig. 4. American football network.

5 Conclusion

In this paper, a new community detection approach combing the evidential mod-
ularity, spectral mapping and evidential c-means is presented to identify the
overlapping graph structure in complex networks. Although many overlapping
community-detection algorithms have been developed before, most of them are
based on fuzzy partitions. Credal partitions, in the frame of belief function the-
ory, have many advantages compared with fuzzy ones and enable us to have
a better insight into the data structure. As shown in the experimental results
for two networks in the real world, credal partitions can reflect our degree of
uncertain more intuitively. Actually, the credal partition is an extension of both
hard and fuzzy ones, thus there is no doubt that more rich information of the
graph structure could be available from the detected structure by the method
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proposed here. We expect that the evidential clustering approaches will be em-
ployed with promising results in the detection of overlapping communities in
complex networks with practical significance.
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