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MINIMAL PARTIAL LANGUAGES AND AUTOMATA

Francine Blanchet-Sadri1, K. Goldner2 and A. Shackleton3

Abstract. Partial words are sequences of characters from an alphabet in which some positions may
be marked with a “hole” symbol, �. We can create a �-substitution mapping this symbol to a subset
of the alphabet, so that applying such a substitution to a partial word results in a set of total words
(ones without holes). This setup allows us to compress regular languages into smaller partial languages.
Deterministic finite automata for such partial languages, referred to as �-DFAs, employ a limited non-
determinism that can allow them to have lower state complexity than the minimal DFAs for the
corresponding total languages. Our paper focuses on algorithms for the construction of minimal partial
languages, associated with some �-substitution, as well as approximation algorithms for the construction
of minimal �-DFAs.

Mathematics Subject Classification. 68R15.

1. Introduction

Words, sequences of characters from some alphabet, are natural objects in computer science, mathematics,
biology, physics, bioinformatics, music, linguistics, etc. They can model data that can be stored in linear files,
they can approximate biological sequences, to name a few. Words have been extensively studied and several gen-
eralizations have been proposed in the literature which include strings with don’t-cares, introduced in 1974 [12].
Strings with don’t-cares are also referred to as partial words, whose combinatorics have been studied since
1999 [4, 8]. Although languages, or sets of words, have also been extensively studied (see, e.g., [25]), little is
known on languages of partial words (see, e.g., [3, 7, 11, 16, 20, 21]).

Words over some finite alphabet Σ are (finite or infinite) sequences of characters from Σ and the set of all
finite sequences is denoted by Σ∗ (we also refer to elements of Σ∗ as total words). The empty word ε is the
unique sequence of length zero. A language over Σ is a subset of Σ∗. The regular languages are those that can
be recognized by finite automata. A deterministic finite automaton, or DFA, is a tuple M = (Q, Σ, δ, s, F ): a
set of states, an input alphabet, a transition function δ : Q × Σ → Q, an initial state, and a set of final states.
The function δ can be extended to δ̂ : Q × Σ∗ → Q, where δ̂(q, w) is the state reached from q after reading w.

Keywords and phrases. Automata and formal languages, regular languages, partial languages, partial words, deterministic finite
automata, non-deterministic finite automata.
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The machine M accepts w if and only if δ̂(s, w) ∈ F . In a DFA, δ is defined for all state-symbol pairs, so there
is exactly one computation for any word. In contrast, a non-deterministic finite automaton, or NFA, is a tuple
N = (Q, Σ, Δ, s, F ), where Δ : Q × Σ → 2Q is the transition function that maps state-symbol pairs to zero or
more states, and consequently may have zero or more computations on a given word. Additionally, N accepts
a word w if any computation on w ends in a final state. Two automata are equivalent if they recognize the
same language, so every NFA has an equivalent DFA. In general, NFAs allow a more compact representation
of a given language. The state complexity of an automaton with state set Q is |Q|. If a given NFA has state
complexity n, the smallest equivalent DFA may require as many as 2n states.

Partial words over Σ are sequences of characters from Σ� = Σ ∪ {�}, where � /∈ Σ is a “hole” symbol
representing an “undefined” position. A partial language over Σ is a subset of Σ∗

� , the set of all partial words over
Σ. A partial language, subset of Σ∗

� , is associated with a total language, subset of Σ∗, through a �-substitution
σ : Σ∗� → 2Σ∗

, defined such that σ(a) = {a} for all a ∈ Σ and σ(�) ⊆ Σ. A �-substitution, then, maps a partial
language to a total language and is completely defined by σ(�); e.g., if σ(�) = {a, b} and L = {�a, b�c} then
σ(L) = {aa, ba, bac, bbc}. So a partial word is just a particular kind of star-free regular expression where we
use the letters, the union, the concatenation, and some subset of the alphabet. In the example above where
the subset is {a, b}, which is defined by the regular expression a + b, the partial word �a is equivalent to the
regular expression aa + ba ≡ (a + b)a while (a + b)a + b(a + b)c is a regular expression that defines the partial
language L using standard notations. By reversing this process, we can compress total languages into partial
languages. We can easily extend regular languages to regular partial languages as the subsets of Σ∗

� that are
regular when treating � as a character in the input alphabet. We can recognize them using partial word DFAs.
A �-DFA Mσ = (Q, Σ�, δ, s, F ), associated with some σ, is defined as a DFA that recognizes a partial language
L, but that is also associated with the total language σ(L). Deterministic finite automata (including �-DFAs)
often include an “error state”, i.e., a sink non-final state. While we account for error states when determining
the state complexity of an automaton, we frequently omit them in visual representations of automata for the
sake of simplicity.

Motivated by the compression of DFAs into smaller machines, Dassow et al. [11] introduced the �-DFAs.
Then Balkanski et al. [3] analyzed their state complexity and proved, in particular, that given a �-DFA with
state complexity n associated with some σ and recognizing L, the smallest DFA recognizing σ(L) may require
as many as 2n − 1 states.

Given classes of automata A,B and a finite automaton A from A, the problem A → B-Minimization asks
for an automaton B from B that has the lowest state complexity possible while maintaining L(A) = L(B), i.e.,
the language that A accepts is the language that B accepts. We will abbreviate A → A-Minimization by A-
Minimization. Now, let DFA, NFA, and �-DFA be the class of all DFAs, NFAs, and �-DFAs, respectively. It is
known that DFA-Minimization can be done in O(n log n) time [17], where n is the number of states in the input
DFA, and that DFA → NFA-Minimization is PSPACE-complete [18]. Looking at �-DFAs as DFAs over the
extended alphabet Σ� makes the minimization step easy (�-DFAs are DFAs, so �-DFA-Minimization is DFA-
Minimization), and in general, A → �-DFA-Minimization and �-DFA → A-Minimization are not defined
because �-DFAs accept partial languages (not total languages). We thus define a slightly different problem
for �-DFAs: given a DFA M , Minimal-�-DFA asks for the smallest �-DFA (over all possible �-substitutions)
associated with L(M). Using the methods from Björklund and Martens [6], it is a simple exercise to show that
Minimal-�-DFA is PSPACE-complete, so we discuss an approach to approximating minimal �-DFAs. We give an
approximation via minimal partial languages associated with L(M) and �-substitutions σ. The smallest among
associated �-DFAs thus provides an approximation for a �-DFA with minimal state complexity for L(M). Note
also that Holzer et al. [16] have recently further studied the computational complexity of partial word automata
problems and have shown that many problems are PSPACE-complete, among them is Minimal-�-DFA.

The contents of our paper are as follows: In Section 2, we review background material on partial words
and languages. In Section 3, we set our notation and introduce the σ-minimal partial languages given a �-
substitution σ. In Section 4, we approximate minimal finite partial languages, associated with a �-substitution
σ, by describing our Minlang algorithm. We then prove that Minlang outputs a 3

2 -approximation for the unique
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minimal partial language corresponding to the input total language given σ. In Section 5, we show that running
Minlang, a polynomial number of passes in the size of the input, with our Redundancy Removal algorithm
produces the minimal partial language. In Section 6, we describe our Partial Automaton Check algorithm that
given a �-DFA Mσ and a finite language L, verifies that σ(L(Mσ)) = L and that Mσ is a “contender” for a
minimal �-DFA for L given σ. We also discuss all our algorithms’ runtime. In Section 7, we adapt Minlang for
infinite languages. Finally in Section 8, we conclude with some open problems.

2. Partial words and languages

We recall some background material related to partial words (see [8] for more information).
Let Σ be a finite alphabet and set Σ� = Σ∪{�}, where � �∈ Σ is a “hole” symbol representing an “undefined”

position. A partial word w over Σ is a sequence of characters from Σ�. The set of defined positions of w, denoted
by D(w), is the set of non-hole positions of w, while H(w) is the set of hole positions of w. A total word is
a partial word without holes. For example, ab�bbc�ba is a partial word with two holes over {a, b, c}; here
D(ab�bbc�ba) = {0, 1, 3, 4, 5, 7, 8} and H(ab�bbc�ba) = {2, 6} (here the labelling of positions starts at 0).

A partial word u is contained in a partial word v, denoted by u ⊂ v, if they have the same length and if a
position defined in u is defined by the same letter in v (abbreviate “u ⊂ v, u �= v” by “u � v”). For example,
aa�b� � aaab�. Clearly, if u � v then D(u) � D(v). The set of partial words over Σ together with the binary
relation ⊂ is a poset. Partial word u is compatible with partial word v, denoted by u ↑ v, if they have the same
length and if a position defined in both u and v is defined by the same letter, in which case the least upper bound
of u and v, denoted by u ∪ v, is the partial word such that u ⊂ (u ∪ v), v ⊂ (u ∪ v), and if u ⊂ w and v ⊂ w
then (u∪ v) ⊂ w. Note that D(u∪ v) = D(u)∪D(v). For example, aa�b� ↑ a�b�� and (aa�b�∪ a�b��) = aabb�.
Similarly, the greatest lower bound of u and v, denoted by u ∩ v, is the partial word such that (u ∩ v) ⊂ u,
(u ∩ v) ⊂ v, and if w ⊂ u and w ⊂ v then w ⊂ (u ∩ v). Note that D(u ∩ v) = D(u) ∩ D(v). For example,
(aa�b� ∩ a�b��) = a����.

A total language over Σ is a subset of Σ∗, the set of all total words over Σ, while a partial language over
Σ is a subset of Σ∗� , the set of all partial words over Σ. A partial language is associated with a total language
through a �-substitution σ over Σ. A �-substitution σ : Σ∗� → 2Σ∗

satisfies σ(a) = {a} for all a ∈ Σ, σ(�) ⊆ Σ,
σ(uv) = σ(u)σ(v) for all u, v ∈ Σ∗

� , and

σ(L) =
⋃

w∈L

σ(w) for all L ⊆ Σ∗
� .

A �-substitution, then, maps a partial language to a total language and is completely defined by σ(�). For
example, if σ(�) = {a, b} and L = {�ac, b�b�} then σ(L) = {aac, bac, baba, babb, bbba, bbbb}.

Fixing a �-substitution σ over Σ, a set X ⊆ Σ∗
� covers a partial word w if x ↑ w for all x ∈ X and σ(w) ⊆ σ(X);

if X is a singleton {x}, we abbreviate “X covers w” by “x covers w”. For example, if σ(�) = {a, b}, then a�
covers both aa and ab.

We can recognize partial languages by using partial word DFAs. A �-DFA Mσ = (Q, Σ�, δ, s, F ), associated
with some �-substitution σ, is defined as a DFA that recognizes a partial language L, but that is also associated
with the total language σ(L). A total word u in σ(L) has a representation x if x is a partial word in L such
that u ∈ σ(x). The �-DFAs employ a limited amount of “non-determinism” in the sense that any letter a ∈ Σ
can be represented by a transition labelled by a or by �. Figure 1 (Top) shows a �-DFA, where b��ba� ∈ L
and σ(b��ba�) = {baabaa, baabab, . . . , bbbbab} contains eight elements. If we were to use this �-DFA to find a
representation of baabab, we could use the path 0012012 labelled by b��ba�, or the path 0012012 labelled by
baaba�, or the path 0120012 labelled by ���ba�, etc.
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Figure 1. Top: A 3-state �-DFA Mσ, with σ(�) = {a, b}. Bottom: The smallest DFA M
satisfying L(M) = σ(L(Mσ)), which has 23 − 1 = 7 states.

3. Approximating minimal �-DFAs

The complexity of a minimal DFA may be exponentially larger than that of a minimal �-DFA for the same
language. Balkanski et al. [3] gave a general construction whereby for any integer n > 1 there exists a �-DFA
with n states such that the minimal DFA for the same language has 2n − 1 states. Figure 1 illustrates their
construction for n = 3.

Since the problem of finding a minimal �-DFA (over all �-substitutions) for the total language L accepted by
a given DFA is PSPACE-complete, we give an approximation via minimal partial languages associated with L
and �-substitutions σ, i.e., σ-minimal partial languages. The smallest among associated �-DFAs thus provides
an approximation for a �-DFA with minimal state complexity for L.

Definition 3.1. Let L be a total regular language over alphabet Σ, and let σ be a �-substitution over Σ. The
σ-minimal partial language for L is the unique partial language Lmin,σ such that

(1) σ(Lmin,σ) = L;
(2) for all partial languages L′ satisfying σ(L′) = L, |Lmin,σ| ≤ |L′|;
(3) the partial words in Lmin,σ are as weak as possible, i.e., for no partial word w ∈ Lmin,σ does there exist x

satisfying σ(x) ⊆ L and x � w.

Note that 2 does not imply 3. To see this, consider the total language L = {aa, ab, ba}. Let σ(�) = {a, b}, and
let K be the partial language {a�, ba}. Clearly, σ(K) = L. The inequality |K| ≤ |L′| is true for all partial
languages L′ satisfying σ(L′) = L, so 2 holds. However, the partial words in K are not as weak as possible;
for w = ba ∈ K, there exists x = �a such that σ(x) ⊆ L and x � w. So 3 does not hold. In this example,
Lmin,σ = {a�, �a}.

The following proposition shows the uniqueness of a partial language satisfying 1, 2 and 3.
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Proposition 3.2. Let L be a total regular language over alphabet Σ, and let σ be a �-substitution over Σ. The
partial language Lmin,σ from Definition 3.1 is the unique partial language that satisfies 1, 2 and 3 for L.

Proof. Let L1 and L2 be two partial languages such that

(1) σ(L1) = σ(L2) = L;
(2) for all partial languages L′ satisfying σ(L′) = L, both |L1| ≤ |L′| and |L2| ≤ |L′| hold;
(3) the partial words in L1 (respectively, L2) are as weak as possible, i.e., for no partial word w ∈ L1 (respec-

tively, L2) does there exist x satisfying σ(x) ⊆ L and x � w.

By 1 and 2, we can deduce that |L1| = |L2|. So to show that L1 = L2, it is enough to show that L1 ⊆ L2. Let
w ∈ L1. Since σ(L1) = L by 1, we have σ(w) ⊆ L, and let u ∈ σ(w). Thus u ∈ L, and since σ(L2) = L by 1, we
have u ∈ σ(x) for some x ∈ L2. Then w ⊂ u and x ⊂ u, so by definition of compatibility, w ↑ x. Note that both
σ(w) ⊆ L and σ(x) ⊆ L.

Suppose towards a contradiction that w �= x. The containment w � x would contradict 3 that the partial
words in L2 are as weak as possible, while the containment x � w would contradict 3 that the partial words in
L1 are as weak as possible. Then w = x, so w ∈ L2. �

For each �-substitution σ, there exists a partial language Lopt,σ such that a minimal �-DFA recognizing
Lopt,σ is identical to a minimal �-DFA for L = σ(Lopt,σ). The σ-minimal partial language Lmin,σ is “close” to
Lopt,σ and, as a result, a minimal �-DFA recognizing Lmin,σ is a “good” approximation for a minimal �-DFA
for L associated with σ. The more �’s we have in our partial words, the more we are taking advantage of the
non-determinism that the �-DFAs embody.

For convenience of notation, when referring to a particular �-substitution σ, we replace σ with σ(�), e.g.,
{a�, �b} is an {a, b}-minimal partial language for {aa, ab, bb}. Note that a� covers both aa and ab, and �b covers
both ab and bb.

In the next three sections, we describe our algorithms for approximating minimal �-DFAs. The input and
output finite languages are represented by listing their words.

4. Our M INLANG Algorithm

We describe a first algorithm, referred to as Minlang, to efficiently approximate the unique minimal partial
language for a language with respect to a �-substitution. Given as input a finite (total or partial) language L over
Σ and a �-substitution σ, Minlang computes a partial language Lσ such that σ(Lσ) = L and Lσ approximates
Lmin,σ. Minlang puts �’s where possible, removing explicit “redundancies”. It first puts L into a language tree.
Then it traverses the tree starting at reverse depth 0, at the height of the tree. While examining nodes at some
reverse depth, it considers the question “Do the parents have children on all branches of σ(�)?”. If the answer
is yes, Minlang consolidates these children into one partial word.

Pseudocode is given below, as well as an example of its execution on the total language L =
{aaa, aab, aac, aba, abb, aca, acb, bac, cac} with σ(�) = {a, b, c} (see Figs. 2–5). Note that the output Lσ of Min-
lang is not necessarily σ-minimal. A partial word w in Lσ is called redundant if there exists a subset X of Lmin,σ

that covers w and is such that for all x ∈ X , neither x ⊂ w nor w ⊂ x. In our example, Lmin,σ = {a�a, a�b, �ac}
and Lσ = {aa�, a�a, a�b, �ac}, the partial word aa� is redundant. However, Minlang is useful as both an ap-
proximation and as a stepping stone toward the minimal partial language in the sense of Definition 3.1 (see
Sect. 5).

For any finite language L and �-substitution σ, the output of Minlang on input L and σ is a tree that can
easily be converted to a �-DFA with the initial state represented by the root node, the final states by the terminal
nodes, and the transitions by the edges. Running standard DFA minimization algorithms on this �-DFA results
in an approximation of a minimal �-DFA for L.

Proposition 4.1. The language Lσ output by Minlang satisfies σ(Lσ) = L.
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Algorithm 1. Minlang given as input a finite (total or partial) language L over Σ and a �-substitution σ,
computes a partial language Lσ that approximates Lmin,σ

1: put L into a prefix tree with leaf nodes marked as terminals
2: for each node n in a reverse level-order traversal of the tree do
3: if parent(n) = u has children on every branch of σ(�) then
4: order children of u by non-decreasing height, c1, . . . , ck

5: initialize C = {all terminal paths from c1 (including ε if c1 is
a terminal node)}

6: for m ∈ {c2, . . . , ck} do
7: for all w ∈ C do
8: remove w from C
9: if there is a terminal path from m to mx such that x ⊂ w then

10: add w to C
11: end if
12: if there is a terminal path from m to mx such that w ⊂ x then
13: add x to C for all such x
14: end if
15: end for
16: if C is empty then
17: break
18: end if
19: end for
20: if C is non-empty then
21: add a �-transition from node u to a new node u� and a terminal path from node u� to a new node u�w, for

each w ∈ C
22: for each pair a ∈ σ(�), w ∈ C, start from uaw, unmark uaw as a terminal node and move upwards, deleting

the path until a node is found that has more than one child or is terminal
23: end if
24: end if
25: end for

abb aca acbabaaacaabaaa bac cac

aa ca

c

baab ac

a b

ε

a b c

a b
c a

a

a b
c

a
b

a
b

c c

Figure 2. Step 1: The initial prefix tree for L = {aaa, aab, aac, aba, abb, aca, acb, bac, cac}.
Minlang begins at the leaf nodes, compiling C when a node’s parent has children for every letter
in σ(�) = {a, b, c}. This consolidates the children of aa into a single child, aa�.
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abb aca acbabaaa� bac cac

aa ca

c

baab ac

a b

ε

a b c

a b
c a

a

� a
b

a
b

c c

Figure 3. Step 2: Minlang examines nodes at reverse depth 1 and their parents, finding
children for every letter in σ(�) at the node a. Then C = {a, b}, adding a transition from a to
a� and from a� to children a�a and a�b, removing the b and c branches from a, but leaving the
a branch as it does not contain any words in C.

a�ba�aaa� bac cac

aa cabaa�

a b c

ε

a b
c

a
� a a

� a
b

c c

Figure 4. Step 3: Minlang examines nodes at reverse depth 2 and their parents, finding
children for every letter in σ(�) at the node ε. Then C = {ac}, adding a transition from ε to
� and from � a terminal path to �ac, removing the b and c branches from ε, but leaving the a
branch as it does not contain any words in C.

Proof. First, we say that a node u in the tree for L has a representation x in the tree for Lσ if u ∈ σ(x).
Now, the proof is by strong induction on the reverse depth, i.e., the height of the tree minus the depth of a

given node. We show that for each n ≥ 1, all nodes at reverse depth n − 1 or less in the tree for Lσ have their
σ-image in the tree for L implying σ(Lσ) ⊆ L, and all nodes at reverse depth n−1 or less in the tree for L have
a representation in the tree for Lσ implying L ⊆ σ(Lσ).
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a�ba�aaa� �ac

aa �aa�

a �

ε

a
�

a
� a

� a
b

c

Figure 5. Step 4: The final tree output by Minlang. The words in the partial language Lσ

are the labels of the terminal nodes in the tree.

For the base case, consider a node u′ at reverse depth 0, with parent u, in the tree for Lσ. Here u′ is at a
depth equal to the height of the tree. If u′ = ua for some a ∈ Σ, then {xa | x ∈ σ(u)} is in the tree for L, while
if u′ = u�, then {xa | x ∈ σ(u), a ∈ σ(�)} is in the tree for L. Now, consider a node u′ at reverse depth 0, with
parent u, in the tree for L. If Minlang finds that from u, there is a transition labeled by a in the tree for L, for
each a ∈ σ(�), then each such ua has a representation that ends with � in the tree for Lσ. And if Minlang does
not find such transitions from u, then u′ = ua for some a ∈ Σ, and u′ has a representation that ends in a in
the tree for Lσ.

For the inductive step, consider a node u′ at reverse depth n, with parent u, in the tree for Lσ. If u′ = ua
for some a ∈ Σ, then by the inductive hypothesis, all nodes uav, where v �= ε, in the tree for Lσ have their
σ-image in the tree for L. So the σ-image of u′, i.e., {xa | x ∈ σ(u)}, is in the tree for L. If u′ = u�, then
all nodes u�v, where v �= ε, in the tree for Lσ have their σ-image in the tree for L. So the σ-image of u′, i.e.,
{xa | x ∈ σ(u), a ∈ σ(�)}, is in the tree for L.

Consider a node u′ at reverse depth n, with parent u, in the tree for L. Suppose that Minlang finds that
from u, there is a transition labeled by a, for each a ∈ σ(�). By the inductive hypothesis, each node uav,
where v �= ε, has a representation x�y in the tree for Lσ such that |x| = |u| and |y| = |v|, and so ua has a
representation x�. Otherwise, set u′ = ua for some a ∈ Σ. By the inductive hypothesis, each node uav, where
v �= ε, has a representation xay in the tree for Lσ such that |x| = |u| and |y| = |v|, and so ua has a representation
xa. In either case, u′ has a representation in the tree for Lσ. �

The next four lemmas give properties of the language Lσ output by Minlang.

Lemma 4.2. For x ∈ Lσ, there exists some w ∈ Lmin,σ such that x ↑ w; similarly, for w ∈ Lmin,σ, there exists
some x ∈ Lσ such that x ↑ w.

Proof. By Definition 3.1 and Proposition 4.1, σ(Lmin,σ) = σ(Lσ) = L, and let x ∈ Lσ. Then σ(x) ⊆ L, and
take x̂ ∈ σ(x). Thus x̂ ∈ L, and so x̂ ∈ σ(w) for some w ∈ Lmin,σ. Then x ⊂ x̂ and w ⊂ x̂, so by definition,
x ↑ w. �
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Lemma 4.3. For w ∈ Lmin,σ, there is no x ∈ Lσ \ Lmin,σ such that x ⊂ w.

Proof. Suppose towards a contradiction that for w ∈ Lmin,σ, x ∈ Lσ and x �∈ Lmin,σ, we have x ⊂ w. Since
x �= w, we can write x � w, and since σ(Lσ) = L by Proposition 4.1, we know that σ(x) ⊆ L contradicting
Definition 3.1(3). �

Lemma 4.4. For w ∈ Lmin,σ and x ∈ Lσ, if w ⊂ x, then w = x; consequently, if w ∈ Lmin,σ, there is no
x ∈ Lσ such that w � x.

Proof. We show by induction on k that for w ∈ Lmin,σ and x ∈ Lσ, if w ⊂ x, then the suffix of length k of x
equals the suffix of length k of w.

For the base case, suppose towards a contradiction that w = w′� ∈ Lmin,σ and x = x′a ∈ Lσ, where a ∈ Σ
and x′ ∈ Σ∗, are such that w ⊂ x. Then since σ(w) ⊆ L and w′ ⊂ x′, we have that {x′b | b ∈ σ(�)} ⊆ σ(w) ⊆ L.
Hence the node x′, that represents a path from the root node to x′, has children on every branch of σ(�), with
each child marked as a terminal node. Then Minlang adds ε to C and iterates over each child, never removing
ε, and hence adding a �-transition from x′ to x′� and unmarking the σ(�) children of x′ as terminal nodes,
possibly deleting them if they do not branch, hence removing all redundant words from {x′b | b ∈ σ(�)}. Thus
Minlang switches the a to a � in the last character’s index, a contradiction. So the suffix of length one of x is
identical to the suffix of length one of w.

For the inductive step, suppose towards a contradiction that w = w′�v ∈ Lmin,σ and x = x′av′ ∈ Lσ, where
w ⊂ x, a ∈ Σ, x′ ∈ Σ∗, and |v| = |v′| = k. By the inductive hypothesis, v = v′. Since w′ ⊂ x′, we have that
{x′by | b ∈ σ(�), y ∈ σ(v)} ⊆ σ(w) ⊆ L. Hence the node x′ has children on every branch of σ(�), and each
node x′bv is marked as terminal. Thus Minlang adds v to C and iterates over each child x′b, never removing
v. It adds a �-transition from x′ to x′� and unmarks the x′bv nodes as terminal nodes, possibly deleting them
and the path to them if they contain no other branches to differing paths or are not terminal nodes. Minlang
then adds a terminal path from x′� to x′�v, so it switches the a to a � in the (k + 1)th last character’s index, a
contradiction. We conclude that the suffix of length k +1 of x is identical to the suffix of length k +1 of w. �

Lemma 4.5. For w ∈ Lmin,σ and x ∈ Lσ, if x ↑ w, then w ∈ Lσ.

Proof. We show the result by induction on the length of w. Assume that w ∈ Lmin,σ, x ∈ Lσ, and x ↑ w.
For the base case, consider |w| = 1. Suppose towards a contradiction that x � w. By Proposition 4.1,

σ(Lσ) = L and so since x ∈ Lσ, we have σ(x) ⊆ L. By Definition 3.1(3), we reach a contradiction. Thus, w ⊂ x
and by Lemma 4.4, w = x. So w ∈ Lσ.

For the inductive step, suppose w = cw′ and x = c′x′, with |c| = |c′| = 1, such that x′ ↑ w′, c ↑ c′.
First, suppose that c �= �. Consider the language L′ = {t′ | ct′ ∈ Lmin,σ} and the tree T ′ that results from

applying Minlang to the tree for σ(L′). Then, clearly, w′ ∈ L′, so by the inductive hypothesis, T ′ contains a
terminal path to w′. Hence the tree for Lσ contains a terminal path from c to cw′, thus w = cw′ ∈ Lσ.

Now, suppose that c = �. Then σ(�w′) ⊆ L implies that {d}σ(w′) ⊆ L for all d ∈ σ(�). If we consider each
language Ldσ constructed from taking the sub-tree of the tree for Lσ with d as the root node, we have that
w′ ∈ Ldmin,σ , where Ldmin,σ is a minimal language such that σ(Ldmin,σ) = σ(Ldσ ). By Lemma 4.2, there exists
some t′ ∈ Ldσ such that w′ ↑ t′, so by the inductive hypothesis, Ldσ contains a terminal path to w′. Then since
every child d ∈ σ(�) contains a path to w′, Minlang adds �w′ = w to Lσ. �

From these lemmas, we can easily derive the following proposition.

Proposition 4.6. The language Lσ output by Minlang satisfies Lmin,σ ⊆ Lσ.

Proof. Let w ∈ Lmin,σ. Then by Lemma 4.2, there exists some x ∈ Lσ such that x ↑ w. By Lemma 4.5,
w ∈ Lσ. �
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Figure 6. Top: A minimal �-DFA recognizing Lσ = {�aa, a�b, aa�}, where σ(�) = {a, b},
output by Minlang has 8 states. Bottom: A minimal �-DFA recognizing Lmin,σ = {�aa, a�b},
which is also a minimal �-DFA for the total language L = σ(Lσ) = σ(Lmin,σ), has 7 states.
Error states are omitted. The partial word aa� is redundant.

Figure 6 illustrates a minimal �-DFA for Lσ, the language output by Minlang that has more states than a
minimal �-DFA for the total language L as a result of redundancies in the Minlang approximation.

Given that Minlang can output an imperfect approximation even for simple �-DFAs as a result of redundan-
cies, it is important to establish a worst-case bound for the error in the approximation of Lmin,σ.

Theorem 4.7. The partial language Lσ output by Minlang is a 3
2 -approximation of Lmin,σ.

Proof. For every redundant element w ∈ Lσ, there must be at least |σ(�)| words in Lmin,σ that cover it. Recall
that for every word x in the covering set Xw ⊆ Lmin,σ of w, to make w redundant, we must have x ↑ w but
neither x ⊂ w nor w ⊂ x. Hence every x contains a hole that w does not. However, throughout the set Xw, the
holes must occur in at least two different indices, otherwise a word strictly weaker than w would be in a partial
language for L, and hence w would not be output by Minlang, i.e., there can be at most |σ(�)| − 1 words in Xw

with a hole at a certain index when w does not have a hole there.
We aim to maximize the redundancy ratio |Lσ|

|Lmin,σ | to show the worst case of redundancy in Lσ and to find
a bound for Lσ as an approximation of Lmin,σ. The smallest example of redundancy is illustrated in Figure 6.
The redundancy ratio is precisely 3

2 there.
To exaggerate the redundancy ratio, we attempt to expand the number of redundant words in Lσ while

adding as few words as possible to Lmin,σ. We consider a construction of these two sets that maximizes the
ratio. For the redundant words, we choose w and w′ that have differing non-hole characters at one index, say i,
but are otherwise identical. The covering set Xw of w must have words w1, with hole at position j1, and w2,
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with hole at position j2, j1 �= j2, where j1 and j2 are not holes in w. A similar statement is true for the covering
set Xw′ of w′. Letting |σ(�)|−1 of the words have a hole at position i is clearly optimal in order to maximize the
intersection between Xw and Xw′ . Then Xw (respectively, Xw′) also requires a word w0 (respectively, w′

0) with
a hole at an index different from i, and w0 and w′

0 must be distinct, as they must match w and w′, respectively,
at position i.

We can create up to |σ(�)| − 1 redundant words in this way, adding |σ(�)| words to Lmin,σ for the first
and an additional word for each of the others. If we were to create |σ(�)| such words, though, Minlang would
add a � at the position where the redundant words differ. Suppose we have k redundant words. We have that
Lmin,σ contains the |σ(�)| − 1 words with a hole at the differing index and k variations of the word without a
hole at that index to cover the k redundant words. Hence |Lmin,σ| = |σ(�)| − 1 + k and |Lσ| = |Lmin,σ| + k.
Clearly the ratio is the largest when k is largest. Hence, in the worst case, |Lmin,σ| = |σ(�)| − 1 + |σ(�)| − 1 and
|Lσ| = |σ(�)| − 1 + |σ(�)| − 1 + |σ(�)| − 1 which is precisely a redundancy ratio of 3

2 . �

To illustrate Theorem 4.7, let σ(�) = {a, b, c}. Consider X1 = {a�a, a�b, a�c} as the set that covers w = aa�.
Clearly each x ∈ X1 satisfies x ↑ w but neither x ⊂ w nor w ⊂ x. However, our choice of X1 implies that
σ(a��) ⊆ L, and hence w �∈ Lσ by Lemma 4.4. Thus, we can have at most |σ(�)| − 1 words in the covering set,
with a hole at a certain index when w does not have a hole there, that have a hole at the same index. Take
for example, X2 = {a�a, a�b, �ac} to be the set that covers w = aa�. Consider expanding the set of redundant
words to {aa�, �ab}. We would then need |σ(�)| elements to cover the hole in aa� and |σ(�)| more elements to
cover the hole in �ab. A better candidate for worst case is {aa�, ab�}. Then a�a and a�b cover both, so we only
need variations �ac and �bc. Thus, Lσ = {a�a, a�b, �ac, �bc, aa�, ab�} and Lmin,σ = {a�a, a�b, �ac, �bc}, yielding
the worst-case redundancy ratio of 3

2 . This may seem a large error bound, and indeed it is. Even in this example,
though, we have |L| = |σ(Lσ)| = 12, so Minlang reduces the size of the language by half, and the ratio of input
size to output size for redundancy-maximizing input increases with |σ(�)|.

We next state Minlang’s runtime.

Theorem 4.8. The runtime of Minlang is polynomial in the size of the input.

Proof. Let L be a finite language over constant-sized alphabet Σ with |L| = n, let σ be a �-substitution, and
let � be the length of the longest word in L. If |Σ| = 2, then we prove that O(�n+n4) is an upper bound on the
runtime of Minlang on input L and σ; if |Σ| > 2, then we prove that the bound can be lowered to O(�n + n3).

We first note the worst-case runtime occurs when the tree is as dense as possible; i.e., when n is close to
|Σ|�. This may seem counter-intuitive, a larger input leading to a smaller tree is often a good thing, but since
the bulk of the computation involves comparing paths to leaves and other terminal nodes, a denser tree results
in increased computation for a node at a given depth.

In the worst case, each node k distance from its lowest leaf can have no more than (|Σ| + 1)k descendant
leaves, and a total of no more than 2(|Σ| + 1)k terminal paths. After compiling C from these paths, Minlang
must then look up weaker and stronger terminal paths for each w ∈ C in each of |σ(�)|−1 siblings of the current
node. For a given sibling, for a given w, finding these paths takes O((|σ(�)|+1)k) time. The time used for actual
tree modifications is dwarfed by this lookup phase. Finally, Minlang must check no more than |Σ|�−k−1 nodes
for a given k (one per node at the level above the current one). Since, in this situation, the worst-case runtime
occurs when σ(�) = Σ, the total runtime for Minlang is given by

O

(
�n +

�−1∑
k=0

(|Σ| + 1)k|Σ|(|Σ| + 1)k+1|Σ|�−k−1

)
= O

(
�n + (|Σ| + 1)2�

)
.

Because n is approximately |Σ|�, we have (|Σ| + 1)2� < n3 when |Σ| ≥ 3, and (|Σ| + 1)2� < n4 when |Σ| = 2.
This gives the desired bounds. �
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5. Our REDUNDANCY REMOVAL Algorithm

In general, Minlang produces a good approximation for Lmin,σ, but we can do better. We describe a second
algorithm, referred to as Redundancy Removal, to fine-tune the result of Minlang, guaranteed to output Lmin,σ

exactly. We prove the correctness of the algorithm and give a worst-case runtime bound. Redundancy occurs
when a partial word w is already covered by some set X ⊆ Lmin,σ, i.e., w �∈ X and σ(w) ⊆ σ(X). In Algorithm 2,
V is the set of suffixes v of partial words u�v in Lσ, where u is a fixed word with no holes, Ra is the set of
suffixes r of partial words uar in Lσ, where a ∈ Σ� and r is compatible with some element of V , and r is the part
of the image σ(r) that is left uncovered by the elements of V . Referring to Figures 2–5, Redundancy Removal
is illustrated by Figure 7.

Algorithm 2. Redundancy Removal given as input Lσ, the output of Minlang, computes Lmin,σ

1: for all u�, u ∈ Σ∗ do
2: V = {v | u�v ∈ Lσ}
3: for all children ua of u for a ∈ σ(�) do
4: compile Ra = {r | r ↑ v for some v ∈ V, uar ∈ Lσ}
5: for all r ∈ Ra do
6: let r = σ(r) \ {r ∪ v | r ↑ v for v ∈ V }
7: if for every e ∈ r there is a path uae′ ∈ Lσ such that e′ ⊂ e then
8: delete r
9: end if

10: end for
11: end for
12: end for
13: compile Lσ from the tree (every root-to-terminal path)
14: return Lσ

Recall that by Proposition 4.6, Lmin,σ ⊆ Lσ. We next prove that Redundancy Removal maintains the rela-
tionship Lmin,σ ⊆ Lσ while removing from Lσ any partial words not in Lmin,σ.

Theorem 5.1. Given as input a finite language L over Σ and a �-substitution σ, Minlang followed by Redun-
dancy Removal returns Lmin,σ.

Proof. Recall by Definition 3.1 that Lmin,σ is a minimal partial language with its words of the weakest form
such that σ(Lmin,σ) = L. We claim that Redundancy Removal removes the elements of the output of Minlang,
Lσ, that are redundant. It follows directly from Proposition 4.6 and our claim that Lσ = Lmin,σ.

To prove our claim, consider some element x that is removed by our Redundancy Removal. Thus x = uar
for some u ∈ Σ∗, r ∈ Σ∗

� , and a ∈ σ(�), and there exists w = u�y ∈ Lmin,σ such that y ∈ Σ∗
� and y ↑ r. Then

for x to be removed, r ∈ Ra, which means that r ↑ v for some v ∈ V , i.e., u�v ∈ Lσ, which is the case since
y ∈ V . Then for every e ∈ r, there must be some path uae′ ∈ Lσ such that e′ ⊂ e. But if this is the case, then
uae′ ∈ Lσ for all such e′, and uae′ ⊂ uae. This means precisely that σ(x) ⊆ σ(Lσ \ {x}), and hence x �∈ Lmin,σ,
so we remove x.

Similarly, if x �∈ Lmin,σ and x ∈ Lσ, then there must be some minimal set X ⊆ Lmin,σ ⊆ Lσ such that
σ(x) ⊆ σ(X). If we take an element of X with a hole in the leftmost position of any partial word in X , say u�v,
we have that x = uar where a ∈ Σ�, and r ↑ v since x ↑ w for every w ∈ X . Then clearly v ∈ V and r ∈ Ra.
Any intersection between σ(r) and {r ∪ v} is removed from σ(r). Removing from σ(r) all elements r ∪ z with
r ↑ z and z ∈ V yields the set r, so every path in r contains a weaker path, and hence x is removed from Lσ.

It follows that after the redundancy removal, there are no elements x ∈ Lσ such that x �∈ Lmin,σ. �

We finally state Minlang with Redundancy Removal ’s runtime. For “dense” languages (i.e., when the cardinality
of the language is large relative to the length of its longest word), the bound on runtime is significantly worse
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Figure 7. Top: For u = ε, the thick dashed path gives the set V = {ac} from the pseudocode
of Redundancy Removal. The thin dashed path is the only element r = a� ∈ Ra. Then r =
{aa, ab, ac} \ {ac} = {aa, ab}. The dotted paths from a labeled �a, �b represent e′ ⊂ e ∈ r,
hence we delete r. Bottom: The final language tree for the {a, b, c}-minimal partial language
for L, Lmin,σ = {a�a, a�b, �ac}.

than that for Minlang without Redundancy Removal ; however, the existence of a polynomial bound for an
optimal minimization algorithm is itself a significant result.

Theorem 5.2. The runtime of Minlang followed by Redundancy Removal is polynomial in the size of the
input.

Proof. Let L be a finite language over constant-sized alphabet Σ with |L| = n, let σ be a �-substitution, and
let � be the length of the longest word in L. If |Σ| = 2, then we prove that O(�n4 + n5) is an upper bound on
the runtime of Minlang followed by Redundancy Removal on input L and σ; if |Σ| > 2, then we prove that the
bound can be lowered to O(�n3 + n4).

For the redundancy removal specifically, the worst case occurs when a �-transition is present in (nearly) all
nodes, but a-transitions remain for nearly all a ∈ σ(�). Then the tree contains O(|Σ|k) paths with a �-transition
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at depth k, and finding all terminals from a depth-k node requires O(|Σ|�−k) time. Thus, we derive the following
bounds:

Task/Loop Bound
Number of possible u� at depth k (|Σ| + 1)k

Compiling V for given u� O((|Σ| + 1)�−k)
Number of possible children ua |Σ|
Compiling Ra for given a O((� − k)(|Σ| + 1)�−k(|Σ| + 1)�−k)
Size of Ra (|Σ| + 1)�−k

Compiling r O((� − k + |Σ|�−k)(|Σ| + 1)�−k)
Checking r against uae′ ∈ Lσ O((� − k)(|Σ| + 1)�−k(|Σ| + 1)�−k)
Removing r from the tree O(� − k)

While some of these bounds are obvious, a few merit discussion. Compiling Ra requires comparing all terminal
suffixes of a with all elements of V . Both sets have O(|Σ|�−k) elements, and a compatibility check requires O(�−k)
time, so the stated bound follows. For the compilation of r, generating σ(r) requires O(|Σ|�−k) time (with the
upper bound reached when r is entirely composed of � symbols), while computing the set of least upper bounds
requires performing O(� − k) comparison and replacement operations between r and each element of V . The
resulting set has size O(|Σ|�−k), so calculating the associated set of total words (through application of σ)
takes O(|Σ|�−k|Σ|�−k) time. The resulting set is by definition a subset of σ(r), so finding r using set difference
algorithms takes O((� − k)|Σ|�−k) time, and the bound follows.

An upper bound on the total runtime of Redundancy Removal is then given by

O

(
�∑

k=1

(|Σ| + 1)k((|Σ| + 1)�−k + |Σ|((� − k)(|Σ| + 1)�−k(|Σ| + 1)�−k

+ (|Σ| + 1)�−k((� − k + |Σ|�−k)(|Σ| + 1)�−k

+ (� − k)(|Σ| + 1)�−k(|Σ| + 1)�−k + � − k))

)

= O
(
�(|Σ| + 1)2� + |Σ|�(|Σ| + 1)2�

)
.

Recalling from the runtime analysis of Minlang that (|Σ|+ 1)2� is O(n3) for |Σ| > 2 and O(n4) for |Σ| = 2, we
arrive at the stated bounds. Since the bounds dominate those of Minlang, the total runtime bound for Minlang
followed by Redundancy Removal is O(�n3 + n4) for ternary and larger alphabets and O(�n4 + n5) for binary
alphabets. �

6. Our PARTIAL AUTOMATON CHECK algorithm

We describe a third algorithm, referred to as Partial Automaton Check, that verifies if σ(L(Mσ)) = L when
given as input a �-DFA Mσ, associated with a �-substitution σ, and a finite language L over Σ.

We say that a �-DFA (Q, Σ�, δ, s, F ), associated with a �-substitution σ, has reduced transition complexity if
for all p, q ∈ Q such that δ(p, �) = q, there is no a ∈ σ(�) such that δ(p, a) = q. Figure 8 illustrates this concept
of reduced transition complexity.

A contender for a minimal �-DFA for a finite language L is a �-DFA Mσ such that |L(Mσ)| ≤ |L|, in order
to comply with Proposition 6.1.

Proposition 6.1. Let L′ be the partial language accepted by a minimal �-DFA with reduced transition complexity
associated with a �-substitution σ for a finite language L. Then |L′| ≤ |L|.
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Figure 8. Top: A �-DFA without reduced transition complexity recognizing the partial lan-
guage {�, a, b, c}4. Bottom: A �-DFA with reduced transition complexity recognizing the partial
language {����}.

Proof. Let M = (QM , Σ, δM , sM , FM ) be a DFA that accepts a finite language L and let σ be a �-substitution.
Let Mσ = (Q, Σ�, δ, s, F ) be the �-DFA constructed from M . For a state q, we define the suffix set of q, denoted
by S(q), to be the set of partial words on which state q transitions to a final state. For a state p, we define a
superstate p of state q to be such that S(q) ⊆ S(p). Let L′ be the partial language recognized by Mσ.

First, we claim that in the construction of Mσ, any �-transition added shares or replaces an existing transition
for a letter in σ(�), i.e., any �-transition can only be placed on the same edge as an existing transition and the
state out of which the � transitions must contain transitions for every letter in σ(�). We prove our claim by
induction on |H(u)|, where u�v is a partial word in L′ \ L with u, v ∈ Σ∗

� .
For the base case, suppose |H(u)| = 0. Let δ̂(s, u) = p and for the added �-transition, let δ(p, �) = q. Then

for all v′ ∈ S(q), u�v′ ∈ L′, hence uav′ ∈ L for all a ∈ σ(�). It follows that p transitions on every a ∈ σ(�).
Furthermore, if δ(p, a) �= q, then δ(p, a) = r for some superstate r of q in order for σ(u�v′) ∈ L for all v′ ∈ S(q).
For the inductive step, suppose |H(u)| = k. By the inductive hypothesis, because we added each �-transition
inside u to some existing transition for a ∈ σ(�), there is some total word û such that û ∈ σ(u) and δ̂M (s, û) = p.
Hence, if σ(u�v) ∈ L, then ûaσ(v) ⊆ L for all a ∈ σ(�), and hence p must have transitioned to a state on every
a ∈ σ(�) such that v is in the suffix set of each of these states. Our claim follows.

Now, suppose towards a contradiction that the partial language L′ recognized by a minimal �-DFA M ′
σ =

(Q, Σ�, δ, s, F ) with reduced transition complexity associated with a �-substitution σ for the language L is such
that |L′| > |L|.

We consider the construction of L′ from L. In order to have |L′| > |L|, at some point, we must insert a
weaker word u�v into L′, where ubv ∈ L for all b ∈ σ(�), u, v ∈ Σ∗, and not remove any words of the form ubv
from L′. Furthermore, for each redundancy we remove by adding partial words to L′, we must have another
instance of adding a partial word without removing any redundancies. Hence we maintain that σ(L′) = L and
now |L′| > |L|. Consider the partial word u�v that was added to L′ such that prior to this addition, |L′| ≤ |L|,
but after it, |L′| > |L|. If we are altering L′ in order to create a minimal �-DFA for L, then it must be that by
adding u�v, we can merge states in M ′

σ.
Let δ̂(s, u) = p and δ(p, �) = q. As we do not remove redundancies when we add δ(p, �) = q to M ′

σ, we do
not delete any transitions. If this allows states to merge, it must do so by enlarging the set of transitions out
of p to match exactly some other state r in M ′

σ such that we can merge p and r.
If A, the set of all a ∈ σ(�) such that δ(p, a) = q, is non-empty, then by adding δ(p, �) = q, the �-DFA is not

of reduced transition complexity. Hence it must be that A ∩ σ(�) = ∅. Let B be the set of all b ∈ Σ such that
δ(r, b) = q. If other state-letter transition pairs differ between p and r that are not concerned with transitioning
to q, adding δ(p, �) = q will not allow p and r to be merged. Then it must be that the set of transitions A and
B to q is the only place where p and r differ.

It is necessary to assume that B = A ∪ {�}, as otherwise, adding δ(p, �) = q would not allow the states to
merge. But if r transitions to q on � and no elements of σ(�), then it must be that on every letter of σ(�), r
transitions to a superstate of q. But all of the other transitions out of r are identical to those out of p, hence
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p and r should already have been merged before δ(r, �) = q was added, and certainly δ(p, �) = q will not be
added now.

It follows from the induction that for u, v ∈ Σ∗
� that no �-transitions would be added without removing

redundancies from the induction. �

Algorithm 3. Partial Automaton Check Given a �-substitution σ, a �-DFA Mσ = (Q, Σ�, δ, s, F ), and a finite
language L over Σ, checks whether σ(L(Mσ)) = L

1: run standard DFA minimization on Mσ

2: compile the list P of all paths from s to any f ∈ F (if any grows longer than �, the length of the longest word in L,
terminate and return false)

3: compile the partial language L′ from P , i.e., partial words in L′ are labels of paths in P (if |L′| grows larger than
|L|, terminate and return false)

4: let �′ be the length of the longest word in L′

5: if �′ �= � then return false
6: let L′

σ be the result of running Minlang on L′ and σ (at most � passes)
7: run Redundancy Removal on L′

σ

8: run Minlang with Redundancy Removal on L, creating Lmin,σ

9: if L′
σ = Lmin,σ then return true

10: else return false

To illustrate Algorithm 3, consider the �-substitution σ(�) = {a, b}, the �-DFA Mσ from Figure 9 (Top), and
the finite language L = {aaa, baa, aba, abb} over {a, b}. In Line 1, after running standard DFA minimization on
Mσ, we get the DFA from Figure 9 (Bottom). In Line 2, the list of all paths from 0 to 6 is P = {0− 12− 345−
6, 0 − 1 − 3 − 6, 0 − 12 − 4 − 6}; here no path grows longer than � = 3, the length of the longest word in L. In
Line 3, the partial language from P constructed from the labels of paths in P is L′ = {aaa, aab, baa, abb}; here
|L′| = |L| = 4. In Lines 4 and 5, the length �′ of the longest word in L′ is such that �′ = � = 3. In Line 6, the result
of running Minlang on L′ and σ is L′

σ = {aa�, a�b, �aa}. In Line 7, the result of running Redundancy Removal on
L′

σ is L′
σ = {a�b, �aa}. In Line 8, running Minlang with Redundancy Removal on L creates Lmin,σ = {�aa, ab�}.

In Lines 9 and 10, since L′
σ �= Lmin,σ, the algorithm returns false, i.e., σ(L(Mσ)) �= L.

Referring to the notation used in the pseudocode of Algorithm 3, for a word w ∈ Lmin,σ, the weakest covering
set X for w is the set of those words x ∈ L′

σ such that x ↑ w, L′
σ contains no element z satisfying z � x, and

σ(w) ⊆ σ(X).

Theorem 6.2. Let L be a language over alphabet Σ and σ be a �-substitution over Σ. If L′ is a partial language
such that σ(L′) = L, the language L′

σ produced by running Minlang (at most � passes) on L′ and then running
Redundancy Removal is equal to Lmin,σ, where � denotes the length of the longest word in L.

Proof. First, we claim that if L is a language over alphabet Σ and σ is a �-substitution over Σ, then for any
partial language L′ such that σ(L′) = L, if L′

σ is the language produced by running Minlang, as many passes
as necessary, on L′, then Lmin,σ ⊆ L′

σ.
To prove our claim, let w ∈ Lmin,σ. Since L′

σ is a partial language associated with L, L′
σ contains some

weakest covering set X for w. We show that for all x ∈ X and any factorizations w = uv and x = u′v′ where
|v| = |v′|, we have that u′ ↑ u and v′ ⊂ v. We do this by induction on |v|.

For the base case, consider the factorizations w = uv = ua and x = u′v′ = u′a′ where |a| = |a′| = 1. Since X
covers w, we have u′a′ = x ↑ w = ua, and so u′ ↑ u and a′ ↑ a. Suppose towards a contradiction that a = � and
a′ �= �. Since X ⊆ L′

σ covers w, u′b ∈ L′
σ for all b ∈ σ(�), and a pass of Minlang clearly results in u′� ∈ L′

σ. This
implies u′� � u′a′, contradicting the fact that X is a weakest covering set for w. So a �= � or a′ = �, and trivially,
v′ = a′ ⊂ a = v. For the inductive step, consider the factorizations w = uv = uay and x = u′v′ = u′a′y′ where
|a| = |a′| = 1 and |y| = |y′|. By the inductive hypothesis, u′a′ ↑ ua and y′ ⊂ y, so u′ ↑ u. Suppose towards a
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Figure 9. Top: A �-DFA Mσ recognizing {�aa, a�b, aa�}, with σ(�) = {a, b}. Bottom: The
minimal DFA M satisfying L(M) = σ(L(Mσ)). Error states are omitted.

contradiction that a = � and a′ �= �. Since X ⊆ L′
σ covers w, u′by′ ∈ L′

σ for all b ∈ σ(�), and a pass of Minlang
clearly results in u′�y′ ∈ L′

σ. This implies u′�y′ � u′a′y′, leading to a contradiction as for the base case. So
a �= � or a′ = �. To have u′a′ ↑ ua, we must have a′ ⊂ a, hence v′ = a′y′ ⊂ ay = v.

Thus, for every w ∈ Lmin,σ, we have x ⊂ w for all x ∈ X . By Lemmas 4.3 and 4.4, x = w, so w ∈ L′
σ. Hence

Lmin,σ ⊆ L′
σ.

Next, we claim that if � is the length of the longest word in L, no more than � passes of Minlang are required
for our first claim to hold. To prove our claim, if L′ is a partial language for L with �-substitution σ, the
language tree for L′ is of height �. Likewise, the tree for L′

σ, the language produced by running Minlang on L′,
is of height �. The only case where we require an additional pass of Minlang on L′

σ is when in the previous
pass of Minlang, some partial word u�xay, where u, x, y ∈ Σ∗� and a ∈ σ(�), is added to L′

σ such that it is then
possible to add u�x�y′ to L′

σ for some y′ ∈ Σ∗� with y ⊂ y′. As this newly-available addition can only occur at
a strictly lower level of the tree than the previous addition, the tree is correctly minimized to depth k by the
kth pass. Then, minimization is complete after at most � passes.

By our two claims, Lmin,σ ⊆ L′
σ after at most � passes of Minlang. By Theorem 5.1, we have that Redundancy

Removal on L′
σ removes all redundant elements of L′

σ, resulting in simply Lmin,σ. �

We finally prove Partial Automaton Check ’s correctness and runtime.

Theorem 6.3. Given as input a finite language L, a �-substitution σ, and a �-DFA Mσ, Partial Automaton
Check runs in polynomial time in the size of the input. It properly verifies that σ(L(Mσ)) = L and that Mσ is
a contender for a minimal �-DFA for L given σ.
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Proof. To see that Partial Automaton Check runs in polynomial time, consider an input �-DFA Mσ =
(Q, Σ�, δ, s, F ). Let V = |Q|. Let E denote the total number of transitions in Mσ, which is O(|Σ|V ) as each state
can have at most |Σ|+ 1 transitions. Using standard DFA minimization takes O(V log V ) time [17]. Compiling
the list P of all paths from s to each f ∈ F takes O(V + E) time using breadth-first search. Since |L′| ≤ |L|,
by Proposition 6.1, compiling L′ from P takes O(n) time, where n = |L|. We define � to be the length of the
longest word in L, noting that � is the same for all partial languages with the same σ-image. Additionally, we
let n = |L|. Running Minlang on L′, at most � passes, takes O(�2n + �n4) time by Theorem 4.8, and running
Redundancy Removal on the resulting language takes O(n5 + �n4) time by Theorem 5.2. Similarly, running
Minlang with Redundancy Removal on L takes O(n5 + �n4) time. Then the comparison of Lmin,σ to L′

σ takes
O(�n) time since |Lmin,σ| ≤ |L| by definition of the σ-minimal partial language for L. Because V = O(�n) and
E = O(|Σ|V ), the runtime of Partial Automaton Check is given by O(|Σ|�n + �2n + �n5), which is polynomial
in the input size.

To see that Partial Automaton Check properly verifies that σ(L(Mσ)) = L and that Mσ is a contender for a
minimal �-DFA for L given σ, it first minimizes Mσ to optimize runtime. It compiles all paths from the initial
state s to all final states f ∈ F and consolidates the paths into a partial language L′ = L(Mσ). However, by
Proposition 6.1, a contender for a minimal �-DFA for L never accepts a language larger than L, so if it finds
that |L′| has grown larger than |L| at any given point in the compiling of L′, it immediately terminates and
returns false, as this �-DFA is no longer a contender for a minimal �-DFA for L.

If the length �′ of the longest word in L′ is not the length � of the longest word in L, then clearly L′ is not a
partial language for L, so it suffices to terminate and return false.

The next step is to run Minlang followed by Redundancy Removal on L and Minlang, at most � passes, on
L′ followed by Redundancy Removal. By Theorem 5.1 and Theorem 6.2, this produces the unique σ-minimal
partial language for L and for σ(L′). Hence if σ(L′) = L, then Lmin,σ = L′

σ. It then checks if the two languages
Lmin,σ and L′

σ are equal. If so, it returns true, and if not, it returns false (Lines 9–10). Hence it returns true if
and only if σ(L(Mσ)) = L and Mσ is a contender for a minimal �-DFA for L given σ. �

7. Adapting M INLANG for infinite languages

It is well known that the problem of minimizing NFAs or regular expressions is PSPACE-complete [24], which
is in contrast with the problem of minimizing DFAs [17]. The problem remains PSPACE-complete even when
specifying the regular language by a DFA [18]. Gramlich and Schnitzer [13] proved inapproximability results for
the minimization problem for NFAs or regular expressions. Other works on the complexity of finite automata
problems include [2, 5, 10, 15, 19, 23, 26].

We can extend regular expressions to partial words by adding � to the basic regular expressions. This leads
naturally to the concept of regular partial languages as the sets of partial words that match partial regular
expressions. It is possible to run a slightly modified version of Minlang on an infinite language L using the
following process. In place of a complete list of the words in L, we use a regular expression for L along with a
given �-substitution σ.

First, convert a regular expression for our language L into a slightly modified but equivalent form: distribute
out unions whenever possible and separate the expression into a list of words that are joint together at the
outermost level. Call this list L, as it is evidently equivalent. Note that the only remaining unions must be
inside a Kleene star block. Denote the start of a Kleene star block with “ [ ” and the end of it with “ ] ”.

Then, put L into a prefix tree. However, whenever we start a Kleene star block, each element that is joint
together is the child of the “ [ ” character. The end of each element in the Kleene star block has a child to the
same joint “ ] ” node that continues on with the suffix of the block.

Next, perform the same algorithm as Minlang with respect to the given �-substitution σ, except when deleting
redundant paths for some word w, if w = u ] v and the “]” node has multiple parents, only delete the nodes
relating to u according to the algorithm’s requirements and break the tie from the “]” node to its parent in the
path of u.
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Figure 10. A language tree representing the regular expression a(a + b + c)∗b. Running the
modified Minlang produces the desired regular expression a�∗b, with σ(�) = {a, b, c}.

Hence Minlang finds all possible �’s and removes redundancies in this tree. Then a trained traversal of the
tree that matches every “ [ ” node with its descendant balanced “ ] ” node and unions all paths from the same
“ [ ” node to the joined “ ] ” node yields all regular expressions with the maximum number of �’s in place. We call
the resulting list of regular expressions represented, Lσ. The modified algorithm for infinite regular languages
runs in polynomial time of the input regular expression using the same analysis as for Minlang.

This modification of Minlang does not produce an equivalent minimal partial language Lσ for the infinite
language L. First, such a definition does not make sense, as we cannot produce a language of minimal size, since
any partial language for L is infinite. Thus we focus on the equivalent of Definition 3.1(3): for no partial word
w ∈ Lσ does there exist x satisfying σ(x) ⊆ L and x � w. We cannot guarantee that Lσ meets this criterion, as
Lσ is dependent on the regular expression used for L and not on the infinite language that the regular expression
represents. The problem lies in the representation of a Kleene star block. While ab(cb)∗b ≡ a(bc)∗bb, the regular
expression ab(cb)∗b + a(bc)∗ab + a(bc)∗cb, that uses the former form, finds no �’s when the modified Minlang
is run on it. However, the regular expression a(bc)∗bb + a(bc)∗ab + a(bc)∗cb, that uses the latter form, finds
a(bc)∗�b.

Checking all possible configurations of a loop for every loop used in a regular expression for the language is
intractable. We could use a standardized configuration of a loop, such as the unambiguous form from [14]. For
a regular expression composed of regular expressions x, y, define x(yx)∗ to be the unambiguous form, as a DFA
is easily constructed from it. This is opposed to any u(vyu)∗v where uv = x. However, even with a standardized
unambiguous form, a(ba)∗ + (ab)∗b + (ab)∗c finds no �’s, while (ab)∗a + (ab)∗b + (ab)∗c finds (ab)∗�.

8. Conclusion and open problems

The choice of a �-substitution σ can vastly change the state complexity of a minimal �-DFA, associated with
σ, for a given DFA. Figure 11 illustrates different �-substitutions resulting in different state complexities for
minimal �-DFAs, associated with them. An open problem is to develop computational techniques for selecting
an optimal �-substitution σ for a given DFA M , that is, optimality occurs when a minimal �-DFA for L(M),
associated with σ, has the same state complexity as a minimal �-DFA for L(M) over all possible �-substitutions.
Because a solution to the σ-Choice problem is defined in terms of a solution to the Minimal-�-DFA problem,
which is NP-hard, it does not make sense to define or attempt to solve the σ-Choice problem separately from
the Minimal-�-DFA problem.

Another open problem is the one of extending �-DFAs. In light of the understanding that �-DFAs are weakly
non-deterministic, it makes sense to ask whether meaningful extensions of the class �-DFA exist, and what



118 F. BLANCHET-SADRI ET AL.

0 1 2 3

4

5
�

a

a c

a

a

a

0 1 2 3

4 6

5
b

a

a �

a

a

a

c � a

Figure 11. Top: A minimal �-DFA, associated with σ(�) = {a, b}, having 7 states including
the error state, a sink non-final state. Bottom: A minimal �-DFA for the same total language,
associated with σ(�) = {a, c}, having 8 states including the error state.

properties those extensions might have. In particular, what would happen if we created additional �-like symbols,
say �1, . . . , �k?

A World Wide Web server interface has been established at

www.uncg.edu/cmp/research/planguages2

for automated use of a program that given a �-substitution σ and a total language L, computes the σ-minimal
partial language for L. This is our own implementation, we do not use any known automata library.
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