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Abstract

Monotonicity with respect to all arguments is fundamental to the definition
of aggregation functions. It is also a limiting property that results in many
important non-monotonic averaging functions being excluded from the the-
oretical framework. This work proposes a definition for weakly monotonic
averaging functions, studies some properties of this class of functions and
proves that several families of important non-monotonic means are actually
weakly monotonic averaging functions. Specifically we provide sufficient con-
ditions for weak monotonicity of the Lehmer mean and generalised mixture
operators. We establish weak monotonicity of several robust estimators of lo-
cation and conditions for weak monotonicity of a large class of penalty-based
aggregation functions. These results permit a proof of the weak monotonic-
ity of the class of spatial-tonal filters that include important members such
as the bilateral filter and anisotropic diffusion. Our concept of weak mono-
tonicity provides a sound theoretical and practical basis by which (monotone)
aggregation functions and non-monotone averaging functions can be related
within the same framework, allowing us to bridge the gap between these
previously disparate areas of research.

Keywords: aggregation functions, monotonicity, means, penalty-based func-
tions, non-monotonic functions

Preprint submitted to Elsevier September 6, 2018

http://arxiv.org/abs/1408.0328v1


1. Introduction

The aggregation of several input variables into a single representative
output arises naturally as a problem in many practical applications and do-
mains. The research effort has been disseminated throughout various fields
including economics, computer science, mathematics and engineering, with
the subsequent mathematical formulation of aggregation problems having
coalesced into a significant body of knowledge concerning aggregation func-
tions. A wide range of aggregation functions are presented in the literature,
including the weighted quasi-arithmetic means, ordered weighted averages,
triangular norms and co-norms, Choquet and Sugeno integrals and many
more. Several recent books provide a comprehensive overview of this field of
study (Beliakov et al. [5], Grabisch et al. [17], Torra [32]).

Aggregation functions are commonly used within fuzzy logic, where log-
ical connectives are typically modeled using triangular norms and triangu-
lar co-norms. Beyond this field the averaging functions - more commonly
known as means - that are frequently applied in decision problems, sta-
tistical analysis and in image and signal processing. Means have been an
important tool and topic of study for over two millennia, with examples
such as the arithmetic, geometric and harmonic means known to the Greeks
(Rubin [28]). Each of these means shares a fundamental property with the
broader class of aggregation functions; that of monotonicity with respect to
all arguments (Beliakov et al. [5], Grabisch et al. [17], Torra [32]). There are
though many means of significant practical and theoretical importance that
are non-monotonic and hence not classified as aggregation functions. For
example, a non-monotonic average of pixel intensities within an image sub-
set is used to perform tasks such as image reduction (Wilkin [35]), filtering
(van den Boomgaard and van de Weijer [34], Sylvain et al. [30]) or smoothing
(Barash and Comaniciu [3]). Within statistics, robust estimators of location
are used to estimate the central tendency of a data set and the mode, an
average possibly known to the Greeks (Rubin [29]), is a classic example of a
non-monotonic average.

Monotonicity with respect to all arguments has an important interpre-
tation in decision making problems: an increase in one criterion should not
lead to the decrease of the overall score or utility. However, in image pro-
cessing an increase in only one pixel value above its neighbours may be due
to noise or corruption and should not necessarily increase the intensity value
that represents that region. Accordingly, the averaging functions used in
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such applications do not fit within the established theories regarding aggre-
gation functions and are typically dealt with only from the signal processing
perspective.

There are also many non-monotonic means appearing in the literature,
with the mode, Gini means, Lehmer means, Bajraktarevic means (Beliakov
et al. [5], Bullen [8]) and mixture functions (Ribeiro and Marques Pereira
[24], Marques Pereira and Ribeiro [20]) being particularly well known cases.
Ideally we would like a formal framework for averaging functions that en-
compasses non-monotonic means and places them in context with existing
monotonic aggregation functions, enabling us to better understand the rela-
tionships within this broad class of functions. In so doing we are then able
to broaden our understanding of non-monotonic averaging as an aggregation
problem.

We achieve this aim herein by relaxing the monotonicity requirement for
averaging aggregation functions and propose a new definition that encom-
passes many non-monotonic averaging functions. We justify this approach
by the following interpretation of averaging: while we accept that an increase
in one input, or coordinate, may lead to a decrease of the aggregate value,
we argue that the same increase coincident in all inputs should only lead
to an increase of the aggregate value. This is akin to the property of shift-
invariance, which along with homogeneity is one of the basic requirements of
the non-monotonic location estimators (Rousseeuw and Leroy [27]). We do
not impose shift-invariance though, as that would severely limit the range
of averaging functions that fall under our definition averaging functions (for
instance, the only shift invariant quasi-arithmetic means are weighted arith-
metic means). Rather we consider the property of directional monotonicity
in the direction of the vector (1, 1, . . . , 1), which is obviously implied by shift-
invariance as well as by the standard definition of monotonicity. We call this
property weak monotonicity within the context of aggregation functions and
we investigate it herein.

The remainder of this article is structured as follows. In Section 2 we
provide the necessary mathematical foundations that underpin the subse-
quent material. Section 3 provides the main definitions and presents vari-
ous properties of weakly monotone aggregation functions. Within Section 4
we examine several non-monotonic means and prove that they are, in fact,
weakly monotonic. In Section 5 we draw our conclusions and discuss future
research directions arising as a result of this investigation.

3



2. Preliminaries

2.1. Aggregation functions

In this article we make use of the following notations and assumptions.
Without loss of generality we assume that the domain of interest is any closed,
non-empty interval I ⊆ R̄ = [−∞,∞] and that tuples in In are defined as
x = (xi,n|n ∈ N, i ∈ {1, ..., n}). We write xi as the shorthand for xi,n such
that it is implicit that i ∈ {1, ..., n}. Furthermore, In is ordered such that
for x,y ∈ In, x ≤ y implies that each component of x is no greater than the
corresponding component of y. Unless otherwise stated, a constant vector
given as a is taken to mean a = a(1, 1, . . . , 1

︸ ︷︷ ︸

n times

) = a1, where a ∈ R is a constant

and n is implicit within the context of use.
The vector xր denotes the result of permuting the vector x such that its

components are in non-decreasing order, that is, xր = xσ, where σ is the
permutation such that xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n). Similarly, the vector xց
denotes the result of permuting x such that xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(n). We
will make use of the common shorthand notation for a sorted vector, being
x() = (x(1), x(2), . . . , x(n)). In such cases the ordering will be stated explicitly
and then x(k) represents the kth largest or smallest element of x accordingly.

Consider now the following definitions:

Definition 1. A function F : In → R̄ is monotonic (non-decreasing) if and
only if, ∀x,y ∈ In,x ≤ y then F (x) ≤ F (y).

Definition 2. A function F : In → I is an aggregation function in In if
and only if F is monotonic non-decreasing in I and F (a) = a, F (b) = b, with
In = [a, b]n.

Definition 3. A function F is called idempotent if for every input x =
(t, t, ... , t), t ∈ I the output is F (x) = t.

The functions of most interest in this article are those that have averaging
behaviour.

Definition 4. A function F has averaging behaviour (or is averaging) if
for every x it is bounded by min(x) ≤ F (x) ≤ max(x).

Aggregation functions that have averaging behaviour are idempotent,
whereas idempotency and monotoicity imply averaging behaviour.
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Definition 5. A function is called internal if its value coincides with one
of the arguments.

Of particular relevance is the notion of shift-invariance Calvo et al. [10],
Lázaro et al. [19] (which is also called difference scale invariance Grabisch
et al. [17]). A constant change in every input should result in a corresponding
change of the output.

Definition 6. A function F : In → I is shift-invariant (stable for transla-
tions) if F (x+ a1) = F (x) + a whenever x,x+ a1 ∈ In.

Definition 7. A function F is homogeneous (with degree one) if F (ax) =
aF (x) for all ax ∈ In.

Aggregation functions that are shift-invariant and homogeneous are known
as linear aggregation functions. The canonical example of a linear aggrega-
tion function is the arithmetic mean.

2.2. Means

The term mean is used synonymously with averaging aggregation func-
tions. Chisini’s definition of a mean as an average states that the mean of
n independent variables (x1, ..., xn), with respect to a function F , is a value
M for which replacement of each value xi in the input by M , results in the
output M (Chisini [12], stated in Grabisch et al. [17]). I.e.,

F (x1, ..., xn) = F (M, ...,M) = M

As was noted by de Finetti (de Finetti [13], stated in Grabisch et al.
[17]), Chisini’s definition does not necessarily satisfy Cauchy’s requirement
that a mean be an internal value (Cauchy [11]). However, by assuming that
F is a non-decreasing, idempotent function, then existence, uniqueness and
internality of M are restored to Chisini’s definition. Gini ( Gini [16], p.64),
writes that an average of several quantities is a value obtained as a result
of a certain procedure, which equals to either one of the input quantities,
or a new value that lies in between the smallest and the largest input. The
requirement that F be non-decreasing is too strict given the aims of this
article and as such, following many authors (e.g., Gini [16], Bullen [8]), we
take the definition of a mean to be any averaging (and hence idempotent)
function.
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Definition 8. A function M : In → I is called a mean if and only if it is
averaging.

The basic examples of (monotonic) means found within the literature in-
clude weighted arithmetic mean, weighted quasi-arithmetic mean, ordered
weighted average (OWA), order statistic Sk(x) = x(k), and the median.
Less known examples include Choquet and Sugeno integrals and their special
cases; the logarithmic means, Heronian means, Bonferroni means and others
Bullen [8], Grabisch et al. [17].

In continuing, we wish to consider a broader class of means to include
those that are not necessarily monotonic. A classic example is the mode,
being the most frequent input, which is routinely used in statistics. 1 The
mode is not monotonic as the following example shows. Taking the vectors
x = (1, 1, 2, 2, 3, 3, 3),y = (1, 1, 0, 0, 0, 0, 0), and z = (1, 1, 1, 1, 1, 1, 1), then
Mode(x) = 3,Mode(x+ y) = 2 and Mode(x + z) = 4.

An important class of means that are not always monotonic are those
expressed by the Mean of Bajraktarevic, which is a generalisation of the
weighted quasi-arithmetic means.

Definition 9. Mean of Bajraktarevic. Let w(t) = (w1(t), ..., wn(t)) be a
vector of weight functions wi : I → [0,∞), and let g : I → R̄ be a strictly
monotonic function. The mean of Bajraktarevic is the function

Mg
w
(x) = g−1









n∑

i=1

wi(xi)g(xi)

n∑

i=1

wi(xi)









(2.1)

When g(xi) = xi, and all weight functions are the same, the Bajraktarevic
mean is called a mixture function (or mixture operator) and is given by

Mw(x) =

n∑

i=1

w(xi)xi

n∑

i=1

w(xi)

(2.2)

1In general the mode is multivalued, so in order to make it a single-variate function, a

convention is needed to select one of the multiple outputs, e.g. the smallest.
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For the case where the weight functions are are distinct wi(xi), the operator
Mw(x) is a generalised mixture function. A particularly interesting sub-class
of Bajraktarevic means are Gini means, obtained by setting wi(t) = wit

q and
g(t) = tp when p 6= 0, or g(t) = log(t) if p = 0.

Gw(x; p, q) =









n∑

i=1

wix
p+q
i

n∑

i=1

wix
q
i









1
p

(2.3)

Gini means generalise the (weighted) power means (for q = 0) and hence
include the minimum, maximum and the arithmetic mean as special cases.
Another special case of the Gini mean is the Lehmer, or counter-harmonic
mean, obtained when p = 1. The contra-harmonic mean is the Lehmer mean
with q = 1. We will investigate the Lehmer mean and its properties further
in Section 4.

2.3. Penalty based functions

In Calvo and Beliakov [9] it was demonstrated that averaging aggregation
functions can be expressed as the solution of a minimisation problem of the
form

F (x) = argmin
y

P(x, y) (2.4)

where P(x, y) is a penalty function satisfying the following definition:

Definition 10. Penalty function. The function P : In+1 → R is a penalty
function if and only if it satisfies:

1. P(x, y) ≥ c ∀x ∈ In, y ∈ I;

2. P(x, y) = c if and only if all xi = y; and,

3. P(x, y) is quasi-convex in y for any x,

for some constant c ∈ R and any closed, non-empty interval I.

A function P is quasi-convex if all its sublevel sets are convex, that is
Sα(P ) = {x|P (x) ≤ α} are convex sets for all α, see Rockafellar [25]. The
first two conditions ensure that P has a strict minimum and that a consensus
of inputs ensures minimum penalty, providing idempotence of F (x). The
third condition implies a unique minimum (but possibly many minimisers
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that form a convex set). Since multiplication by, or addition of a constant
to P will not change the minimisation, P may be shifted (if desired) so that
c = 0. One can think of P as describing the dissimilarity or disagreement
between the inputs x and the value y. It follows that F is a function that
minimises the chosen dissimilarity. It is not necessary to explicitly state F ,
provided a suitable penalty function is given and the optimisation problem
solvable. Subsequently it is sufficient to solve (2.4) to obtain the aggregate
µ = F (x).

Non-monotonic averaging functions can also be represented by a penalty
function. For penalty-based functions we have the following results due to
Calvo and Beliakov [9].

Theorem 1. Any idempotent function F : In → I can be represented as a
penalty based function P : In+1 → I such that

F (x) = argmin
y

P(x, y).

Corollary 1. Any averaging function can be expressed as a penalty based
function.

As mentioned in Mesiar et al. [22], mixture functions can be written as a
penalty function with

P(x, y) =

n∑

i=1

w(xi)(xi − y)2.

Clearly the necessary condition of the minimum is

Py(x, y) = −2

(
n∑

i=1

w(xi)xi − y
n∑

i=1

w(xi)

)

= 0.

Hence P(x, y) defines a mixture function. A representation of a function as
a penalty based function sometimes can simplify technical proofs, as we shall
see later in the paper.

It is apparent given the examples presented that many means are non-
monotonic and thus not aggregation functions according to Definition 2. In
the next section we introduce weak monotonicity and consider some proper-
ties of weakly monotonic averaging functions. We subsequently investigate
several important examples and show that they are indeed weakly mono-
tonic functions, allowing us to place them in a new framework with existing
averaging aggregation functions.
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3. Weak monotonicity

3.1. Main definition

As mentioned in Section 1 we are motivated by two important issues.
The first one is that there exist many means that are not generally mono-
tonic and hence not aggregation functions, while the second one is that there
are many practical applications in which non-monotonic means have shown
to provide good aggregate values commensurate with the objectives of the
aggregation. To encapsulate these non-monotonic means within the frame-
work of aggregation functions we aim to relax the monotonicity condition
and present the class of weakly monotonic averaging functions. The defini-
tion of weak monotonicity provided herein is prompted by applications and
intuition, which suggests that it is reasonable to expect that a representative
value of the inputs does not decrease if all the inputs are increased by the
same amount (or shifted uniformly) as the relative positions of the inputs are
not changed. A formal definition that conveys this property is as follows.

Definition 11. A function f is called weakly monotonic non-decreasing
(or directionally monotonic) if F (x+a1) ≥ F (x) for any a > 0, (1, 1, . . . , 1

︸ ︷︷ ︸

n times

),

such that x,x+ a1 ∈ In.

Remark 1. If F is directionally differentiable in its domain then weak mono-
tonicity is equivalent to non-negativity of the directional derivative D1(F )(x) ≥
0.

Remark 2. Evidently monotonicity implies weak monotonicity, hence all ag-
gregation functions are weakly monotonic. By Definition 6 all shift-invariant
functions are also weakly monotonic. It is self evident that weakly monotonic
non-decreasing functions form a cone in the linear vector space of weakly
monotonic (increasing or decreasing) functions.

3.2. Properties

Let us establish some useful properties of weakly monotonic averages.
Consider the function F : In → I formed by the composition F (x) =
A(B1(x), B2(x)), where A,B1 and B2 are means.

Proposition 1. If A is monotonic and B1, B2 are weakly monotonic, then
F is weakly monotonic.
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Proof. By weak monotonicity Bi(x + a1) ≥ Bi(x) implies that ∃δi ≥ 0 such
that Bi(x + a1) = Bi(x) + δi, with x,x + a1 ∈ In. Thus F (x + a1) =
A(b1 + δ1, b2 + δ2), where bi = Bi(x). The monotonicity of A ensures that
A(b1 + δ1, b2 + δ2) ≮ A(b1, b2) and hence F (x+ a1) ≥ F (x) and F is weakly
monotonic.

By trivial extension, since all monotonic functions are also weakly mono-
tonic, then if either of B1 or B2 is monotonic, then F is again weakly mono-
tonic.

Proposition 2. If A is weakly monotonic and B1, B2 are shift invariant,
then F is weakly monotonic.

Proof. Shift invariance implies that ∀a : Bi(x+ a1) = Bi(x) + a, with x,x+
a1 ∈ In. Thus F (x + a1) = A(b1 + a, b2 + a), where bi = Bi(x). The
weak monotonicity of A ensures that A(b1 + a, b2 + a) ≮ A(b1, b2) and hence
F (x+ a1) ≥ F (x) and F is weakly monotonic.

Consider functions of the form ϕ(x) = (ϕ(x1), ϕ(x2), ..., ϕ(xn)).

Proposition 3. If A is weakly monotonic and ϕ(x) is a linear function then
the ϕ−transform Aϕ(x) = F (x) = ϕ−1 (A(ϕ(x))) is weakly monotonic.

Proof. ϕ(x) = αx+ β and hence ϕ(x+ a) = α(x+ a) + β = αx+ β + αa =
ϕ(x) + c. Hence

F (x+ a1) = ϕ−1 (A(ϕ(x1 + a), ..., ϕ(xn + a)))

= ϕ−1 (A (ϕ(x) + c1))

=
A (ϕ(x) + c1)− β

α

≥ A (ϕ(x))− β

α
= ϕ−1 (A(ϕ(x)))

by weak monotonicity of A. Hence F (x + a1) ≥ F (x) and F is weakly
monotonic.

Note that unlike in the case of standard monotonicity, a nonlinear ϕ-
transform does not always preserve weak monotonicity.
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Corollary 2. The dual Ad of a weakly monotonic function A is weakly mono-
tonic under standard negation.

The following result is relevant to an application of weakly monotonic
averages in image processing, discussed in Section 4.3.

Theorem 2. Let f : In → I be a shift invariant function, and g be a function.
Let F be a penalty based averaging function with the penalty P depending on
the terms g (xi − f(x)) (xi− y)2. Then F is shift-invariant and hence weakly
monotonic.

Proof. Let

µ = argmin
y

P
(
g (x1 − f(x)) (x1 − y)2, ..., g (xn − f(x)) (xn − y)2

)
.

Then

argmin
y

P(x + a1, y) = argmin
y

P
(
g (x1 + a− f(x+ a1)) (x1 + a− y)2, ...

..., g (xn + a− f(x+ a1)) (xn + a− y)2
)
=

(by shift invariance)

= argmin
y

P
(
g (x1 − f(x)) (x1 + a− y)2, . . . , g (xn − f(x)) (xn + a− y)2

)

= µ+ a.

Remark 3. Indeed we need not restrict ourselves to penalty functions with
terms depending on (xi − y)2. Functions D that depend on the differences
xi − y with the minimum D(0) will satisfy the above proof and satisfy the
conditions on P with regards to the existence of solutions to (2.4). In partic-
ular, Huber type functions used in robust regression can replace the squares
of the differences.

3.3. Counter-cases

For the ϕ−transform, if ϕ is nonlinear then F may or may not be weakly
monotonic for all x, which can be observed by example.
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Example 1. Take x = (1, 8, 16, 35, 47.9) and ϕ(t) =
√
t, then ϕ(x) =

(1, 2
√
2, 4,

√
35,

√
47.9) and ϕ(x + 1) = (

√
2, 3,

√
17, 6,

√
48.9). If A is the

shorth (we prove the weak monotonicity of the shorth in Section 4) then
A(ϕ(x)) = 5.61 and A(ϕ(x+1)) = 2.84. As ϕ−1(t) = t2 clearly 5.612 > 2.842

and F = Aϕ is not weakly monotonic.

Internal means are not necessarily weakly monotonic, as illustrated by
the following example.

Example 2. Take x = (x1,x2) ∈ [0, 1]2 and

F (x) =

{

min(x) if x1 + x2 ≥ 1

max(x) otherwise

which is internal with values in the set {min(x),max(x)}. Consider the
points x = (1/4, 0) and y = (3/4, 0), then F (x) = 1/4 and F (y) = 3/4. It
follows that F (x + 1/41) = 1/2 > F (x), however F (y + 1/41) = 1/4 < F (y).
Hence this F is not weakly monotonic for all x ∈ I2.

4. Examples of weakly monotonic means

In this section we look at several examples of weakly monotonic, but not
necessarily monotonic averaging functions. We begin by considering several
of the robust estimators of location, then move on to mixture functions and
some interesting cases of means from the literature. While some of the exam-
ples involve shift-invariant functions, many of their nonlinear ϕ-transforms
yield proper weakly monotonic functions.

The functions presented below are defined through penalties that are not
quasi-convex, therefore we need to drop the condition that P is quasi-convex
from Definition 10.

Definition 12. Quasi-penalty function. The function P : In+1 → R is a
quasi-penalty function if and only if it satisfies:

1. P(x, y) ≥ c ∀x ∈ In, y ∈ I;

2. P(x, y) = c if and only if all xi = y; and,

3. P(x, y) is lower semi-continuous in y for any x,

for some constant c ∈ R and any closed, non-empty interval I.

12



Note that the third condition ensures the existence of the minimum and
a non-empty set of minimisers. In the case where the set of minimisers of P
is not an interval, we need to adopt a reasonable rule for selecting the value
of the penalty-based function F . We suggest stating in advance that in such
cases we choose the infimum of the set of minimisers of P. From now one P
will refer to quasi-penalty functions.

4.1. Estimators of Location

Perhaps the most widely used estimator of location is the mode, being
the most frequent input.

Example 3. Mode: The mode is the minimiser of the (quasi)penalty func-
tion

P(x, y) =
n∑

i=1

p(xi, y) where p(xi, y) =

{

0 xi = y

1 otherwise
.

It follows that F (x + a1) = argmin
y

P(x + a1, y) = argmin
y

n∑

i=1

p(xi + a, y),

which is minimised for the value y = F (x)+a. Hence, F (x+a1) = F (x)+a
and thus the mode is shift invariant. By Definition 6 the mode is weakly
monotonic.

Remark 4. Note that the mode may not be uniquely defined, e.g., the mode
of (1, 1, 2, 2, 3, 4, 5), in which case we use a suitable convention. The quasi-
penalty P associated with the mode is not quasi-convex, and as such it may
have several minimisers. A convention is needed as to which minimiser is
selected, e.g., the smallest or the largest. Other examples of non-monotonic
means that follow also involve quasi-penalties, and the same convention as for
the mode is adopted. Then also discrete scales can be considered, compare
to, e.g., the paper of Kolesárová et al. [18].

The Least Trimmed Squares estimator (Rousseeuw and Leroy [27]) rejects
up to 50% of the data values as outliers and minimises the squared residual
using the remaining data.

Example 4. Least Trimmed Squares (LTS):The LTS uses the (quasi)penalty
function

P(x, y) =

h∑

i=1

r2(i)

13



where r(i) = Si(r) is the ith order statistic of r, rk = xk − y and h =
⌊
n
2

⌋
+1.

If σ is the order permutation of {1, ..., n} such that rσ = rր, then the minima

of P occur when Py = −2
h∑

i=1

(xσ(i) − y) = 0, which implies that the minimum

value is µ = 1
h

h∑

i=1

xσ(i). Since Sk(x) is shift invariant then Si(r+a1) = rσ(i)+a

and thus

P(x + a1, y) =

h∑

i=1

v2σ(i)

where vk = ((xk + a) − y). It follows that the value y that minimises
P(x + a1, y) is y = µ + a, hence the LTS is shift invariant and thus weakly
monotonic.

The remaining estimators of location presented compute their value us-
ing the shortest contiguous sub-sample of x containing at least half of the
values. The candidate sub-samples are the sets Xk = {xj : j ∈ {k, k +
1, ..., k +

⌊
n
2

⌋
}, k = 1, ...,

⌊
n+1
2

⌋
. The length of each set is taken as ‖Xk‖ =

∣
∣
∣xk+⌊n

2 ⌋ − xk

∣
∣
∣ and thus the index of the shortest sub-sample is

k∗ = argmin
i

‖Xi‖ , i = 1, ...,

⌊
n+ 1

2

⌋

.

Under the translation x̄ = x+ a1 the length of each sub-sample is unaltered

since
∥
∥X̄k

∥
∥ =

∣
∣
∣x̄k+⌊n

2 ⌋ − x̄k

∣
∣
∣ =

∣
∣
∣(xk+⌊n

2 ⌋ + a)− (xk + a)
∣
∣
∣ =

∣
∣
∣xk+⌊n

2 ⌋ − xk

∣
∣
∣ =

‖Xk‖ and thus k∗ remains the same.
Consider now the Least Median of Squares estimator (Rousseeuw [26]),

which is the midpoint of Xk∗ .

Example 5. Least Median of Squares (LMS): The LMS can be com-
puted by minimisation of the (quasi)penalty function

P(x, y) = median
{
(xi − y)2 |y ∈ I, xi ∈ Xk∗

}

The value y minimises the penalty P(x + a1, y), given by

min
y

P(x + a1, y) = min
y

median
{
(xj + a− y)2 |y ∈ I, xj ∈ Xk∗

}
= P(x, µ),

is clearly y = µ + a. Hence, F (x + a1) = F (x) + a and the LMS is shift
invariant and weakly monotonic.
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The Shorth (Andrews et al. [1]) is the arithmetic mean of Xk∗

Example 6. Shorth: The shorth is given by

F (x) =
1

h

h∑

i=1

xi, xi ∈ Xk∗, h =
⌊n

2

⌋

+ 1

Since the set Xk∗ is unaltered under translation and the arithmetic mean is
shift invariant, then the shorth is shift invariant and hence weakly monotonic.

Example 7. OWA Penalty Functions: Penalty functions having the form

P(x, y) =

n∑

i=1

wiSi

(
(x− y1)2

)

define regression operators, F (x) (Yager and Beliakov [37]). Consider the
following results dependent on the weight vector ∆ = (w1, ..., wn).

1. ∆ = 1 generates Least Squares regression and F is monotonic and
hence weakly monotonic;

2. ∆ = (0, ..., 0, 1) generates Chebyshev regression and F is monotonic
and hence weakly monotonic;

3. Since all the terms Si

(
(x− y1)2

)
are constant under transformation

(x, y) → (x+ a1, y+ a) (cf Theorem 2), the OWA regression operators
are shift-invariant for any choice of the weight vector ∆.

4. For ∆ =

{

(0, ..., 0k−1, 1/2, 1/2, 0, ...0) n = 2k is even

(0, ..., 0k−1, 1, 0, ..., 0) n = 2k − 1 is odd
then F is the

Least Median of Squares operator and hence shift invariant and weakly
monotonic; and

5. For ∆ = (1, ..., 1h, 0, ..., 0), h =
⌊
n
2

⌋
+ 1 then F is the Least Trimmed

Squares operator and hence is shift invariant and weakly monotonic.

In the cases 3-5 the OWA regression operators are not monotonic.

Example 8. Density based means: The density based means were intro-
duced in Angelov and Yager [2]. Let dij denote the distance between inputs
xi and xj . The density based mean is defined as

y =

n∑

i=1

wi(x)xi, (4.1)
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where

wi(x) =
ui(x)

∑n
j=1 uj(x)

=
KC(

1
n

∑n
j=1 d

2
ij)

∑n
k=1KC(

1
n

∑n
j=1 d

2
kj)

, (4.2)

and where KC is Cauchy kernel given by

KC(t) = (1 + t)−1. (4.3)

As shown in Beliakov and Wilkin [6] density based means are shift-
invariant and hence weakly monotonic. Extensions of the formulas (4.2),
(4.3) are also presented.

It may appear that the class of weakly monotonic averages consists mostly
of shift-invariant functions, as the above examples illustrate. This impression
is due to the fact that such examples came from robust regression, where
the very definition of robust estimators of location involve shift-invariance
Rousseeuw and Leroy [27]. However, the class of weakly monotonic functions
is reacher, as various (but not all) ϕ−transforms of shift-invariant functions
(with non-linear ϕ) are weakly monotonic but not shift-invariant. Some re-
sults on the conditions on ϕ which preserve weak monotonicity are presented
in Wilkin et al. [36]. A few more examples are presented in the sequel.

4.2. Mixture Functions

The mixture functions were given by Eqn. (2.2), which we recall here for
clarity

Mw(x) =

n∑

i=1

w(xi)xi

n∑

i=1

w(xi)

.

Mesiar et al. [22] have shown that under the constraint that w is non-
decreasing and differentiable, if w(x) ≥ w′(x) · (b − x), x ∈ [a, b] = I, then
Mw is an aggregation function and hence monotonic (and by extension, also
weakly monotonic). Additionally, Mw is invariant to scaling of the weight
functions (i.e., Mαw = Mw ∀α ∈ R\{0} ). In Mesiar and Spirkova [21], it
was shown that the dual, Md

w, of Mw is generated by w(1− x).
As mentioned in Section 2, a special case of the Gini means (with p = 1)

are the Lehmer means, which are generally not monotonic. Lehmer means are
mixture functions with weight function w(t) = tq, which is neither increasing
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for all q ∈ R nor shift invariant. Note that for q < 0 the value of Lehmer
means at x with at least one component xi = 0 is defined as the limit when
xi → 0+, so that Lq is continuous on [0,∞)n

We begin by establishing some general properties of Lehmer means.

Lemma 1. The Lehmer mean Lq : [0,∞)n → [0,∞), given by

Lq(x) =

n∑

i=1

xq+1
i

n∑

i=1

xq
i

, q ∈ R (4.4)

is

1. homogeneous;

2. monotonic (and linear) along the rays emanating from the origin;

3. averaging;

4. idempotent;

5. not generally monotonic in x;

6. has neutral element 0 for q > 0; and,

7. has absorbing element 0 for q < 0.

The proof is presented in the Appendix.
We now establish a sufficient condition for weak monotonicity of Lehmer

means, which depends on both q and the number of arguments n. We provide
a relation between these two quantities.

Theorem 3. The Lehmer mean of n arguments, is weakly monotonic on

[0,∞)n if n ≤ 1 +
(

q+1
q−1

)q−1

, q ∈ R \ (0, 1).

Proof. The Lehmer mean for q ∈ [−1, 0] is known to be monotonic (Farnsworth
and Orr [15]) and hence weakly monotonic in that parameter range. In the
range q ∈ (0, 1) the Lehmer mean is not weakly monotonic, because it’s par-
tial derivative at x = (a, b) when a → 0+ tends to −∞. Hence we focus on
the cases q ≥ 1 and q < −1. The proof is easier to present in penalty-based
representation, as the partial derivatives have more compact form. As stated
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in Section 2.3, Lq(x) can be written as a penalty-based function (2.4) with

penalty P(x, y) =
n∑

i=1

xq
i (xi − y)2. Differentiation w.r.t y yields

Py(x, y) = −2
n∑

i=1

(
xq+1
i − xq

iy
)
.

At the minimum we have the implicit equation Py = F (x, y) = 0, with the
necessary condition that yields y = Lq(x). We remind that for any xi = 0
the Lehmer mean is defined in the limit as xi → 0+. The partial derivatives
∂Lq(x)
∂xi

are given by the implicit derivative ∂y
∂xi

= −Fxi

Fy
, with

F (x, y) =

n∑

i=1

xq+1
i − y

n∑

i=1

xq
i = 0.

By differentiation Fy(x, y) = −
n∑

i=1

xq
i ≤ 0, ∀xi ∈ [0,∞) and thus the sign of

the partial derivatives depends on the sign of Fxi
, which is given by

Fxi
(x, y) = (q + 1)xq

i − qxq−1
i y.

These derivatives can be either positive or negative. To establish weak mono-
tonicity we require that the directional derivative of Lq(x) in the direction
(1, 1, ..., 1) be non-negative. We have that (D1Lq) (x) = 1√

n
∇Lq(x) · 1 =

n√
nFy(x,y)

n∑

i=1

Fxi
(x, y) and thus the sign of the directional derivative is deter-

mined only by the sign of
n∑

i=1

Fxi
(x, y). We will henceforth work with the

sorted inputs, x() = xց such that x(1) is thus the largest input and x(n) the
smallest.

Consider first the case: q ≥ 1.
We examine the term Fx(1)

and note that y ≤ x(1) for any input x since
Lq(x) is averaging (condition 3 of Lemma 1). Then it follows that

Fx(1)
= (q + 1)xq

(1) − qxq−1
(1) y ≥ (q + 1)xq

(1) − qxq−1
(1) x(1) = xq

(1) ≥ 0.

18



For the remaining xi we compute the smallest possible value of Fxi
by select-

ing the point of minimum value, which is attained for

∂Fxi

∂xi

= q (q + 1)xq−1
i − q (q − 1) xq−2

i y = 0.

At the optimum either x∗
i = 0 or

q(q + 1) (x∗
i )

q−1 − q(q − 1) (x∗
i )

q−2 y = 0

⇒x∗
i =

(
q − 1

q + 1

)

y ≥ 0.

At x∗
i = 0 we have that Fxi

= 0 (for q > 1) and Fxi
= −y (for q = 1), and at

x∗
i =

(
q−1
q+1

)

y we have that

Fxi
(x∗

i ) = (q + 1)

((
q − 1

q + 1

)

y

)q

− q

((
q − 1

q + 1

)

y

)q−1

y

= (q − 1)

(
q − 1

q + 1

)q−1

yq − q

(
q − 1

q + 1

)q−1

yq

= yq
(
q − 1

q + 1

)q−1

(q − 1− q)

= −yq
(
q − 1

q + 1

)q−1

≥ −xq
(1)

(
q − 1

q + 1

)q−1

.

Since (D1Lq)(x) ∝
n∑

i=1

Fxi
then

(D1Lq)(x) = c

(

Fx(1)
+

n∑

i=2

Fx(i)

)

,

and since each Fx(i)
≥ −xq

(1)

(
q−1
q+1

)q−1

then
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(D1Lq)(x) ≥ c

(

Fx(1)
+ (n− 1)

(

−xq
(1)

(
q − 1

q + 1

)q−1
))

= c

(

xq
(1) − (n− 1)

(
q − 1

q + 1

)q−1

xq
(1)

)

= cxq
(1)

(

1− (n− 1)

(
q − 1

q + 1

)q−1
)

.

This expression is non-negative and hence Lq(x) is weakly monotonic pro-
vided that

(n− 1)

(
q − 1

q + 1

)q−1

≤ 1 or n ≤ 1 +

(
q + 1

q − 1

)q−1

, q > 1.

For q = 1 we get n ≤ 2.
Now consider the case: q < −1. We have that

Fxi
=

(1− p)xi + py

xp+1
i

, p = |q| > 1

and note that these derivatives are defined in the limit for the case where
xi = 0. I.e., F+

xi

∣
∣
xi=0

= lim
xi→0+

Fxi
. We now examine the term Fx(n)

and note

that y ≥ x(n) since Lq(x) is averaging. Thus

Fx(n)
=

(1− p)x(n) + py

xp+1
(n)

≥ (1− p)x(n) + px(n)

xp+1
(n)

=
1

xp
(n)

.

Again we consider the remaining xi by seeking the minimum of Fxi
, given by

∂Fxi

∂xi
= −p(1− p)

xp+1
i

− p(p+ 1)

xp+2
i

y = 0.
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This attains a minimum at xi =
(

p+1
p−1

)

y and substitution into Fxi
gives

Fxi

(
p+ 1

p− 1
y

)

=
(1− p)

(
p+1
p−1

y
)

+ py
(

p+1
p−1

y
)p+1

=
−1

yp

(
p+ 1

p− 1

)−(p+1)

≥ −1

xp
(n)

(
p+ 1

p− 1

)−(p+1)

.

The directional derivative of Lq(x) can be written as

(D1Lq)(x) = c

(

Fx(n)
+

n−1∑

i=1

Fx(i)

)

≥ c

(

1

xp
(n)

− n− 1

xp
(n)

(
p+ 1

p− 1

)−(p+1)
)

=
c

xp
(n)

(

1− (n− 1)

(
p+ 1

p− 1

)−(p+1)
)

.

We note that the sign of this derivative does not change in the limit as
x(n) → 0+ and is non-negative for

n ≤ 1 +

(
p+ 1

p− 1

)p+1

= 1 +

(
q − 1

q + 1

)−q+1

, q = −p.

Hence, in both cases (q < −1, q ≥ 1) we obtain the requirement for a
non-negative directional derivative - and hence weak monotonicity of Lq(x) -

as being n ≤ 1+
(

q+1
q−1

)q−1

. For the case −1 ≤ q ≤ 0 this remains a sufficient

condition for weak monotonicity, although clearly overly restrictive.

Remark 5. As suggested to us, as

(
q + 1

q − 1

)q−1

=

((

1 +
2

q − 1

) q−1
2

)2

,
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and the right hand side is increasing (with q) and approaches e2 as q → ∞,
we have a restriction that for all q > 1 weak monotonicity holds for at most
n < 9 arguments.

A further suggestion was to show that Lehmer means are weakly mono-
tonic for any number of arguments for negative powers q. This can be
achieved by examining the directional derivative (D1Lq)(x) directly, and in
the near future we shall formalise this result.

So while Lehmer means are an interesting example of mixture functions
(with familiar power functions as the weights) their usefulness in many appli-
cations would be limited, as they are weakly monotonic only for a restricted
range of (positive) powers and the number of arguments.

Corollary 3. The contra-harmonic mean (q = 1) is weakly monotonic only
for two arguments.

4.3. Spatial-Tonal Filters

The well known class of spatial-tonal filters includes the mode filter (van
de Weijer and van den Boomgaard [33]), bilateral filter (Tomasi and Man-
duchi [31]) and anisotropic diffusion (Perona and Malik [23]) among others.
This is an important class of filters developed to preserve edges within images
when performing tasks such as filtering or smoothing. While these filters are
commonly expressed in integral notation over a continuous space, they are
implemented in discrete form over a finite set of pixels that take on finite
values in a closed interval. It can be shown that the class of functions is
given (in discrete form) by the averaging function

F g
∆(x; x1) =

n∑

i=1

wig(|xi − x1|)xi

n∑

i=1

wig(|xi − x1|)
, (4.5)

where the weights wi are nonlinear and non-convex functions of the locations
of the pixels, which have intensity xi. In all practical problems the locations
are constant and hence can be pre-computed to produce the constant weight
vector ∆ = (w1, w2, ..., wn). The pixel x1 is the pixel to be filtered/smoothed
such that its new value is x̄1 = F g

∆(x; x1).

22



The function F g
∆ is nonlinear and not monotonic. It is trivially shown to

be expressed as a penalty-based function with penalty

P(x, y) =

n∑

i=1

wig(|xi − x1|)(xi − y)2.

In image filtering applications it is known that this penalty minimises the
mean squared error between the filtered image and the noisy source image
(Elad [14]). By Proposition 2 it follows directly that the filter F g

∆ is shift
invariant and hence weakly monotonic. Furthermore, Theorem 2 permits us
to generalise this class of filters to be those penalty based averaging functions
having penalty function

P(x, y) =
n∑

i=1

wig(|xi − f(x)|)(xi − y)2 (4.6)

or even further using other bivariate function D : I2 → R (as discussed in
Remark 3)

P(x, y) =
n∑

i=1

wig(|xi − f(x)|)D(xi, y) (4.7)

The implication of replacing x1 with f(x) in the scaling function g is
that we may use any shift-invariant aggregation of x, which allows us to
account for the possibility that x1 is itself an outlier within the local region
of the image. For example, we could use the median, the mode or the shorth
for f(x). This provides an interesting result and invites further research
in the application of weakly monotonic means to spatial-tonal filtering and
smoothing problems.

5. Conclusion

In this article we have introduced the concept of weakly monotonic av-
eraging functions and examined some of the properties of these functions.
We have studied several families of means previously considered to be sim-
ply non-monotonic, and shown them to be weakly monotonic. Specifically
we have established a sufficient condition for the weak monotonicity of the
Lehmer mean - which is an important subclass of the Mean of Bajraktarevic
- and shown that several important non-monotonic regression operators are
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actually weakly monotonic. Additionally we have proven that a large class
of penalty-based functions are also weakly monotonic, which admits a very
large class of aggregation functions. This has permitted a simple proof that
the class of image processing filters known as spatial-tonal filters are weakly
monotonic averaging functions. This class subsumes the class of spatial av-
eraging filters, such as the Gaussian blur filter. Most importantly, given the
definition of weak monotonicity, all aggregation functions are weakly mono-
tonic and thus we have not needed to redefine monotonic aggregation in order
to relate it to weakly monotonic averaging.

This study was prompted by two issues. First, that there exist several im-
portant classes of means that fall outside of the current definition of aggrega-
tion functions, which requires monotonicity in all arguments. These include
the examples presented in Section 4: the robust estimators of location (such
as the mode and the shorth), mixture functions and the spatial-tonal filters
used extensively in image processing. It appears reasonable to treat these
functions within the same framework that includes the monotonic means.

The second issue is that applications such as image processing and ro-
bust statistics require non-monotone averaging, where the main concern is
that of noise (outliers) within the data. While the average must be a rep-
resentative value of the inputs, we wish to avoid the possibility that one or
more erroneous inputs drives the value of the output. A small increase above
the average may be reasonable, however a large increase should permit that
input to be discounted or ignored and the average to possibly decrease.

The concept of weakly monotone aggregation addresses both of these
issues, bringing the existing (monotone) aggregation functions and many of
the non-monotone means into the same framework. Our proposal then is to
redefine the class of averaging aggregation functions to be not those functions
that are monotonic, but rather the class of weakly monotonic functions that
are averaging.

Proposal: A function F : In → I is an averaging aggregation function
on In if and only if it is weakly monotonic non-decreasing on I and averaging.

It remains to be seen whether or not weak monotonicity is the minimal
requirement for defining averaging aggregation functions and whether this
weaker definition is justified for other types of aggregation, such as conjunc-
tive and disjunctive functions. Furthermore, are there other possibilities for
the relaxation of monotonicity that provide for a unified framework of aggre-
gation theory and practice? We leave these questions for future work.
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Appendix

Proof of Lemma 1.

Proof. Consider each of the following:

1. Homogeneous: Set x = λu then

Lq(x) = Lq(λu) =

n∑

i=1

(λui)
q+1

n∑

i=1

(λui)q
= λ

n∑

i=1

uq+1
i

n∑

i=1

uq
i

= λLq(u).

Hence Lq is homogeneous with degree 1.

2. Monotonic (and linear) along the rays: Consider the generalised
spherical coordinates (Blumenson [7]) (r, θ, φ1, ..., φn−2), r ≥ 0, 0 ≤ θ ≤
2π, 0 ≤ φi ≤ π for the hypersphere Sn−1 = {x ∈ Rn : ‖x‖ = r}. We
will restrict the angle variables so that xi ∈ [0,∞). The transformation
to an orthonormal Euclidean basis En produces the vector x of length
r having components

x1 = r cos(φ1)

xj = r cos (φj)

j−1
∏

k=1

sin (φk), j = 2, ..., n− 1

xn = r
n−1∏

k=1

sin (φk)

where φn−1 = θ and 0 ≤ φi ≤ π/2, i = 1, ..., n− 1, r ≥ 0. The Lehmer
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mean of the Euclidean vector x is therefore

Lq(x) =

[r cos(φ1)]
q+1 +

n−1∑

j=2

[

r cos(φj)

j−1
∏

k=1

sin(φk)

]q+1

+

[

r

n−1∏

k=1

sin(φk)

]q+1

[r cos(φ1)]
q +

n−1∑

j=2

[

r cos(φj)

j−1
∏

k=1

sin(φk)

]q

+

[

r

n−1∏

k=1

sin(φk)

]q

= r











[cos(φ1)]
q+1 +

n−1∑

j=2

[

cos(φj)

j−1
∏

k=1

sin(φk)

]q+1

+

[
n−1∏

k=1

sin(φk)

]q+1

[cos(φ1)]
q +

n−1∑

j=2

[

cos(φj)

j−1
∏

k=1

sin(φk)

]q

+

[
n−1∏

k=1

sin(φk)

]q











= rf(φ1, ..., φn−1)

Along rays emanating from the origin each f(·) is constant and hence
Lq(x) = αφr is linear.

3. Averaging: Let xσ = xց and take a = x(1) and b = x(m) denote the
value of the largest and the smallest non-zero elements of x respectively.
By homogeneity

Lq(x) = a

1 +

n∑

i=2

(x(i)

a

)q+1

1 +
n∑

i=2

(x(i)

a

)q

= a
1 + α

1 + β

Since x(i) ≤ a for all i = 1, ..., n then α ≤ β. Hence Lq(x) ≤ a.
Similarly,

Lq(x) = b

1 +
m−1∑

i=1

(x(i)

b

)q+1

1 +

m−1∑

i=1

(x(i)

b

)q

= b
1 + γ

1 + δ

Since x(i) ≥ b for all i = 1, ..., m− 1 and x(i) = 0 for all i = m+1, ..., n
then δ ≤ γ. Hence Lq(x) ≥ b. Thus, min(x) ≤ Lq(x) ≤ max(x) and
Lq(x) is averaging.
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4. Idempotent: For any vector x = (t, t, ..., t) we have that

Lq(x) =

t

n∑

i=1

tq

n∑

i=1

tq
= t

and hence Lq is idempotent.

5. Not generally monotonic in x: Take x = (1, 0) and y = (1, 1/2),

then for q > 0, Lq(x) = 1 and Lq(y) =
1+(1/2)q+1

1+(1/2)q
=

(2q+1+1)
(2q+1+2)

< 1. Thus

x < y and Lq(x) > Lq(y), hence Lq(x) is not generally monotonic in
x for all q ∈ R.

6. Has neutral element of 0 for q > 0: Consider x = (a, 0) then

Lq(x) = lim
x2→0+

aq+1+xq+1
2

aq+xq
2

= a for q > 0.

7. Has absorbing element of 0 for q < 0: Consider x = (a, 0) then

Lq(x) = lim
x2→0+

Lq(1, x2) = limx2→0+
a+xq+1

2
a+xq

2
=

a

x
q
2
+x2

a

x
q
2
+1

= 0.
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