Skip to main content

Context-Aware Distance Semantics for Inconsistent Database Systems

  • Conference paper
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014)

Abstract

Many approaches for consistency restoration in database systems have to deal with the problem of an exponential blowup in the number of possible repairs. For this reason, recent approaches advocate more flexible and fine grained policies based on the reasoner’s preference. In this paper we take a further step towards more personalized inconsistency management by incorporating ideas from context-aware systems. The outcome is a general distance-based approach to inconsistency maintenance in database systems, controlled by context-aware considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. TPLP 3(4-5), 393–424 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Arieli, O.: Distance-based paraconsistent logics. International Journal of Approximate Reasoning 48(3), 766–783 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arieli, O.: Reasoning with prioritized information by iterative aggregation of distance functions. Journal of Applied Logic 6(4), 589–605 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair. Annals of Mathematics and Artificial Intelligence 50(3-4), 389–415 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

    Article  Google Scholar 

  7. Bertossi, L.: Consistent query answering in databases. SIGMOD Record 35(2), 68–76 (2006)

    Article  Google Scholar 

  8. Bolchini, C., Curino, C., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A., Tanca, L.: And what can context do for data? Comm. ACM 52(11), 136–140 (2009)

    Article  Google Scholar 

  9. Brézillon, P.: Context in artificial intelligence: I. A survey of the literature. Computers and Artificial Intelligence 18(4) (1999)

    Google Scholar 

  10. Chomicki, J.: Consistent query answering: Five easy pieces. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7 (2001)

    Article  Google Scholar 

  12. Eiter, T., Mannila, H.: Distance measure for point sets and their computation. Acta Informatica 34, 109–133 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ekbia, H.R., Maguitman, A.G.: Context and relevance: A pragmatic approach. In: Akman, V., Bouquet, P., Thomason, R.H., Young, R.A. (eds.) CONTEXT 2001. LNCS (LNAI), vol. 2116, pp. 156–169. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: Models and approach. Pervasive and Mobile Comput. 2, 37–64 (2006)

    Article  Google Scholar 

  15. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1-2), 49–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Konieczny, S., Pino Pérez, R.: Merging information under constraints: A logical framework. Logic and Computation 12(5), 773–808 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pitoura, E., Stefanidis, K., Vassiliadis, P.: Contextual database preferences. IEEE Data Engeneering Bulletin 34(2), 19–26 (2011)

    Google Scholar 

  18. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent query answering in relational databases. Ann. Math. Artif. Intel. 64, 209–246 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stefanidis, K., Pitoura, E.: Fast contextual preference scoring of database tuples. In: Proceedings of EDBT 2008, pp. 344–355. ACM (2008)

    Google Scholar 

  20. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Managing contextual preferences. Information Systems 36(8), 1158–1180 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zamansky, A., Arieli, O., Stefanidis, K. (2014). Context-Aware Distance Semantics for Inconsistent Database Systems. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 443. Springer, Cham. https://doi.org/10.1007/978-3-319-08855-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08855-6_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08854-9

  • Online ISBN: 978-3-319-08855-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics