Skip to main content

An Anti-hebbian Learning Rule to Represent Drive Motivations for Reinforcement Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8575))

Abstract

We present a motivational system for an agent undergoing reinforcement learning (RL), which enables it to balance multiple drives, each of which is satiated by different types of stimuli. Inspired by drive reduction theory, it uses Minor Component Analysis (MCA) to model the agent’s internal drive state, and modulates incoming stimuli on the basis of how strongly the stimulus satiates the currently active drive. The agent’s dynamic policy continually changes through least-squares temporal difference updates. It automatically seeks stimuli that first satiate the most active internal drives, then the next most active drives, etc. We prove that our algorithm is stable under certain conditions. Experimental results illustrate its behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. Cambridge Univ Press (1998)

    Google Scholar 

  2. Konidaris, G., Barto, A.: An adaptive robot motivational system. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 346–356. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Cos, I., Cañamero, L., Hayes, G.M., Gillies, A.: Hedonic value: Enhancing adaptation for motivated agents. Adaptive Behavior 21(6), 465–483 (2013)

    Article  Google Scholar 

  4. Woodworth, R.S.: Dynamic psychology, by Robert Sessions Woodworth. Columbia University Press (1918)

    Google Scholar 

  5. Hull, C.L.: Principles of behavior: An introduction to behavior theory. Century psychology series. D. Appleton-Century Company, Incorporated (1943)

    Google Scholar 

  6. Wolpe, J.: Need-reduction, drive-reduction, and reinforcement: A neurophysiological view. Psychological Review 57(1), 19 (1950)

    Article  Google Scholar 

  7. Barrett, L., Narayanan, S.: Learning all optimal policies with multiple criteria. In: Proceedings of the 25th International Conference on Machine Learning, pp. 41–47. ACM (2008)

    Google Scholar 

  8. Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E.: Empirical evaluation methods for multiobjective reinforcement learning algorithms. Machine Learning 84(1), 51–80 (2011)

    Article  MathSciNet  Google Scholar 

  9. Keramati, M., Gutkin, B.S.: A reinforcement learning theory for homeostatic regulation. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 82–90 (2011)

    Google Scholar 

  10. Konidaris, G.D., Hayes, G.M.: An architecture for behavior-based reinforcement learning. Adaptive Behavior 13(1), 5–32 (2005)

    Article  Google Scholar 

  11. Oja, E.: Principal components, minor components, and linear neural networks. Neural Networks 5(6), 927–935 (1992)

    Article  Google Scholar 

  12. Peng, D., Yi, Z., Luo, W.: Convergence analysis of a simple minor component analysis algorithm. Neural Networks 20(7), 842–850 (2007)

    Article  MATH  Google Scholar 

  13. White, R.W.: Motivation reconsidered: The concept of competence. Psychological Review 66(5), 297 (1959)

    Article  Google Scholar 

  14. Luciw, M., Kompella, V.R., Kazerounian, S., Schmidhuber, J.: An intrinsic value system for developing multiple invariant representations with incremental slowness learning. Frontiers in Neurorobotics 7 (2013)

    Google Scholar 

  15. Shirinov, E., Butz, M.V.: Distinction between types of motivations: Emergent behavior with a neural, model-based reinforcement learning system. In: IEEE Symposium on Artificial Life, ALife 2009, pp. 69–76. IEEE (2009)

    Google Scholar 

  16. Sprague, N., Ballard, D.: Multiple-goal reinforcement learning with modular sarsa (0). In: IJCAI, pp. 1445–1447 (2003)

    Google Scholar 

  17. Singh, S., Jaakkola, T., Littman, M.L., Szepesvári, C.: Convergence results for single-step on-policy reinforcement-learning algorithms. Machine Learning 38(3), 287–308 (2000)

    Article  MATH  Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. The Journal of Machine Learning Research 4, 1107–1149 (2003)

    MathSciNet  Google Scholar 

  20. Mahadevan, S., Maggioni, M.: Proto-value functions: A laplacian framework for learning representation and control in markov decision processes. Journal of Machine Learning Research 8(16), 2169–2231 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Transactions on Autonomous Mental Development 2(3), 230–247 (2010)

    Article  Google Scholar 

  22. Guedalia, I.D., London, M., Werman, M.: An on-line agglomerative clustering method for nonstationary data. Neural Computation 11(2), 521–540 (1999)

    Article  Google Scholar 

  23. Kompella, V.R., Luciw, M., Schmidhuber, J.: Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams. Neural Computation 24(11), 2994–3024 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kompella, V.R., Kazerounian, S., Schmidhuber, J. (2014). An Anti-hebbian Learning Rule to Represent Drive Motivations for Reinforcement Learning. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds) From Animals to Animats 13. SAB 2014. Lecture Notes in Computer Science(), vol 8575. Springer, Cham. https://doi.org/10.1007/978-3-319-08864-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08864-8_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08863-1

  • Online ISBN: 978-3-319-08864-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics