
Heuristic Search over Program Transformations

Claus Zinn(B)

Department of Computer Science, University of Konstanz, Konstanz, Germany
claus.zinn@uni-konstanz.de

Abstract. In prior work, we have developed a method for the auto-
matic reconstruction of buggy Prolog programs from correct programs
to model learners’ incorrect reasoning in a tutoring context. The method
combines an innovative variant of algorithmic debugging with program
transformations. Algorithmic debugging is used to indicate a learner’s
error and its type; this informs a program transformation that “repairs”
the expert program into a buggy variant that is closer at replicating
a learner’s behaviour. In this paper, we improve our method by using
heuristic search. To search the space of program transformations, we
estimate the distance between programs. Instead of only returning the
first irreducible disagreement between program and Oracle, the algo-
rithmic debugger now traverses the entire program. In the process, all
irreducible agreements and disagreements are counted to compute the
distance metrics, which also includes the cost of transformations. Over-
all, the heuristic approach offers a significant improvement to our existing
blind method.

1 Introduction

Typically, programs have bugs. We are interested in runtime bugs where the
program terminates with output that the programmer judges incorrect. In these
cases, Shapiro’s algorithmic debugging technique can be used to pinpoint
the location of the error. A dialogue between the debugger and the program-
mer unfolds until the meta-interpretation of the program reaches a statement
that captures the cause of disagreement between the program’s actual behaviour
and the programmer’s intent of how the program should behave. Once the bug
has been located, it is the programmer’s task to repair the program, and then,
to start another test-debugging-repair cycle. Let us make the following assump-
tion: there exists an Oracle that relieves the programmer from answering any of
the questions during the debugging cycle; the Oracle “knows” the programmer’s
intent for each and every piece of code. With the mechanisation of the Oracle
to locate the program’s bugs, we now seek to automate the programmer’s task
to repair the bug, and thus, to fully automate the test-debug-repair cycle.

In the tutoring context, Oracles can be mechanised: for a given domain of
instruction, there is always a reference model that defines expert problem solv-
ing behaviour. Moreover, a learner’s problem solving behaviour is judged with
regard to this model; a learner commits a mistake whenever the learner deviates

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-295797

Erschienen in: Declarative Programming and Knowledge Management : Declarative Programming Days, KDPD 2013 ; Unifying INAP, WFLP, and
WLP, Kiel, Germany, September 11–13, 2013, Revised Selected Papers / Hanus, Michael et al. (Hrsg.). - Cham : Springer, 2014. - (Lecture Notes in

Artificial Intelligence ; 8439). - S. 234-249. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-319-08908-9

http://nbn-resolving.de/urn:nbn:de:bsz:352-0-295797

235

from the expert problem solving path. Algorithmic debugging can be used to
identify the location of learners’ erroneous behaviour. For this, we have to turn
Shapiro’s method on its head: we take the expert program to take the role of
the buggy program, and the learner to take the role of the programmer, that
is, the Oracle. As in the traditional method, any disagreement between the two
parties indicates the location of the bug. Moreover, we can relieve the learner
from answering Oracle questions. Answers to all questions can be reconstructed
from the learner’s answer to a given problem, using the expert model [11].

With the ability to locate a learner’s error, we now seek to “repair” the
expert program (assumed buggy) in such a way that it reproduces the learner’s
erroneous (assumed expert) behaviour. The resulting program acts as symbolic
artifact of a deep diagnosis of a learner’s problem solving process; it can be
used to inform effective remediation, helping learners to realize and correct their
mistakes. Ideally, repair operators shall mirror typical learner errors. This is
feasible indeed. There is a small set of error types, and many of them can be
formally described in a domain-independent manner.

With the identification of an error’s location, and a small, effective set of
mutation operators for program repair, we strive to fully automate the test-
debug-repair cycle in the tutoring context. Our approach is applicable for a
wider context, given the specification of an ideal program and a theory of error.

Main contributions. To address an important issue in intelligent tutoring, the
deep diagnosis of learner input, we cast the problem of automatically deriving
one (erroneous) program from another (expert) program as a heuristic search
problem. We define a metric that quantifies the distance of two given programs
with regard to an input/output pair. We define a number of domain-independent
code perturbation operators whose execution transforms a given program into its
mutated variant. Most mutation operators encode typical actions that learners
perform when encountering an impasse during problem solving. We show the
effectiveness of our approach for the most frequent learner bugs in the domain
of multi-column subtraction. Erroneous procedures are automatically derived to
reproduce these errors. This work extends and generalises our previous work in
this area [11,12] with regard to the heuristic search approach, which is novel.

Overview. Section 2 gives a very brief review on student errors in tutoring. It
presents multi-column subtraction as domain of instruction and gives an encod-
ing of the expert model in Prolog. For each of the top-eight learner errors in
this domain, we demonstrate how the expert model needs to be perturbated to
reproduce them. We show that most perturbations are based on a small but
effective set of mutation operators. Also, we briefly review our existing method
of error diagnosis in the tutoring context. In Sect. 3, we improve and generalise
our method. The problem of deriving one program from another is cast in terms
of a heuristic search problem. We introduce a distance metrics between programs
that is based on algorithmic debugging, and use a best-first search algorithm to
illustrate and evaluate the effectiveness of our approach. Section 4 discusses our
approach and relates it to existing work. Section 5 concludes with future work.

236

2 Background

2.1 Human Error in Tutoring

When learning something new, one is bound to make mistakes. Effective teaching
depends on deep cognitive analyses to diagnose learners’ problem solving paths,
and subsequently to repair the incorrect parts. Good teachers are thus capable to
reconstruct students’ erroneous procedures and use this information to inform
their remediation. In the area of elementary school mathematics, our chosen
tutoring domain, the seminal works of Brown and Burton [2,3], O’Shea and
Young [10], and VanLehn [9], among others, extensively studied the subtraction
errors of large populations of pupils. Their research included a computational
account of errors by manually constructing cognitive models that reproduced
learners’ most frequent errors. The main insight of this research is that student
errors are seldom random. There are two main causes. The first cause is that stu-
dent errors may result from correctly executing an erroneous procedure; for some
reasons, the erroneous rather than the expert procedure has been acquired. The
second cause is based on VanLehn’s theory of impasses and repairs. Following
VanLehn, learners “know” the correct procedure, but face difficulties executing
it. They “treat the impasse as a problem, solve it, and continue executing the
procedure” [9, p. 42]. The repair strategies to address an impasse are known
to be common across student populations and domains. Typical repairs include
executing only the steps known to the learner and to skip all other steps, or to
adapt the situation to prevent the impasse from happening.

2.2 Expert Model for Multi-column Subtraction

Figure 1 depicts the entire cognitive model for multi-column subtraction using
the decomposition method. The Prolog code represents a subtraction problem
as a list of column terms (M, S, R) consisting of a minuend M, a subtrahend S,
and a result cell R. The main predicate subtract/2 determines the number of
columns and passes its arguments to mc subtract/3.1 This predicate processes
columns from right to left until all columns have been processed and the recur-
sion terminates. The predicate process column/3 receives a partial sum, and
processes its right-most column (extracted by last/2). There are two cases.
Either the column’s subtrahend is larger than its minuend, when a borrowing
operation is required, or the subtrahend is not larger than the minuend, in which
case we can subtract the former from the latter (calling take difference/4). In
the first case, we add ten to the minuend (add ten to minuend/3) by borrowing
from the left (calling decrement/3). The decrement operation also consists of
two clauses, with the second clause being the easier case. Here, the minuend
of the column left to the current column is not zero, so we simply reduce the
minuend by one. If the minuend is zero, we need to borrow again, and hence
decrement/3 is called recursively. When we return from recursion, we first add
ten to the minuend, and then reduce it by one.
1 The argument CurrentColumn is passed onto most other predicates; it is only used

to help automating the Oracle.

237

01 : subtract(PartialSum, Sum) ←
02 : length(PartialSum, LSum),
03 : mc subtract(LSum, PartialSum, Sum).

04 : mc subtract(, [], []).
05 : mc subtract(CurrentColumn, Sum, NewSum) ←
06 : process column(CurrentColumn, Sum, Sum1),
07 : shift left(CurrentColumn, Sum1 , Sum2 , ProcessedColumn),
08 : CurrentColumn1 is CurrentColumn − 1,
09 : mc subtract(CurrentColumn1 , Sum2 , SumFinal),
10 : append(SumFinal , [ProcessedColumn], NewSum).

11 : process column(CurrentColumn, Sum, NewSum) ←
12 : last(Sum, LastColumn), allbutlast(Sum,RestSum),
13 : minuend(LastColumn, M), subtrahend(LastColumn, S),
14 : S > M , !,
15 : add ten to minuend(CurrentColumn, M , M10),
16 : CurrentColumn1 is CurrentColumn − 1,
17 : decrement(CurrentColumn1 , RestSum, NewRestSum),
18 : take difference(CurrentColumn, M10 , S , R),
19 : append(NewRestSum, [(M10 , S , R)],NewSum).

20 : process column(CurrentColumn, Sum, NewSum) ←
21 : last(Sum, LastColumn), allbutlast(Sum,RestSum),
22 : minuend(LastColumn, M), subtrahend(LastColumn, S),
23 : % S =< M,
24 : take difference(CurrentColumn, M , S , R),
25 : append(RestSum, [(M , S , R)], NewSum).

26 : shift left(CurrentColumn, SumList , RestSumList , Item) ←
27 : allbutlast(SumList , RestSumList), last(SumList , Item).

28 : decrement(CurrentColumn, Sum, NewSum) ←
29 : irreducible,
30 : last(Sum, (M , S , R)), allbutlast(Sum, RestSum),
31 : M == 0, !,
32 : CurrentColumn1 is CurrentColumn − 1,
33 : decrement(CurrentColumn1 , RestSum, NewRestSum),
34 : NM is M + 10,
35 : NM1 is NM − 1,
36 : append(NewRestSum, [(NM1 , S , R)], NewSum),

37 : decrement(CurrentColumn, Sum, NewSum) ←
38 : irreducible,
39 : last(Sum, (M , S , R)), allbutlast(Sum, RestSum),
40 : % \+ (M == 0),
41 : M1 is M − 1,
42 : append(RestSum, [(M1 , S , R)], NewSum).

43 : add ten to minuend(CC , M , M10) ← irreducible, M10 is M + 10.
44 : take difference(CC , M , S , R) ← irreducible, R is M − S .

45 : minuend((M , S , R), M).
46 : subtrahend((M , S , R), S).

47 : allbutlast([], []).
48 : allbutlast([H], []).
49 : allbutlast([H1 |[H2 |T]], [H1 |T1]) ← allbutlast([H2 |T],T1).

50 : irreducible.

Fig. 1. The decomposition method for subtraction in prolog

238

9
3 10 11
4 0 1

- 1 9 9

= 2 0 2
(a) correct solution

4 0 1
- 1 9 9

= 3 9 8
(b) smaller-from-larger

3 10 11
4 0 1

- 1 9 9

= 2 1 2
(c) stops-borrow-at-zero

2
3 10 11
4 0 1

- 1 9 9

= 1 1 2
(d) borrow-across-zero

9 11
4 0 1

- 1 9 9

= 3 0 2
(e) borrow-from-zero

10 11
4 0 1

- 1 9 9

= 3 1 2
(f) borrow-no-decrement

11
4 0 1

- 1 9 9

= 3 9 2
(g) stops-borrow-at-
zero diff-0-N=N

2
3 11 11
4 1 1

- 1 9 9

= 1 2 2
(h) always-borrow-left

3 11
4 0 1

- 1 9 9

= 2 9 2
(i) borrow-across-zero
diff-0-N=N

Fig. 2. A correct solution, and the top-eight bugs sets, see [9, p. 195].

2.3 Buggy Sets in Multi-column Subtraction

Figure 2(a) depicts the correct solution to the subtraction problem 401 − 199,
the Fig. 2(b)–(i) show how the top-eight bug sets from the DEBUGGY study
[9, p. 195, p. 235] manifest themselves in the same task. All erroneous answers
are rooted in learners’ difficulty to borrow: the errors in Fig. 2(b) and (f) result
from the learners’ more general impasse “does not know how to borrow”, and
the errors in Fig. 2(c)–(e) results from the learners’ more specific impasse “does
not know how to borrow from zero”. All other errors, but Fig. 2(h), are varia-
tions of the previous error types. Figure 2(h) is better explained by the incorrect
acquisition of knowledge rather than within the impasse-repair theory.

We now describe how the expert procedure given in Fig. 1 needs to be
“repaired” to reproduce each of the top-eight bugs.

smaller-from-larger: the student does not borrow, but in each column subtracts
the smaller digit from the larger one [9, p. 228]. The impasse “learner does not
know how to borrow” is overcome by not letting borrowing to happen. The expert
model is perturbated at the level of process column/3. In its first clause, we
delete the calls to add ten to minuend/3 (line 15) and decrement/3 (line 17).
As a consequence, we replace all remaining occurrences of M10 and NewRestSum
with M and RestSum, respectively. Moreover, we swap the arguments for M and
S when taking differences (line 18).

borrow-no-decrement: when borrowing, the student adds ten correctly, but
does not change any column to the left [9, p. 223]. The learner addresses the

239

impasse “does not know how to borrow” with a partial skipping of steps. In the
first clause of process column/3, the subgoal decrement/3 (line 17) is deleted;
the remaining occurrence of NewRestSum is then replaced by RestSum (line 19).

stops-borrow-at-zero: instead of borrowing across a zero, the student adds ten
to the column he is doing, but does not change any column to the left [9, p. 229].
The impasse “learner does not know how to borrow from zero” is overcome by
not performing complete borrowing when the minuend in question is zero. The
recursive call to decrement/3 (line 33) and the goals producing NM1 and NM (lines
34, 35) are removed, and the remaining occurrence of NM1 replaced by M (line
36).

borrow-across-zero: when borrowing across a 0, the student skips over the 0
to borrow from the next column. If this causes him to have to borrow twice,
he decrements the same number both times [9, p. 114, p. 221]. Same impasse,
different repair. The clauses that produce NM1 and NM (lines 34, 35) are removed;
the remaining occurrence of NM1 in append/3 replaced by M (line 36).

borrow-from-zero: instead of borrowing across a zero, the student changes the
zero to nine, but does not continue borrowing from the column to the left [9,
p. 223]. Same impasse, yet another repair: the assignments NM and NM1 stay in
place, but the recursive call to decrement/3 (line 33) is deleted; the occurrence
of NewRestSum is replaced by RestSum (line 36).

stops-borrow-at-zero diff0-N=N: when the student encounters a column of
the form 0−N , he does not borrow, but instead writes N as the answer, possibly
combined with stops-borrow-at-zero. For diff-0-N=N, we shadow the existing
clause for taking differences with take difference(M, S, R):- M == 0, R =
S. To ensure that no borrowing operation is performed in case the minuend is
zero, the first clause of process column/3 is modified. The constraint S>M (line
14) is complemented with \+ (M == 0); line 23 is changed to (S =< M) ; (M
== 0).

always-borrow-left: the student borrows from the left-most digit instead of bor-
rowing from the digit immediately to the left [9, p. 225]. This error is best explained
by the incorrect acquisition of knowledge rather than within the impasse-repair
theory. To reproduce it, we shadow the existing clauses for decrement/3 with
decrement([(M,S,R)|OtherC], [(M1,S,R)|OtherC]) :- !, M1 is M - 1.

borrow-across-zero diff-0-N=N: see above. With both errors already been
dealt with, we combine the respective perturbations to reproduce this error.

Summary. All error types except always-borrow-left require the deletion of
one or more subgoals, with a tidying-up phase for their input and output argu-
ments. For smaller-than-larger, the swapping of arguments was necessary. For
always-borrow-left, we shadowed the existing clauses for decrement/3 with
a new clause. While the top five errors can be reproduced by syntactic means,
the last three errors seem to require elements whose construction will be hard to
mechanise.

240

1: function ReconstructErroneousProcedure(Program, Problem, Solution)
2: (Disagr, Cause) ← AlgorithmicDebugging(Program, Problem, Solution)
3: if Disagr = nil then
4: return Program
5: else
6: NewProgram ← Perturbation(Program, Disagr, Cause)
7: ReconstructErroneousProcedure(NewProgram, Problem, Solution)
8: end if
9: end function

10: function Perturbation(Program, Clause, Cause)
11: return chooseOneOf(Cause)
12: DeleteCallToClause(Program, Clause)
13: DeleteSubgoalsOfClause(Program, Clause)
14: SwapClauseArguments(Program, Clause)
15: ShadowClause(Program, Clause)
16: end function

Fig. 3. Pseudo-code: compute variant of Program to reproduce a learner’s Solution.

2.4 Existing Method

In [12], we have presented a method that interleaves algorithmic debugging
with program transformations for the automatic reconstruction of learners’ erro-
neous procedure, see Fig. 3. The function ReconstructErroneousProcedure/3
is recursively called until a program is obtained that reproduces learner behav-
iour, in which case there are no further disagreements. Note that multiple per-
turbations may be required to reproduce single bugs, and that multiple bugs are
tackled by iterative applications of algorithmic debugging and code perturbation.

The irreducible disagreement resulting from the algorithmic debugging phase
locates the code pieces where perturbations must take place; its cause determines
the kind of perturbation. The function Perturbation/3 can invoke various kinds
of transformations: the deletion of a call to the clause in question, or the deletion
of one of its subgoals, or the shadowing of the clause in question by a more spe-
cialized instance, or the swapping of the clause’ arguments. These perturbations
reflect the repair strategies learners use when encountering an impasse.

Our algorithm for clause call deletion, e.g., traverses a given program until it
identifies a clause whose body contains a call to the clause Clause in question;
once identified, it removes Clause from the body and replaces all occurrences of
its output argument by its input argument in the adjacent subgoals as well as
in the clause’s head, if present. Then, the modified program is returned.

There are many choice points as an action can materialise in many different
ways. Our original method uses Prolog’s built-in depth-first mechanism to blindly
search the space of program transformations. Our new method uses a heuristics
to make informed decisions during search.

241

3 Heuristic Search over Program Transformations

The problem of automatically reconstructing a Prolog program to model a
learner’s incorrect reasoning can be cast as a heuristic search problem. The
initial state holds a Prolog program that solves arbitrary multi-column subtrac-
tion tasks in an expert manner. The goal state holds the program’s perturbated
variant whose execution reproduces the learner’s erroneous behaviour. For each
state s, a successor state s′ can be obtained by the application of a single pertur-
bation operator opi. We seek a sequence of perturbation actions op1, op2, ...opn

to define a path between start and goal state, with minimal costs.

3.1 Heuristic Function

Best-first search depends on a heuristic function to evaluate a node’s distance
to the goal node. For this, we extend our variant of algorithmic debugging. A
heuristic score could be obtained, e.g., by counting the number of agreements
until the first irreducible disagreement is found; however, when errors occur early
in the problem solving process, this simple scoring performs poorly. Modifying
the algorithmic debugger to always traverse the entire program and count all
irreducible agreements and disagreements during traversal yields a better score.

Figure 4 depicts the algorithmic debugger in pseudo-code; it extends a simple
meta-interpreter. Before start, both counters are initialised, and the references
set for Goal, Problem, Solution to hold the top-level goal, the task to be solved
and the learner’s Solution to the task, respectively. There are four main cases.
The meta-interpreter encounters either (i) a conjunction of goals, (ii) a goal
that is a system predicate, (iii) a goal that does not need to be inspected, or
(iv) a goal that needs to be inspected. For (i), algorithmic debugging is called
recursively on each of the goals of the conjunctions; for (ii), the goal is called;
and for (iii), we obtain the goal’s body and ask the meta-interpreter to inspect
it. The interesting aspect is case (iv) for goals marked relevant. Here, the goal
is evaluated by both the expert program (using call/1) and the Oracle. The
Oracle retrieves the learner’s solution for the given Problem and reconstructs
from it the learner’s answer to the goal under discussion. Now, there are two
cases. If system and learner agree on the goal’s result, then the goal’s weight is
determined and added to the number of agreements; if they disagree, the goal
must be inspected further to identify the exact location of the disagreement.
If the goal is a leaf node, the irreducible disagreement has been identified and
the disagreement counter is incremented by one; otherwise, the goal’s body is
retrieved and subjected to algorithmic debugging. The heuristic score is obtained
by subtracting the number of agreements from the number of disagreements.

3.2 Best-First Search: Guiding Program Transformations with A∗

Typically, a search method maintains two lists of states: an open list of all states
still to be investigated for the goal property, and a closed list for all states that
were already checked for the goal property but where the check failed. Among

242

1: NumberAgreements ← 0, NumberDisagreements ← 0
2: Problem ← current task to be solved, Solution ← learner input to task
3: Goal ← top-clause of routine, with input Problem and output Solution
4: procedure algorithmicDebugging(Goal)
5: if Goal is conjunction of goals (Goal1, Goal2) then
6: ← algorithmicDebugging(Goal1)
7: ← algorithmicDebugging(Goal2)
8: end if
9: if Goal is system predicate then

10: ← call(Goal)
11: end if
12: if Goal is not on the list of goals to be discussed with learners then
13: Body ← getClauseSubgoals(Goal)
14: ← algorithmicDebugging(Body)
15: end if
16: if Goal is on the list of goals to be discussed with learners then
17: SystemResult ← call(Goal)
18: OracleResult ← oracle(Goal)
19: if results agree on Goal then
20: Weight ← computeWeight(Goal) � compute # of skills in proof tree
21: NumberAgreements ← NumberAgreements + Weight
22: else
23: if Goal is leaf node (or marked as irreducible) then
24: NumberDisagreements ← NumberDisagreements + 1
25: else
26: Body ← getClauseSubgoals(Goal)
27: ← algorithmicDebugging(Body)
28: end if
29: end if
30: end if
31: end procedure
32: Score ← NumberDisagreements − NumberAgreements

Fig. 4. Pseudo-code: top-down traversal, keeping track of (dis-)agreements.

all the open states, greedy best-first search always selects the most promising
candidate, i.e., the candidate that is most likely the closest to a given goal state.
Our approach also takes into account the cost of program transformations. With
the heuristic function defined as f(n) = g(n) + h(n), we thus implement the
A∗-algorithm. The cost function g(n) returns the cost of producing state n. The
function h(n) estimates the distance between the program in state n and the
goal state; it is described as Score in Fig. 4.

Representation. Each state in the search tree is represented by the term
(Algorithm, IrreducibleDisagreement, Path), encoding a reified version of
a Prolog program, the first irreducible agreement between program and learner
behavior, and the path of prior perturbation actions to reach the current state.
Each state n is also associated with a numerical value f(n) that quantifies its

243

production cost as well as the Algorithm’s distance to the algorithm of the goal
state. A successor state of a given state results from applying a perturbation
action. The action obtains a Prolog program, performs some sort of mutation,
and returns a modified program. – We discuss our approach by example.

Initialisation. The start node holds the expert program (see Fig. 1) that pro-
duces the correct solution. Sought is a mutated variant of the expert program to
produce the learner’s erroneous solution, here the error smaller-from-larger:

Best-first search starts with initialising a heap data structure. For this, the
start node’s distance to the goal node is estimated, using the algorithm given in
Fig. 4. There is no single agreement between expert program solving behaviour
and learner behaviour, i.e., no single subtraction cell has been filled out the same
way. There are six disagreements, yielding a heuristic score of 6 − 0 = 6.

To inform the generation of the node’s children, the first of the six irreducible
disagreements – add ten to minuend(3, 1, 1) – (1 instead of 11) is attached
to the node’s second component. The third component is initialised with the
empty path [] (cost 0). The node and its estimate is then added to the empty
heap.

Checking for Goal State. A state is a goal state when its associated program
passes algorithmic debugging with zero disagreements. In this case, best-first
search terminates with the goal state, returning the node’s algorithm and its
path, i.e., a list of actions that were applied to reach the goal state. Here, the
initial node, with a non-zero number of disagreements is not the goal node.

Generation of Successor Nodes. If a given state is not the goal state, the state’s
successors are computed. Given the state’s algorithm and the first irreducible dis-
agreement that indicates the location of the “error”, Prolog is asked to findall
applicable perturbation actions, see Fig. 3. For the initial state, we obtain:

n1 DeleteCallToClause/2: deletion of the call to add ten to minuend/3 in the
first program clause process column/3 (line 15).

n2 ShadowClause/2: addition of the irreducible disagreement (learner’s view)
add ten to minuend(3, 1, 1) :- irreducible. to the program.

n3 DeleteSubgoalsOfClause/2: deletion of subgoals from the definition of
the predicate add ten to minuend/3. As the goal irreducible/0 cannot be
deleted as it is needed by the Oracle, the only permissible action is to delete
the subgoal M10 is M + 10, and to replace M10 by M in the clause’ header.

To add a successor node to the heap, the existing path is extended with the
respective action taken. Also, for each node’s algorithm, its first irreducible dis-
agreement with the learner must be identified, and the distance to the goal node
must be determined. For all successor nodes, we get the irreducible disagreement
decrement(2,[(4,1,S1), (0,9,S2)],[(3,1,S1), (9,9,S2)]).

244

I Start Node lf =0+(6 -0)=6

j
eteSubgoalsOfClause

DeleteCallToCla

ShadowClause

I Node n1 l/=l+(s- o)=6 I Node n2 I/=S+(S- l)=9 I Node n3 1/ =H(S- l)=7

Fig. 5. Best-first search over program transformations: first expansion.

Now, consider the nodes' (dis-) agreement scores. Each of the nodes has five
disagreements, one less than in the parent node; the second and third child now
also feature one agreement. In node n2, there is an agreement with the new
clause add_ten_toJili nuend/3 added; in node n3, there is an agreement with the
perturbated clause add_t en_toJilinuend/3.

Action Cost. Some program transformations are better than others. Consider
the ShadowClause action, yielding mutations that are specific to a given input/
output pair. The resulting program will, thus, reproduce the learner's error only
for the given subtraction task, not for other input. The action's lack of generality
is acknowledged by giving it a high cost, namely 5. Hence, the action will only
be used when more general and less costly actions are not applicable.

The action DeleteSubgoalsOfCl ause can delete more than a single subgoal
from the predicate indicated by the disagreement. This adds a notion of focus
to the perturbation and mirrors the fact that learners often address an impasse
with skipping one or more steps of the skill in question. Its cost is defined by
the number of subgoals deleted; a penalty is added, however, when the resulting
body is left with the single subgoal irreduci ble. The mutations performed by
DeleteCallToCl ause and SwapCl auseArguments have a cost of 1.

Score and Continued Search. Figure 5 depicts the scores obtained. Best-first
search selects the child with the lowest valuation, n1. Its irreducible disagree­
ment on the decrement/3 operation in column 2 can be addressed by eight
different repairs: the deletion of the call to decrement/3 in the first clause
of process_col umn/3 (line 17) , the addition of the disagreement clause (the
learner's view) to the program, and the removal of one or more subgoals in
any of the two clause definitions for decrement/3 (6 possible repairs) . It shows
that the deletion of line 17 yields the algorithm with the lowest overall esti­
mate; the algorithm's irreducible disagreement at take_difference(3,1,9,8)
(8 vs. - 8) lets best-first search determine the final perturbation action, which is
SwapClauseArguments/2 to swap the arguments of take_difference/4 in the
first clause of pr ocess_column/3.

3 .3 E valuation

vVe have tested our new approa.ch against the eight most frequent bugs of Van­
Lebo's study (Fig. 2). For this, we have implemented the following three search

245

Table 1. Evaluation: blind-search vs. cost-based search vs. A∗

Error Blind Cost-based A∗

smaller-from-larger 33.882K-N 2.385K-Y 659K-Y
borrow-no-decrement 425K-N 425K-Y 425K-Y
stops-borrow-at-zero 406K-N 640K-N 407K-Y
borrow-across-zero 444K-N 1.126K-Y 446K-Y
borrow-from-zero 457K-N 510K-Y 457K-Y
stops-borrow-at-zero. diff0-N=N 5.054K-N 108.832K-C 2.786K-C
always-borrow-left 111K-N 2.831K-C 111K-C
borrow-across-zero. diff0-N=N 5.053K-N 203.125K-C 1.874K-C

methods: blind (depth-first) search where each node n is associated with the
value f(n) = 1, cost-based search where each node is associated with its con-
struction cost f(n) = g(n), and A∗-search where each node is associated with its
construction cost and its estimated distance to the goal node: f(n) = g(n)+h(n).

Table 1 compares the three search methods using the two metrics performance
and quality of solution. Performance is measured in terms of inferences required
to obtain the first goal node (as computed by SWI-Prolog’s time/1 predicate).
The quality of solution is measured using the perturbations described in Sect. 2.3
as gold standard. Inference numbers are either annotated with “Y” (the gold
standard has been reproduced automatically), “C” (the reproduction is close to
the gold standard), and “N” (no reproduction).

All three search methods have access to the same arsenal of actions, which
includes the action ShadowClause. This perturbation acts as a fallback mecha-
nism and ensures that all search terminates with a program mutation whose exe-
cution reproduces the learner’s erroneous answer to a given subtraction task. If
a ShadowClause action has been applied, the resulting mutation is task-specific;
it usually fails to reproduce a learner’s consistent erroneous behaviour across
other tasks. The explanatory power of the resulting mutation is rather limited.

In blind search, all perturbation actions have equal cost. Therefore, blind
search often yields programs that result from applying ShadowClause perturba-
tions. As Table 1 shows, blind search often terminates with less inferences than
the other two methods, but at the cost of low-quality solutions. None of the
typical errors were reproduced faithfully.

Cost-based search and A∗-search offer a vast improvement to blind-search.
Here, ShadowClause transformations are only chosen when no other transforma-
tions are available. While cost-based search reproduces four of the top-five errors,
A∗ manages to get all five reproductions right. For stops-borrow-at-zero, cost-
based search constructs a buggy variant of the expert program by deleting only a
single subgoal in the first definition of decrement/3 (line 35); A∗-search performs
three deletions in this clause, effectively rendering it into a null operation. While
both variants reproduce the learner error, their dynamics is different: the first
program forces process column/3 to enter its second clause for processing the

246

middle column, while A∗ forces process column/3 into its first clause. Clearly,
A∗ returns a more faithful reproduction of the given error.

In terms of inferences, A∗ has equal or better performance than the other
two methods, while returning equal or better solutions. The benefit of A∗ is
dramatic for smaller-from-larger, where blind search delivers a low-quality
path of length 5, and cost-based search and A∗ a high-quality path of length 3.

For the last three errors, we can only obtain solutions that are close to our
gold standard. This is due to the current lack of inductive capabilities in the test
framework. The perturbations to reproduce the error stops-borrow-at-zero,
diff0-N=N follow, by and large, the perturbations performed for stops
-borrow-at-zero. The presence of the error diff0-N=N, however, implies that no
decrement operation is necessary for the given task 401 − 199. Rather than just
making decrement/3 a null operation (as in stops-borrow-at-zero), the pertur-
bations for stops-borrow-at-zero, diff0-N=N delete the call to decrement/3 in
process column/3 altogether. In addition, two task-specific clauses are added for
thediff0-N=N case. Similar remarks apply toborrow across zero diff0 N eq N.
We find the performance gain in both of the cases significant.

4 Related Work

4.1 Program Testing

Our research has an interesting link to program testing and the design and
reliability of test data [4]. The theory of program testing rests on the competent
programmer hypothesis, which states that programmers “create programs that
are close to being correct” [4]. In other words, if a program is buggy, then it differs
from the correct program only by a combination of simple errors. Moreover,
programmers have a rough idea of the kind of error that are likely to occur, and
they have the ability to examine their programs in detail. Program testing is also
thought to be aided by the coupling effect: test cases that detect simple types of
faults are sensitive enough to detect more complex types of faults. The analogy
to VanLehn’s theory of impasses and repairs is striking. When learners encounter
an impasse in executing a correct procedure, they address the impasse by a local
repair, which often can be explained in terms of simple errors. Also, teachers
have a rough idea of the kind of errors learners are likely to make (and learners
might be aware of their repairs, too). Good teachers are able to reconstruct the
erroneous procedure a learner is executing, and learners are able to correct their
mistakes either themselves or under teacher supervision.

In program testing, the technique of mutation testing aims at identifying
deficiencies in test suites, and to increase the programmer’s confidence in the
tests’ fault detection power. A mutated variant p′ of a program p is created
only to evaluate the test suite designed for p on p′. If the behaviour between
p and p′ on test t is different, then the mutant p′ is said to be dead, and the
test suite “good enough” wrt. the mutation. If they are equal, then p and p′

are equivalent, or the test set is not good enough. In this case, the programs’
equivalence must be examined by the programmer; if they are not equivalent,

247

the test suite must be extended to cover the critical test. This relates to our
approach. When a given program is unable to reproduce a learner’s solution, we
create a set of perturbated variants, or mutants. If one of them reproduces the
learner’s solution, it passes the test, and we are done. Otherwise, we choose the
best mutant, given the heuristic function f , and continue with the perturbations.
The originality of our approach is due to our systematic search for mutations and
the use of f to measure the distance between mutants wrt. a given input/output.

In [6], Kilperäinen & Mannila describe a general method for producing com-
plete sets of test data for simple Prolog programs. Their method is based on
the competent programmer hypothesis, and works by mutating list processing
programs with a small class of suitable modifications. In [8], the authors give
a wide range of mutation operators for Prolog. At the clause level, they have
operators for the removal of subgoals, for changing the order of subgoals, and
for the insertion, removal, or permutation of cuts. At the operator level, they
propose mutations that change one arithmetic or relational operator by another
one. Moreover, they propose mutations that act on Prolog variables or constants,
e.g., the changing of one variable into another variable, an anonymous variable,
or a constant, or the changing of one constant into another one. All mutations are
syntactic, and aim at capturing typical programmer errors. So far, our approach
makes use of a subset of the aforementioned mutation operators. It is surprising
that the top-five bugs, accounting for nearly 50 % of all learner errors, can be
explained by learners skipping steps, i.e., mostly in terms of clause deletions.

4.2 Intelligent Tutoring Systems

In the intelligent tutoring community, most system designers follow a rule-based
approach to implement interactive exercises that help students learn. The ACT*
architecture is both theoretical embedding and practical implementation basis
for ITSs such as the LISP Tutor or the PAT algebra tutor, see the overview
[1]. In the ACT* approach, a set of production rules models the skills to be
acquired by the learner. To capture erroneous learner behaviour, expert rules are
complemented by buggy rules. The rule engine’s step-wise interpretation of the
rule system allows the tracing of learner actions in terms of the model. Learner
actions are on-path when reproducible by the execution of expert rules, or off-
path when explainable in terms of buggy production rules, or when no sequence
of rules can be found. Positive and remedial feedback, which is attached to rules,
can be generated to support learners’ problem solving.

Tutors built upon production rule systems have two major drawbacks: they
have high authoring costs, and they need to keep learners close to the correct
solution path to tame the combinatorial explosion of the (forward reasoning) rule
engine. We focus on the first aspect. While rule-based systems offer an adequate
formalism to represent the logic of a given domain using a set of rules, it seems
to be much harder to encode a domain’s control aspect. The hierarchical aspect
of the domain algorithm can only be modeled in terms of goal structures that
reside in the rule system’s working memory and which must be explicitly main-
tained and manipulated using the rules’ pre- and postconditions. The ACT*-like

248

encoding of control creates rules that depend on each other, and hence, makes
the authoring and managing of large rule bases a costly undertaking.

In our approach, logic and control are encoded using Prolog, where goal struc-
tures are automatically taken care of. Moreover, our tracing of learner actions
does not require an a priori encoding of buggy rules; buggy program variants
are generated on the fly, using a clever variant of algorithmic debugging, which
compares expert with learner behaviour, and program transformation techniques
that are based on well-defined perturbation operators. In rule-based systems,
there is no representation that encodes the difference between an expert and a
buggy rule, and hence, little support for modeling learners’ repair strategies.

The Icarus cognitive architecture [7] addresses some of the drawbacks of rule-
based systems. Inspired by Prolog, it allows rules (skills) to explicitly mention
sub-skills (i.e., other rules) without making indirect references to them through
the working memory. Nevertheless, Icarus retains the overall flavour of a pro-
duction system by following a recognize-act-cycle. A more radical approach to
separate logic (domain-specific rules) from control (strategic guidance) is pro-
posed by Heeren et al. [5]. They separate: (i) information about the domain (e.g.,
the subtraction matrix and its place-value system), (ii) rules for manipulating
expressions in this domain (e.g., performing a complete borrow-payback opera-
tion, or taking the difference in a column), (iii) a strategy for solving the exercise
(e.g., performing subtraction from right to the left), and (iv) buggy knowledge
for modeling both incorrect expression manipulations and incorrect strategies. In
their approach, a strategy language is defined that has rules as smallest building
blocks, and which controls their combination using rule sequencing, rule choice,
and a recursion mechanism. Using the language, a strategy can be defined as a
context-free grammar. With the tracing of learner actions reduced to a parsing
problem, Heeren et al. define a strategy recognizer that is able to compute sev-
eral types of feedback to support learners when incrementally solving interactive
exercises. In this approach, the strategy recognizer should be capable of coping
with learner errors that result from strategic (skipping the step) repairs.

5 Conclusion and Future Work

In this paper, we propose a method to automatically transform an initial Prolog
program into another program capable of producing a given input/output behav-
iour. The method depends on a heuristic function that estimates the distance
between programs. An experimental evaluation demonstrated the benefits of
using heuristic search when compared to the blind (depth-first) search we have
used in [12]. It shows that the test-debug-repair cycle can be mechanised in
the tutoring context. Here, there is always a reference model to encode ideal
behaviour; moreover, many learner errors can be captured and reproduced by a
combination of simple, syntactically-driven program transformation actions.

In the near future, we would like to include more mutation operators (see [8]),
investigate their interaction with our existing ones, fine-tune the cost function,
and study whether erroneous procedures can be obtained that better reflect learn-
ers’ incorrect reasoning. Ideally, the new operators can be used to “un-employ”

249

the costly ShadowClause operator, whose primary purpose is to serve as a fall-
back action when all other actions fail. Moreover, we are currently working on a
web-based interface for multi-column subtraction tasks that we want to give to
learners, and where we plan an evaluation in terms of pedagogical benefits.

In the long term, we would like to take on another domain of instruction to
underline the generality of our approach. The domain of learning programming
in Prolog is particularly interesting. In the subtraction domain discussed in this
paper, we are systematically modifying an expert program into a buggy program
to model a learner’s erroneous behaviour. In the “learning Prolog domain”, we
can re-use our program distance measure in a more traditional sense. When
learners do specify an executable Prolog program, we compare its behaviour
with the prescribed expert program, identify their (dis-)agreement score, and
then repair the learner’s program, step by step, to become the expert program.

Acknowledgments. The research was funded by the DFG (ZI 1322/2-1).

References

1. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors:
lessons learned. J. Learn. Sci. 4(2), 167–207 (1995)

2. Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic math-
ematical skills. Cogn. Sci. 2, 155–192 (1978)

3. Burton, R.R.: Debuggy: diagnosis of errors in basic mathematical skills. In:
Sherman, D., Brown, J.S. (eds.) Intelligent Tutoring Systems. Academic Press,
London (1982)

4. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11(4), 34–41 (1978)

5. Heeren, B., Jeuring, J., Gerdes, A.: Specifying rewrite strategies for interactive
exercises. Math. Comput. Sci. 3(3), 349–370 (2010)

6. Kilperäinen, P., Mannila, H.: Generation of test cases for simple prolog programs.
Acta Cybern. 9(3), 235–246 (1990)

7. Langley, P., Cummings, K.: Hierarchical skills and cognitive architectures. In: 26th
Annual Conference of the Cognitive Science Society, pp. 779–784 (2004)

8. Toaldo, J.R., Vergilio, S.R.: Applying mutation testing in prolog programs. http://
www.lbd.dcc.ufmg.br/colecoes/wtf/2006/st2 1.pdf

9. VanLehn, K.: Mind bugs: The Origins of Procedural Misconceptions. MIT Press,
Cambridge (1990)

10. Young, R.M., O’Shea, T.: Errors in children’s subtraction. Cogn. Sci. 5(2), 153–177
(1981)

11. Zinn, C.: Algorithmic debugging to support cognitive diagnosis in tutoring systems.
In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS (LNAI), vol. 7006, pp. 357–368.
Springer, Heidelberg (2011)

12. Zinn, C.: Program analysis and manipulation to reproduce learners’ erroneous rea-
soning. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 228–243. Springer,
Heidelberg (2013)

