N

N

Formal C semantics: CompCert and the C standard
Robbert Krebbers, Xavier Leroy, Freek Wiedijk

» To cite this version:

Robbert Krebbers, Xavier Leroy, Freek Wiedijk. Formal C semantics: CompCert and the C standard.
ITP 2014: Fifth conference on Interactive Theorem Proving, Jul 2014, Vienna, Austria. pp.543-548,
10.1007/978-3-319-08970-6_ 36 . hal-00981212

HAL Id: hal-00981212
https://inria.hal.science/hal-00981212

Submitted on 21 Apr 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00981212
https://hal.archives-ouvertes.fr

Formal C semantics:
CompCert and the C standard

Robbert Krebbers!, Xavier Leroy?, and Freek Wiedijk!

1 ICIS, Radboud University Nijmegen, The Netherlands
2 Inria Paris-Rocquencourt, France

Abstract. We discuss the difference between a formal semantics of the
C standard, and a formal semantics of an implementation of C that sat-
isfies the C standard. In this context we extend the CompCert semantics
with end-of-array pointers and the possibility to byte-wise copy objects.
This is a first and necessary step towards proving that the CompCert
semantics refines the formal version of the C standard that is being de-
veloped in the Formalin project in Nijmegen.

1 Introduction

The C programming language [2] allows for close control over the machine, while
being very portable, and allowing for high runtime efficiency. This made C among
the most popular programming languages in the world.

However, C is also among the most dangerous programming languages. Due
to weak static typing and the absence of runtime checks, it is extremely easy for
C programs to have bugs that make the program crash or behave badly in other
ways. NULL-pointers can be dereferenced, arrays can be accessed outside their
bounds, memory can be used after it is freed, etc. Furthermore, C programs can
be developed with a too specific interpretation of the language in mind, giving
portability and maintenance problems later.

An interesting possibility to remedy these issues is to reason about C pro-
grams. Static program analysis is a huge step in this direction, but is by nature
incomplete. The use of interactive theorem provers reduces the problem of in-
completeness, but if the verification conditions involved are just generated by
a tool (like Jessie/Why3 [9]), the semantics that applies is implicit. Therefore,
the semantics cannot be studied on its own, and is very difficult to get correct.
For this reason, to obtain the best environment to reason reliably about C pro-
grams, one needs a formal semantics in an interactive theorem prover, like the
Cholera [10], CompCert [6], or Formalin [3/4] semantics.

The CompCert semantics has the added benefit that it has been used in the
correctness proof of the CompCert compiler. Hence, if one uses this compiler,
one can be sure that the proved properties will hold for the generated assembly
code too. However, verification against the CompCert semantics does not give
reliable guarantees when the program is compiled using a different compiler.

The C standard gives compilers considerable freedom in what behaviors to
give to a program [2], 3.4]. It uses the following notions of under-specification:

2 Robbert Krebbers, Xavier Leroy, and Freek Wiedijk

— Unspecified behavior: two or more behaviors are allowed. For example: order
of evaluation in expressions. The choice may vary for each use.

— Implementation defined behavior: unspecified behavior, but the compiler has
to document its choice. For example: size and endianness of integers.

— Undefined behavior: the standard imposes no requirements at all, the pro-
gram is even allowed to crash. For example: dereferencing a NULL or dangling
pointer, signed integer overflow, and a sequent point violation (modifying a
memory location more than once between two sequence points).

Under-specification is used extensively to make C portable, and to allow com-
pilers to generate fast code. For example, when dereferencing a pointer, no code
has to be generated to check whether the pointer is valid or not. If the pointer
is invalid (NULL or a dangling pointer), the compiled program may do something
arbitrary instead of having to exit with a nice error message.

Like any compiler, CompCert has to make choices for implementation defined
behavior (e.g. integer representations). Moreover, due to its intended use for
embedded systems, CompCert gives a semantics to various undefined behaviors
(such as aliasing violations) and compiles those in a faithful manner.

To verify properties of programs that are being compiled by CompCert, one
can make explicit use of the behaviors that are defined by CompCert but not
by the C standard. On the contrary, the Formalin semantics intends to be a
formal version of the C standard, and therefore should capture the behavior of
any C compiler. A blog post by Regehr [11I] shows some examples of bizarre
behavior by widely used compilers due to undefined behavior. Hence, Formalin
has to take all under-specification seriously (even if that makes the semantics
more complex), whereas CompCert may (and even has to) make specific choices.

For widely used compilers like GCC and Clang, Formalin is of course unable
to give any formal guarantees that a correctness proof with respect to its seman-
tics ensures correctness when compiled. After all, these compilers do not have a
formal semantics. We can only argue that the Formalin semantics makes more
things undefined than the C standard, and assuming these compilers “implement
the C standard”, correctness morally follows.

As a more formal means of validation of the Formalin semantics we intend to
prove that CompCert is a refinement of it. That means, if a behavior is defined by
the Formalin semantics, then the possible behaviors of CompCert match those
of Formalin. As a first step into that direction, we will discuss two necessary
modifications to CompCert as displayed in Figure [I} It is important to notice
that this work is not about missing features in CompCert, but about missing
behaviors of features that are in both CompCert and Formalin.

Note that even the Formalin semantics deviates from the C standard. That
is because the C standard has two incompatible ways to describe data [Il Defect
Report #260]. It uses a low level description of data in terms of bits and bytes
called object representations, but also describes data abstractly in a way that
allows various compiler optimizations. For this reason Formalin errs on the side
of caution: it makes some behaviors undefined that most people consider to be
defined according to the standard.

Formal C semantics: CompCert and the C standard 3

- CompCert C

Formalin

N
N
subtle integer overflow [3]

comparing with

casts ' aliasing violations [3]
end-of-array pointers

subtle sequence point
type violations [4]
punning ’

byte-wise pointer copy
use of dangling block
scope pointers [5]
arithmetic on

Fig. 1. We extend CompCert C with the behaviors in the shaded area. Each set in this
diagram contains the programs that according to the semantics do not have undefined
behavior. Since C11 is subject to interpretation, we draw it with a dashed line.

For example, in both Formalin and CompCert, adding 0 to a byte from a
pointer object representation is undefined behavior. Both semantics do not just
have numeric bytes, but also use symbolic bytes for pointers and uninitialized
memory (see the definition memval of CompCert in Section [3)).

Ezample. Using CompCert’s reference interpreter, we checked that our exten-
sions of CompCert give the correct semantics to:

void my_memcpy(void *dest, void *src, int n) {
unsigned char *p = dest, *q = src, *end = p + n;
while (p < end) // end may be end-of-array
*p++ = *q++ ;
}
int main() {
struct S { short x; short *r; } s = { 10, &s.x }, s2;
my_memcpy (&s2, &s, sizeof (struct S));
return *(s2.r);

}

In CompCert 1.12, this program has undefined behavior, for two reasons: the
comparison p < end that involves an end-of-array pointer, and the byte-wise
reads of the pointer s.r. Sections[2]and [3|discuss these issues and their resolution.

Sources. Our extension for end-of-array pointers is included in CompCert since
version 1.13. The sources for the other extension and the Formalin semantics
can be found at http://github.com/robbertkrebbers.

2 Pointers in CompCert

CompCert defines its memory as a finite map of blocks, each block consisting
of an array of symbolic bytes (and corresponding permissions) [7]. Pointers are
pairs (b, i) where b identifies the block, and i the offset into that block.

http://github.com/robbertkrebbers

4 Robbert Krebbers, Xavier Leroy, and Freek Wiedijk

The C standard’s way of dealing with pointer equality is subtle. Consider the
following excerpt [2, 6.5.9p5]:

Two pointers compare equal if and only if [...] or one is a pointer to one
past the end of one array object and the other is a pointer to the start
of a different array object that happens to immediately follow the first
array object in the address space.

End-of-array pointers are somewhat special, as they cannot be dereferenced, but
their use is common programming practice when looping through arrays.

void inc_array(int *p, int n) {
int *end = p + n;
while (p < end) (kxp++)++;

}

Unfortunately, end-of-array pointers can also be used in a way such that the
behavior is not stable under compilation.

int x, y;
if (&x + 1 == &y) printf("x and y are allocated adjacently\n");

Here, the printf is executed only if x and y are allocated adjacently, which may
happen as many compilers allocate x and y consecutively on the stack.

In the CompCert semantics, x and y have disjoint block identifiers, and the
representations of &x + 1 and &y are thus unequal. Compilation does not pre-
serve this inequality as the blocks of x and y are merged during stack allocation.
To ensure preservation of comparisons, the semantics of earlier CompCert ver-
sions (1.12 and before) required pointers used in comparisons to be valid. A
pointer is valid if its offset is strictly within the block bounds. We weakened this
restriction on pointer comparisons slightly:

— Comparison of pointers in the same block is defined only if both are weakly
valid. A pointer is weakly valid if it is valid or end-of-array.

— Comparison of pointers with different block identifiers is defined for valid
pointers only.

Our weakened restriction allows common programming practice of using end-
of-array pointers when looping through arrays possible, but uses as in the sec-
ond example above remain undefined. We believe that the above restriction on
pointer comparisons is more sensible than the naive reading of the C standard
because it is stable under compilation®.

To adapt the compiler correctness proofs we had to show that all compi-
lation passes preserve weak pointer validity and preserve the new definition of
pointer comparisons. Furthermore, we had to modify the definition of memory
injections [§] to ensure that also the offsets of weakly valid pointers remain rep-
resentable by machine integers after each program transformation.

3 Notice that the C standard already makes a distinction between pointers in the same
block and pointers in different blocks, for pointer inequalities < and <= [2], 6.5.9p6].

Formal C semantics: CompCert and the C standard 5

3 Bytes in CompCert

CompCert represents integer and floating point values by sequences of numeric
bytes, but pointer values and uninitialized memory by symbolic bytes.

Inductive memval: Type :=
| Undef: memval
| Byte: byte -> memval
| Pointer: block —-> int -> nat -> memval
| PointerPad: memval.

When storing a pointer (b,), the sequence Pointer b i 0, ..., Pointer b i 3 is
stored, and on allocation of new memory a sequence of Undef bytes is stored
(the constructor PointerPad is part of our extension, and is discussed later).
In the version of CompCert that we have extended, it was only possible to
read a sequence of Pointer bytes as a pointer value. To make byte-wise reading
and writing of pointers possible, we extend values with a constructor Vptrfrag.

Inductive val: Type :=
| Vundef: val
| Vint: int -> val
| Vlong: int64 -> val
| Vfloat: float -> val
| Vptr: block -> int -> val
| Vptrfrag: block -> int -> nat -> val.

Extending the functions that encode and decode values as memval sequences
turned out more subtle than expected. The CompCert compiler back-end must
sometimes generate code that stores and later restores the value of an integer
register in a stack location. To preserve this value, these memory stores and loads
are performed at the widest integer register type, int. For pointer fragments,
the top 3 bytes of the in-memory representation are statically unknown, since
they can result from the sign-extension of the low byte. Therefore, we abstract
these top 3 bytes as the new memval constructor PointerPad.

Arithmetical operations are given undefined behavior on pointer fragments.
Reading a pointer byte from memory, adding 0 to it, and writing it back remains
undefined behavior. It would be tempting give an ad-hoc semantics to such corner
cases, but that will result in a loss of algebraic properties like associativity.

Assignments involve implicit casts, hence char to char casts need to have
defined behavior on pointer fragments to make storing these fragments possible.
Since the CompCert compiler needs the guarantee that the result of a cast is well-
typed (while the CompCert semantics is untyped), neutral casts perform a zero-
or sign-extension instead of being the identity. However, since the top 3 bytes
of the in-memory representation of pointer fragments are statically unknown,
we changed the semantics of a cast from char to char to check whether the
operand is well-typed (which vacuously holds for well-typed programs). If not,
the behavior of the cast is undefined. This has the desired result that char to
char casts can be removed in a later compilation phase.

6 Robbert Krebbers, Xavier Leroy, and Freek Wiedijk

CompCert 2.2 features a new static analysis that approximates the shapes of
values, including points-to information for pointer values. Our char values hold
more values, and thus this analysis needed some changes. For example, before
our extension, the only pointer values that can be read from a given memory
location are those that were stored earlier at this exact location using a pointer-
wise store. With our extensions, the pointer values thus read can also come from
byte-wise pointer fragments that were stored at overlapping locations.

4 Conclusion and future work

The two extensions of CompCert described in this paper succeed in giving a
semantics to behaviors that were previously undefined. These extensions are a
necessary step for cross validation of the CompCert and Formalin semantics.
Our treatment of byte-wise copying of objects containing pointers turned out
to be more involved than suggested in [7], owing to the nontrivial semantics of
casts and changes to the static value analysis. If future versions of CompCert
get a type system, our workaround for casts can be removed.

Another behavior that needs attention in future work is CompCert’s call-
by-reference passing of struct and union values, as discussed in [4]. In this case,
as well as in the byte-wise copying case, the approach followed by Norrish [10]
(namely, representing values as sequences of bytes identical to their in-memory
representations) may provide an alternative solution, but could cause other dif-
ficulties with value analysis and compiler correctness proofs.

Acknowledgments. We thank the reviewers for their helpful comments. This work
was partially supported by NWO and by ANR (grant ANR-11-INSE-003).

References

1. International Organization for Standardization: WG14 Defect Report Summary
(2008), http://wuw.open-std.org/jtcl/sc22/wgl4/www/docs/
2. International Organization for Standardization: ISO/IEC 9899-2011: Programming
languages — C. ISO Working Group 14 (2012)
3. Krebbers, R.: Aliasing Restrictions of C11 Formalized in Coq. In: CPP. LNCS, vol.
8307, pp. 50-65 (2013)
4. Krebbers, R.: An Operational and Axiomatic Semantics for Non-determinism and
Sequence Points in C. In: POPL. pp. 101-112 (2014)
5. Krebbers, R., Wiedijk, F.: Separation Logic for Non-local Control Flow and Block
Scope Variables. In: FoSSaCS. LNCS, vol. 7794, pp. 257-272 (2013)
Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107-115 (2009)
Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert Memory Model,
Version 2. Research report RR-7987, INRIA (2012)
8. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. JAR 41(1), 1-31 (2008)
9. Moy, Y., Marché, C.: The Jessie plugin for Deduction Verification in Frama-C,
Tutorial and Reference Manual (2011)
10. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
11. Regehr, J.: Blog post at http://blog.regehr.org/archives/759 (2012)

http://www.open-std.org/jtc1/sc22/wg14/www/docs/
http://blog.regehr.org/archives/759

	Formal C semantics: CompCert and the C standard

