Skip to main content

Integration of Clinico-Pathological and microRNA Data for Intelligent Breast Cancer Relapse Prediction Systems

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013)

Abstract

This paper investigates the integration of clinico-pathological and microRNA data for breast cancer relapse prediction. Clinical and pathological data proved to be relevant in making predictions about cancer disease outcome. The most accurate predictive models can be obtained by using clinico-pathological information together with genomic information. We analyzed the performance of various combinations between twenty classification algorithms and thirteen feature selection methods. The best performer was the regularized regression method Elastic Net, using its built-in feature selection method, on the data set integrating clinico-pathological data with microRNAs. The hybrid signature contains four clinico-pathological features and fifteen microRNAs. We also evaluated the influence of the separation of patients according to ER status and the impact of the exclusion from the data set of HS molecules (novel microRNAs without an assigned miRBase ID) on the overall performance. Functional analysis of the microRNAs of the best classifier showed that they are involved in cancer related processes.

This project has been conducted through the program Partnerships in priority areas - PN II, developed with the support of ANCS, CNDI - UEFISCDI, project no. PN-II-PT-CACM-2011-3.1-1221.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Componentwise Boosting, Diagonal Discriminant Analysis, Elastic Net, Fisher Discriminant Analysis, Tree-based Boosting, k-nearest neighbors, Linear Discriminant Analysis, Lasso, Feed-Forward Neural Networks, Probabilistic nearest neighbors, Penalized Logistic Regression, Partial Least Squares with Linear Discriminant Analysis, Partial Least Squares with logistic regression, Partial Least Squares with Random Forest, Probabilistic Neural Networks, Quadratic Discriminant Analysis, Random Forest, PAM, Shrinkage Discriminant Analysis, Support Vector Machine.

  2. 2.

    t test, Welch test, Wilcox test, F test, Kruskal-Wallis test, moderated t and F test (limma), One-step Recursive Feature Elimination, random forest variable importance measure, Lasso, Elastic Net, componentwise boosting, Golub ad-hoc criterium, shrinkcat.

References

  1. Metacore gene expression and pathway analysis. http://www.genego.com/metacore.php

  2. Antonov, A.V., Knight, R.A., Melino, G., Barlev, N.A., Tsvetkov, P.O.: Mirumir: an online tool to test micrornas as biomarkers to predict survival in cancer using multiple clinical data sets. Cell Death Differ. 20(2), 367 (2013). http://dx.doi.org/10.1038/cdd.2012.137L3

  3. Bergamaschi, A., Katzenellenbogen, B.S.: Tamoxifen downregulation of mir-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene 31(1), 39–47 (2012)

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Buelmann, P., Yu, B.: Boosting with the l2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324–339 (2003)

    Article  Google Scholar 

  6. Buffa, F.M., Camps, C., Winchester, L., Snell, C.E., Gee, H.E., Sheldon, H., Taylor, M., Harris, A.L., Ragoussis, J.: Microrna-associated progression pathways and potential therapeutic targets identified by integrated mrna and microrna expression profiling in breast cancer. Cancer Res. 71(17), 5635–5645 (2011)

    Article  Google Scholar 

  7. Burns, L.J., Weisdorf, D.J., et al.: Il-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase i/ii trial. Bone Marrow Transplant. 32(2), 177–186 (2003)

    Article  Google Scholar 

  8. Calin, G.A., Croce, C.M.: MicroRNA signatures in human cancers. Nat. Rev. Cancer 6(11), 857–866 (2006)

    Article  Google Scholar 

  9. Castellano, L., Giamas, G., et al.: The estrogen receptor-alpha-induced microrna signature regulates itself and its transcriptional response. Proc. Natl. Acad. Sci. USA 106(37), 15732–15737 (2009)

    Article  Google Scholar 

  10. Chen, J., Bardes, E., Aronow, B., Jegga, A.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37(suppl 2), W305–W311 (2009)

    Article  Google Scholar 

  11. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, New-York (2001)

    MATH  Google Scholar 

  12. Edén, P., Ritz, C., Rose, C., Fernö, M., Peterson, C.: “Good old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur. J. Cancer 40, 1837–1841 (2004)

    Article  Google Scholar 

  13. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  14. Eifel, P., Axelson, J.A., Costa, J., Crowley, J., Curran, W.J., Deshler, A., Fulton, S., Hendricks, C.B., Kemeny, M., Kornblith, A.B., Louis, T.A., Markman, M., Mayer, R., Roter, D.: National institutes of health consensus development conference statement: adjuvant therapy for breast cancer, November 1–3, 2000. J. natl. cancer inst. 93(13), 979–989 (2001)

    Article  Google Scholar 

  15. Famili, F., Phan, S., Fauteux, F., Liu, Z., Pan, Y.: Data integration and knowledge discovery in life sciences. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part III. LNCS (LNAI), vol. 6098, pp. 102–111. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Floares, A., Birlutiu, A.: Decision tree models for developing molecular classifiers for cancer diagnosis. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2012)

    Google Scholar 

  17. Fontana, L., Pelosi, E. et al.: MicroRNAs 17–5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat. Cell Biol. 9(7), 775–787 (2007). http://dx.doi.org/10.1038/ncb1613

  18. Friedman, J., Trevor, H., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010). http://www.jstatsoft.org/v33/i01/

  19. Gaffen, S.L., Liu, K.D.: Overview of interleukin-2 function, production and clinical applications. Cytokine 28(3), 109–123 (2004). http://www.sciencedirect.com/science/article/pii/S1043466604002200

  20. Gevaert, O., Smet, F.D., Timmerman, D., Moreau, Y., Moor, B.D.: Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks. Bioinformatics 22(14), e184–e190 (2006)

    Article  Google Scholar 

  21. Goldhirsch, A., Wood, W.C., Gelber, R.D., Coates, A.S., Thürlimann, B., Senn, H.J.: Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J. Clin. Oncol. 21(17), 3357–3365 (2003)

    Article  Google Scholar 

  22. González, S., Guerra, L., Robles, V., Peña, J., Famili, F.: Clidapa: a new approach to combining clinical data with dna microarrays. Intell. Data Anal. 14(2), 207–223 (2010)

    Google Scholar 

  23. Guo, L., Zhao, Y., Yang, S., Cai, M., Wu, Q., Chen, F.: Genome-wide screen for aberrantly expressed mirnas reveals mirna profile signature in breast cancer. Mol. Biol. Rep. 40(3), 2175–2186 (2013)

    Article  Google Scholar 

  24. Han, Y., Chen, J., et al.: MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6(3), 6 (2011)

    Google Scholar 

  25. Hanahan, D., Weinberg, R.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  26. He, Y., Cui, Y., et al.: Hypomethylation of the hsa-mir-191 locus causes high expression of hsa-miR-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia 13(9), 841–853 (2011)

    Google Scholar 

  27. da Huang, W., Sherman, B., Lempicki, R.: Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nature Protoc. 1, 44–57 (2008)

    Article  Google Scholar 

  28. Ioannidis, J.P.: Microarrays and molecular research: noise discovery? Lancet 365(9458), 454–455 (2005)

    Article  Google Scholar 

  29. Kozomara, A., Griffiths-Jones, S.: miRBase: integrating microRNAannotation and deep-sequencing data. Nucleic Acids Res. 39(Database-Issue), 152–157 (2011). http://dblp.uni-trier.de/db/journals/nar/nar39.html#KozomaraG11d

  30. Li, Q.Q., Chen, Z.Q., et al.: Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 18(1), 16–25 (2011)

    Article  Google Scholar 

  31. Ma, J., Jemal, A.: Breast cancer statistics. In: Ahmad, A. (ed.) Breast Cancer Metastasis and Drug Resistance, pp. 1–18. Springer, New York (2013)

    Chapter  Google Scholar 

  32. Massague, J.: TGFbeta in cancer. Cell 134(2), 215–230 (2008)

    Article  Google Scholar 

  33. Mosakhani, N., Guled, M., et al.: An integrated analysis of miRNA and gene copy numbers in xenografts of Ewing’s sarcoma. J. Exp. Clin. Cancer Res. 31, 24 (2012)

    Article  Google Scholar 

  34. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing 1(2.11.1), 409 (2011). http://www.r-project.org

  35. Rocha, R.L., Hilsenbeck, S.G., et al.: Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin. Cancer Res. 3(1), 103–109 (1997)

    Google Scholar 

  36. Schoeffner, D.J., Matheny, S.L., et al.: VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Lab Invest. 85(5), 608–623 (2005)

    Article  Google Scholar 

  37. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002). http://www.learning-with-kernels.org

  38. Slawski, M., Boulesteix, A.L., Bernau., C.: CMA: Synthesis of microarray-based classification, r package version 1.16.0. (2009)

    Google Scholar 

  39. Sun, Y., Goodison, S., Li, J., Liu, L., Farmerie, W.: Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23(1), 30–37 (2007)

    Article  Google Scholar 

  40. Turner, B.C., Haffty, B.G., et al.: Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res. 57(15), 3079–3083 (1997)

    Google Scholar 

  41. van’t Veer, L.J., Dai, H., Van De Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)

    Google Scholar 

  42. van Vliet, M.H., Horlings, H.M., van de Vijver, M.J., Reinders, M.J., Wessels, L.F.: Integration of clinical and gene expression data has a synergetic effect on predicting breast cancer outcome. PLoS ONE 7(7), e40358 (2012)

    Article  Google Scholar 

  43. Volinia, S., Calin, G.A., et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 103(7), 2257–2261 (2006)

    Article  Google Scholar 

  44. Wang, F., Zheng, Z., Guo, J., Ding, X.: Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol. 119(3), 586–593 (2010)

    Article  Google Scholar 

  45. Wong, J.: Package ‘imputation’, version 2.0.1. https://github.com/jeffwong/imputation

  46. Xiao-Hua, Z., Obuchowski, N., McClish, D.: Statistical methods in diagnostic medicine (2002)

    Google Scholar 

  47. Yi, H., Liang, B., et al.: Differential roles of miR-199a-5p in radiation-induced autophagy in breast cancer cells. FEBS Lett. 587(5), 436–443 (2013)

    Article  MathSciNet  Google Scholar 

  48. Zhu, H., Wu, H., Liu, X., Evans, B.R., Medina, D.J., Liu, C.G., Yang, J.M.: Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem. Pharmacol. 76(5), 582–588 (2008)

    Article  Google Scholar 

  49. Zhu, J., Hastie, T.: Classification of gene microarrays by penalized logistic regression. Biostatistics 5(3), 427–443 (2004)

    Article  MATH  Google Scholar 

  50. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia Pintea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Birlutiu, A., Ardevan, D., Bulzu, P., Pintea, C., Floares, A. (2014). Integration of Clinico-Pathological and microRNA Data for Intelligent Breast Cancer Relapse Prediction Systems. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09042-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09041-2

  • Online ISBN: 978-3-319-09042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics