Skip to main content

French Flag Tracking by Morphogenetic Simulation Under Developmental Constraints

  • Conference paper
  • First Online:
Book cover Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8452))

  • 968 Accesses

Abstract

Below the influence of the mechanical cues and genetic expression, constraints underlying the developmental process play a key role in forms’ emergence. Theses constraints lead to cells’ differentiation and sometimes determine the directions of cells growth. To better understand these phenomena, we present in this paper our work focused primarily on a development of a mathematical model. A one which takes into account the co-evolution of cellular dynamics with it’s environment. To study the influence of the developmental constraints, we have developed algorithms to make and explore a base of genomes. The purpose of this exploration is first to check conditions under which specific genes are activated. Then, this exploration allows us to follow the conditions of emergence of some patterns that lead to a specific shape. From our model, we found a genome that can generate the French flag. With this French flag pattern and its genome starting, we addressed the following question: is there another genome in the simulated base that achieves the same shape, i.e. the French flag pattern?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In biology, the vitellus is the energy reserve used by the embryo during its development.

  2. 2.

    A eukaryote is an organism whose cells contain complex structures enclosed within membranes.

  3. 3.

    Graphics Processing Unit.

References

  1. Aubin, J.: Mutational and Morphological Analysis: Tools for Shape Regulation and Morphogenesis. Birkhauser, Boston (2000)

    Google Scholar 

  2. Aubin, J.-P.: Viability Theory. Birkhauser, Boston (1991)

    MATH  Google Scholar 

  3. Chevaillier, P., Bonneaud, S., Desmeulles, G., Redou, P.: Experimental study of agent population models with a specific attention to the discretization biases. In: Proceedings of the European Simulation and Modelling Conference (ESM’09), Leicester, UK, pp. 323–331 (2009)

    Google Scholar 

  4. Desmeulles, G., Querrec, G., Redou, P., Misery, L., Rodin, V., Tisseau, J.: The virtual reality applied to the biology understanding: the in virtuo experimentation. Expert Syst. Appl. 30(1), 82–92 (2006)

    Article  Google Scholar 

  5. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing. Springer, Heidelberg (2008)

    Google Scholar 

  6. Fronville, A., Harrouet, F., Desilles, A., De Loor, P.: Simulation tool for morphological analysis. In: Proceedings of the European Simulation and Modelling Conference (ESM’2010), Hasselt, Belgium, pp. 127–132 (2010)

    Google Scholar 

  7. Fronville, A., Sarr, A., Ballet, P., Rodin, V.: Mutational analysis-inspired algorithms for cells self-organization towards a dynamic under viability constraints. In: SASO 2012, 6th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Lyon, France, pp. 181–186 (2012)

    Google Scholar 

  8. Goldberg, A.D., Allis, C.D., Bernstein, E.: Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007)

    Article  Google Scholar 

  9. Henderson, J., Carter, D.: Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures. Bone 31(6), 645–653 (2002)

    Article  Google Scholar 

  10. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  11. Lawson, B., Park, S.: Asynchronous time evolution in an artificial society mode. J. Artif. Soc. Soc. Simul. 3(1) (2000)

    Google Scholar 

  12. Lorenz, T.: Mutational Analysis - A Joint Framework for Cauchy Problems In and Beyond Vector Spaces. Springer, Berlin (2010)

    MATH  Google Scholar 

  13. Melani, C., Peyriéras, N., Mikula, K., Zanella, C., Campana, M., Rizzi, B., Veronesi, F., Sarti, A., Lombardot, B., Bourgine, P.: Cells tracking in the live zebrafish embryo. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 1631–1634 (2007)

    Google Scholar 

  14. Müller, G., Newman, S.: Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, Cambridge (2003)

    Google Scholar 

  15. Pena, A.C.: Un modèle de développement artificiel pour la génération de structures cellulaires. Ph.D. thesis, Université de Toulouse, décembre 2007

    Google Scholar 

  16. Peyriéras, N.: Morphogénèse : L’origine des formes, chapter Morphogenèse animale, pp. 179–201. Belin, Paris (2006)

    Google Scholar 

  17. Reignier, P., Harrouet, F., Morvan, S., Tisseau, J., Duval, T.: ARéVi: a virtual reality multi-agent platform. In: Heudin, J.-C. (ed.) Virtual Worlds 98. LNCS (LNAI), vol. 1434, pp. 229–240. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Southern, J., Pitt-Francisb, J., Whiteleyb, J., Stokeleyc, D., Kobashid, H., Nobesa, R., Kadookad, Y., Gavaghan, D.: Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol. 96(9), 60–89 (2008)

    Google Scholar 

  19. Varela, F.: Principles of Biological Autonomy. North- Holland, New York (1979)

    Google Scholar 

  20. Waddington, C.: Organisers and Genes. CambridgeUniversity Press, Cambridge (1940)

    Google Scholar 

  21. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoulaye Sarr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sarr, A., Fronville, A., Ballet, P., Rodin, V. (2014). French Flag Tracking by Morphogenetic Simulation Under Developmental Constraints. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09042-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09041-2

  • Online ISBN: 978-3-319-09042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics