
Reversible Sesqui-Pushout Rewriting?

Vincent Danos1, Tobias Heindel1, Ricardo Honorato-Zimmer1, and
Sandro Stucki2

1 School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
2 Programming Methods Laboratory, EPFL, Lausanne, Switzerland

Abstract. The paper proposes a variant of sesqui-pushout rewriting
(SqPO) that allows one to develop the theory of nested application condi-
tions (NACs) for arbitrary rule spans; this is a considerable generalisation
compared with existing results for NACs, which only hold for linear rules
(w.r.t. a suitable class of monos). Besides this main contribution, namely
an adapted shifting construction for NACs, the paper presents a uniform
commutativity result for a revised notion of independence that applies
to arbitrary rules; these theorems hold in any category with (enough)
stable pushouts and a class of monos rendering it weak adhesive HLR.
To illustrate results and concepts, we use simple graphs, i.e. the cate-
gory of binary endorelations and relation preserving functions, as it is
a paradigmatic example of a category with stable pushouts; moreover,
using regular monos to give semantics to NACs, we can shift NACs over
arbitrary rule spans.

Introduction

Nested application conditions (nacs) for rules of graph transformation systems
(gtss) are a popular and intuitive means to increase the versatility of graph
transformation. Tools such as agg3 and Groove4 support a weakened form
of nacs, namely negative application conditions. So far, the theory of nacs is
fully developed only for double pushout (dpo) rewriting with so-called linear
rules, which means that transformation operations are restricted to deletion
and addition of nodes and edges; for the ubiquitous example of simple graphs,
linearity is even more restrictive, namely, it is not allowed to add or delete edges
between pairs of unchanged nodes.

We show that none of these restriction are necessary if we use a suitable
combination of dpo and sesqui-pushout (sqpo) rewriting, which coincides with
dpo for the case of linear rules (in adhesive categories [16]). More precisely, we
shall extend the theory of nacs, notably the Translation Theorem [13, Theorem 6],
to arbitrary spans as rules, which means that we accommodate not only for
the deletion of edges between preserved nodes in simple graphs but we can
? This research was sponsored by the European Research Council (ERC) under grants
587327 “DOPPLER” and 320823 “RULE”.

3 http://user.cs.tu-berlin.de/~gragra/agg/
4 http://groove.sourceforge.net/groove-index.html

http://user.cs.tu-berlin.de/~gragra/agg/
http://groove.sourceforge.net/groove-index.html

also handle the operations of merging and cloning of nodes – at least, if rule
applications are free of side-effects. Absence of side-effects will be made formal by
the definition of reversible sqpo (sqpor) rewriting, which is the new approach that
we shall propose in this paper; its definition is quite natural: it merely amounts
to restricting to those sqpo-diagrams that are also sqpo-diagrams “backwards”
for the reversed rule. In the end, we obtain a variation of dpo rewriting, avoiding
complications involving uniqueness of pushout complements (by use of final
pullback complements [8]) and thus we do not need any restriction on rules or
matches any more – having the best of both worlds.

Besides the extension of the theory of nacs to arbitrary rules, we provide a
suitable notion of independence for sqpor rewriting and give the corresponding
commutativity result, which specialises to the existing theory for the dpo approach
(with linear rules). The only categorical requirements are pullbacks and (enough)
stable pushouts since we do not rely on uniqueness of pushout complements
any more, which allows to drop the restriction to (left-)linear rules. Roughly,
reversible sqpo-rewriting combines the controlled rewriting mechanism of dpo
rewriting with the expressive power of sqpo-rewriting while being in line with
the usual notions and results about independence of adjacent rule applications.

We plan to put to use our stronger version of nacs in the context of formal
modeling languages for systems biology, in particular the Kappa language [14].
The rewrite semantics of Kappa has been formalized as a gts over a particular
category of structured graphs [6,14]. However, it seems natural to reformulate
these semantics using an adhesive category [16] and nacs: some of the extra
structure present in the patterns of Kappa rules intuitively specifies (positive)
application conditions; moreover, matches are required to preserve so-called
free sites, which amounts to a simple family of nacs. Kappa also supports a
quantitative analysis that approximates the evolution of the expected number
of occurrences of a given set of observable graphs over time using a system of
differential equations [5]; if we want to formalise observables as graphs with a
nac, we also need to keep track of the change in their occurrence counts for
this quantitative analysis. This is the point where the shifting constructions for
nacs as formulated in the literature [13,10] are the tool of choice. One might
also consider extending this type of quantitative analysis to process calculi (via
graphical encodings), in which case merging rules, as supported by the sqpo
approach, become relevant, e.g. for encoding substitution rules. However, as we
will see in Example 6, nac translation may break down when using the sqpo
approach; this is why we consider the sqpor approach.

The final contribution of this paper, is a first tentative solution to the failure
of nac translation for the sqpo approach (see Example 6): we first construct
for each sqpo-diagram the “best approximation” by a sqpor-diagram using a
suitable “minimally extended” rule instance, which intuitively just contains
enough additional context to make the side-effects of sqpo-rewriting (notably
deletion of dangling edges) explicit; we then translate nacs to all possible
sqpo-rule-instances, for which we finally can use sqpor-rewriting. Even though

this solution is not effective, we conjecture that it will be viable for graph
transformation systems with bounded node degree.

We illustrate the new rewriting approach and our results through examples
in the category of simple graphs; in fact, that our results apply to the category
of simple graphs is interesting in itself. In summary, it should become clear that
the proposal of the sqpor approach to rewriting is not merely triggered by the
recent interest in reversible computation, but that it is of interest for the core
theory of graph transformation and contributes to versatility in applications.

Structure of the Paper We first recall the notion of (final) pullback complements [8]
and sesqui-pushout (sqpo) rewriting [4] in Section 1, where we also state the
relevant composition and decomposition results for the corresponding pullback
squares, and recall related results on stable pushouts, which all together will
be the technical backbone of our main theorems. We define reversible sesqui-
pushout rewriting (sqpor) in Section 2 together with a notion of independence,
for which we derive a uniform commutativity result (Theorem 1), assuming that
(enough) stable pushouts exist. Then we recall the syntax and semantics of nested
application conditions (nacs) in Section 3 and present our main result about
nacs in Theorem 2, after describing the required categorical assumptions. In
Section 4, we discuss how this result might be applied even to sqpo-rewriting.
Related and future work is discussed in Section 5 where we also quickly discuss
suitable categorical frameworks, before we conclude with a summary of our results
in Section 6.

1 Preliminaries

A secondary theme of the present paper is the use of an algebraic approach to
perform rewriting on simple graphs, which are ubiquitous in computer science
and beyond, but are not as well-behaved w.r.t. algebraic graph rewriting as for
example (multi-)hypergraphs; we use the following definition.

Definition 1 (Category of Simple Graphs). A simple graph is a pair of
sets G = (VG, EG) where EG ⊆ VG×VG is an endorelation over VG; the elements
of VG are nodes or vertices and EG contains all edges of the graph G. A graph
morphism f : G H is a function f : VG VH such that

EH ⊇ (f × f)(EG) =
{(
f(e), f(e′)

)
| (e, e′) ∈ EG

}
.

The category of simple graphs, denoted by G, has simple graphs as objects
and graph morphisms as morphisms; composition and identities are given by
(f ◦ g)(v) = f(g(v)) and idK(v) = v for all morphisms f : G H, g : K G and
nodes v ∈ VK .

The category of simple graphs will serve as running example to illustrate the
concepts and results of the paper; we have chosen to keep the list of preliminary
categorical concepts as short as possible. A short discussion of suitable categories
of graph-like structures is given later in Section 5.

1.1 Final Pullback Complements and Stable Pushouts

The crucial concept of sesqui-pushout rewriting that goes beyond standard
textbooks on category theory are (final) pullback complements [8]; we use the
original definition in terms of the universal property illustrated on the right in
Figure 1.

XA

B

x

f

(a) Composable
morphisms

A

B

f

Xx

Yy

f ′

(b) Pullback com-
plement

uA

B

f

Xx

Yy

f ′

Z′
z′

Zz

f ′′

u′

(c) Final pullback comple-
ment y ∼̇= Πf (x)

Fig. 1: Pullback complements for composable morphisms and finality

Definition 2 (Final Pullback Complement (FPBC)). Let B f A x X
be a pair of composable morphisms (cf. Figure 1(a)). A pullback complement
for B f A x X is a pair of composable morphisms B y Y f ′ X such that
A x X f ′ Y is a pullback of A f B y Y (cf. Figure 1(b)); it is final, or
an fpbc for short, if for any morphism B z Z, pullback A z′ Z ′ f ′′ Z of
the co-span A f B z Z, and morphism u : Z ′ X satisfying z′ = x ◦ u, there
exists a unique morphism u′ : Z Y such that y ◦ u′ = z and f ′ ◦ u = u′ ◦ f ′′ (cf.
Figure 1(c), where the universally quantified morphisms are rendered as thick
arrows and the dashed one denotes the unique morphism making the diagram
commute). If B y Y f ′ X is an fpbc for B f A x X, we write y ∼̇= Πf (x).

By the universal property, fpbcs are unique up to canonical isomorphism. If the
composable pair B y Y f ′ X is an fpbc of B f A x X, we mark this by
a modified Freyd corner in the arising square as in Figure 1(c), i.e. we double
the line that goes from the apex to the arrow f ′; on several occasions, we shall
refer to such squares as fpbc squares. The following example justifies the use of
asymmetric notation.

Example 1 (Implicit Deletion as FPBC). Con-
sider the fpbc square on the right; note that
y ∼̇= Πf (x) while f 6∼̇= Πy(f ′) ∼̇= idB .

v

v

x

y

f f ′

B =

A crucial property of final pullback complements is stability w.r.t. pullbacks5;
we shall make extensive use of it in this paper and it also essential for the good
behaviour of grammar morphisms (see [1]).
5 This corresponds to the Beck-Chevalley condition in locally cartesian closed categories.

y ∼̇= Πf (x) y′ ∼̇= Πf ′ (x′)

X

A

Y

B

x

f

y

X ′

A′

Y ′

B′

x′

f ′

y′

⇒

X ′

A′

Y ′

B′

x′

f ′

y′

(a) Stability of fpbcs

A

B

C

D

f

g

h

k

A′

B′

C′

D′ ⇒

A′

B′

C′

D′

(b) Stable Pushout

Fig. 2: Stability under pullback

Lemma 1 (Stability of FPBC). In every cube as in Figure 2(a) that has
pullback squares on all faces, if the morphism B y Y (on the bottom face) is the
second morphism of an fpbc for B f A x X, then the morphism B′ y′ Y ′

(on top) is the second morphism of an fpbc for B′ f ′ A′ x′ X ′.

This lemma implies that, in categories with pullbacks, any fpbc square can be
pulled back along a morphism with the “tip” of the square as codomain. Before
we state the consequences that we shall use in the remainder of the paper, we
define pullback stability for pushouts (as it follows the same pattern of diagrams).

Definition 3 (Stable Pushouts). Let B h D k C be a pushout of the span
B f A g C in a category C; the pushout is stable if for every commutative
cube as in Figure 2(b) on the left, the top square is a pushout square if all lateral
faces are pullback squares.

Even though there are categories of graph-like structures in which some pushouts
are not stable (under pullback), we generally assume that all pushouts that we
operate with are stable. Our running example G has all pushouts and these are
stable.

1.2 Splitting and Composing Pushout and FPBC Squares

We now state the relevant lemmata that allow to compose and decompose pushout
and fpbc squares where composition and decomposition are also known as pasting
and splitting, respectively. The reader might want to skip forward to Section 2
and come back to the remainder of the present section to look up the details,
especially at a first reading. The proofs do only use diagram chasing and the
defining universal properties of pushouts, pullbacks, and fpbcs (and are rather
unenlightening).

The first useful fact is composition of fpbc squares, similar to pasting of
pushouts and pullbacks.

Lemma 2 (FPBC Composition). We have (vertical) composition of fpbcs
as follows:

ABC fg

XYZ
f ′g′

z y x ⇒
ABC fg

XYZ
f ′g′

z x

This means, given morphisms f : A B, g : B C, x : X A, and fpbcs
X f ′ Y y B and Y g′ Z z C of X x A f B and Y y B g C,
respectively, we have X g′◦f ′ Z z C as fpbc of X x A g◦f C.

Besides pasting of pullback, pushout, and fpbc squares, the splitting of these
squares using pullbacks is a common construction in the concurrency theory of
graph transformation to derive theorems of sequential and parallel commuta-
tivity [12]. The technical tools of our commutativity result in Section 2 are the
following two lemmata.

Lemma 3 (FPBC Splitting). Let the leftmost diagram below be a pair of

ABC fg

XYZ
f ′g′

z y x &
ABC fg

XYZ
f ′g′

z x &
C

B A
f

g

Ag◦f

id ⇒
ABC fg

XYZ
f ′g′

z y x

pullback squares such that C z Z g′◦f ′ X is an fpbc of C g◦f A x X and
the span B f A id A is a pullback of B g C g◦f A; then we have fpbc
squares as in the rightmost diagram above, i.e. C z Z g′ Y is an fpbc of
C g B y Y and B y Y f ′ X is an fpbc of B f A x X.

If pushouts are stable, we have a similar result for pushouts that are also pullbacks.

Lemma 4 (Pushout splitting). Let the leftmost diagram below be a pair of

ABC fg

XYZ
f ′g′

z y x &
ABC fg

XYZ
f ′g′

z x &
C

B A
f

g

Ag◦f

id ⇒
ABC fg

XYZ
f ′g′

z y x

pullback squares such that Z z C g◦f A is a pushout of Z g′◦f ′ X x A
that is pullback stable and B f A id A is a pullback of B g C g◦f A; then
the first two pullback squares are also pushout squares, i.e. Z z C g B is a
pushout of Z g′ Y y B and Y y B f A is a pushout of Y f ′ X x A.

Remark 1. If the morphism g in Lemma 3 (resp. Lemma 4) is a mono, the third
assumption is trivially true (cf. [16, Lemma 4.6], for pushout splitting).

The generality of Lemmata 3 and 4 is tailored to fit exactly our new examples of
independence in rewriting in Section 2.2, which feature both merging and cloning
of nodes.

1.3 Finitely Powered Objects

In virtually all applications, objects of rewriting and rules are suitably finite.
More precisely, in Section 4, we shall restrict to objects that are finitely powered,
i.e. objects shall have only finitely many different subobjects, where a subobject
of an object A ∈ C is an isomorphism class [m] in the slice category C↓A, of
some mono m : M � A.

2 Reversible Sesqui-Pushout Rewriting

The central definition of the present paper is the reversible variant of sesqui-
pushout rewriting (sqpo) [4]. It generalises the very controlled rewriting mecha-
nism of dpo rewriting [3] to arbitrary rules as used in sqpo rewriting, i.e. any
span can be used as a rule. As a result, we can perform dpo rewriting with
duplication of entities as in sqpo rewriting; moreover, we also can lift the theory
of application conditions and constraints [13], as we shall do in Section 3.

2.1 Definition and First Examples

The definition of reversible sesqui-pushout rewriting is trivial: we just require a
double square diagram that is a sesqui-pushout diagram forwards and backwards.
The benefits of this approach over the original one, besides being in line with the
recent trend of reversible computation, will become clear when we discuss the
theory of nested application conditions and its limitations in the sqpo approach.

Definition 4 (Reversible Sesqui-Pushout Rewriting). A rule is any span
of morphisms L α K β R, i.e. any pair of morphisms sharing their domain;
the reversal of a given rule ρ = L α K β R, written ρr, is the rule R β

K α L. Let ρ = L α K β R be a rule, and let m : L A be a morphism;
an sqpo-diagram for ρ at m is a diagram as in (1) on the left

L K R
α β

A

m

D Bγ δ

no

L K R
α β

A

m

D Bγ δ

no
(1)

such that A γ D o K is an fpbc of A m L α K and D δ B n R a
pushout of D o K β R; in such a diagram, the morphism m is called the
match for ρ, and n is the co-match. Diagram (1) is reversible or an sqpor-
diagram if it is also an sqpo-diagram for ρr with match n and co-match m, i.e.
we have a diagram as in (1) on the right; if we have such a sqpor-diagram, the
match m is called side-effect-free for ρ or just reversible. We write A Z=〈ρ,m〉⇒ B
or simply A Z=ρ⇒ B if there exists a sqpor-diagram as in (1) on the right (where
ρ = L α K β R is the rule and m : L A is the match).

If we have A Z=〈ρ,m〉⇒ B, we also speak of a rule application (of ρ at m), or say
that rule ρ rewrites A to B at match m.

Remark 2. In adhesive categories [16], the sqpo approach coincides with the
double pushout approach [4] for linear rules, i.e. for rules consisting of pairs of
monos.

As a consequence of this observation, new examples of sqpo rewriting either
have non-linear rules or take place in a category that is not adhesive. This is
another reason why we have chosen simple graphs as running example; it is the
paradigmatic example of a category that is neither adhesive nor rm-adhesive [11].

Example 2 (Cloning and Merging in Graph Rewriting). Consider the rules de-
scribed in (2) where all graph morphisms are uniquely determined except for the
right morphism of the clone rule, which we take to be the identity.

clone = v
u

w

u

w
merge = cloner loop = vvv (2)

We have the following applications of these rules.

v w Z=clone⇒ v wu Z=loop⇒ v wu Z=merge⇒ v x 6Z=merge⇒ z

In each case, the match is uniquely determined by the effect on the graphs: first,
we clone node w, obtaining its clone u with the same local connectivity, then we
add a loop at node v, and finally we merge u with w. At the end of the above
display, the merge-rule cannot be applied to the last graph as this would use an
irreversible match: applying the reverse rule (cloning node z) would result in the
completely connected graph on two nodes rather than the original graph.

The rule merge is not merely the reversal of clone, it may in fact serve as
its inverse; more precisely, the composite rule clerge := (v v u v) has no
effect if applied using sqpor rewriting, due to symmetry of sqpor-diagrams. Note
that the category of simple graphs is somewhat peculiar as the clerge-rule can
always be applied.6

2.2 Independence and Commutativity

The generality of arbitrary spans as rules necessitates an adaptation of the
usual notion of independence of rewriting diagrams to obtain the expected
commutativity result that allows to “switch” adjacent diagrams if they are
independent (see Theorem 1 below).

Definition 5 (Independence). Let ρi = Li αi Ki βi Ri (i = 1, 2) be spans

L1 K1 R1
α1 β1

A1

m1

D1 B1γ1 δ1

n1o1

L2 K2 R2
α2 β2

A2

m2

D2 B2γ2 δ2

n2o2

L2 L2 L2
id id

A1 D1 B1γ1 δ1

m2:=γ1◦b b m2(†) (‡) (3)

6 In contrast, in the category of multi-graphs, clerge can only be applied to isolated
nodes.

and let the diagram on the left in (3) be a pair of sqpor-diagrams such that
B1 = A2. A left witness for these diagrams is a morphism D1 b L2 such that

– m2 := γ1 ◦ b is a reversible match for ρ2, and
– b ∼= δ∗1(m2) and b ∼= γ∗1(m2), i.e. we have the pullbacks on the right in (3).

A right witness is a left witness for the “mirrored” situation, that is, a morphism
d : R1 D2 such that

– n1 := δ2 ◦ d is a reversible match for ρ1
r, and

– d ∼= γ∗2 (n1) and d ∼= δ∗1(n1).

The pair of sqpor-diagrams in (3) is independent if there exist a left and a right
witness.

The pullback requirements in (3) are vacuous if γ1 and δ1 are monos, i.e. com-
mutativity of Squares (†) and (‡) is sufficient. The following example illustrates
the subtle interplay of node merging and cloning with addition of loops.

Example 3. In the following pair of rule applications,

v w Z=clone⇒ v wu Z=loop⇒ v wu ,

cloning node w is not independent of adding a loop at node w as the local
structure changes. We can check formally that there is no left witness for the
corresponding pair of sqpor-diagrams, because there is no suitable morphism
making Square (†) in (3) a pullback square; nevertheless, the rules can be applied
in the reverse order, but we obtain a different result.

v w Z=loop⇒ v w Z=clone⇒ v wu

The role of Square (‡) in (3) features in the following pair of rule applications.

v wu Z=merge⇒ v w Z=loop⇒ v w

Nodes u and w can only be merged as long as they have the same “neighbourhood”,
and adding a loop to w changes the local connectivity of w; formally, there is
again no left witness, as we cannot find a suitable morphism making Square (‡) a
pullback square. Adding a loop at either one of the nodes u and w makes merging
u with w impossible when following the sqpor approach.

Remark 3. For the case of adhesive categories and linear rules (i.e. rules that
consist of a pair of monos), commutativity of the squares on the right in (3) is
enough (as mentioned above); moreover, in adhesive categories, the requirement
that left witnesses are reversible matches is automatically true and we recover
the usual definition of independence (of the dpo approach with linear rules).

The definition of independence is chosen sufficiently strong to obtain the following
general theorem of commutativity of derivations; its proof is similar to the
standard results of the literature (see, e.g. [12]), using the lemmata of Section 1.

Theorem 1 (Commutativity). Let C be a category that has pullbacks and
pushouts such that all pushouts are stable. Then for each pair of independent
sqpor-diagrams with left and right witness as below on the left

L1 K1 R1
α1 β1

A1

m1

D1 B1γ1 δ1

n1
o1

L2 K2 R2
α2 β2

A2

m2

D2 B2γ2 δ2

n2o2
db 7

L2 K2 R2
α2 β2

A1

m2

E2 Cγ′
2 δ′

2

n′
2o′

2

L1 K1 R1
α1 β1

C

m′
1

E1 B2γ′
1 δ′

1

n1o′
1

there exists a corresponding pair of independent sqpor-diagrams as above on the
right with m2 = γ1 ◦ b and n1 = δ2 ◦ d, reversing the order of rule application.

The commutativity result for pairs of independent diagrams is interesting
in itself, as it applies to arbitrary rules, improves over previous results [4], and
is completely symmetric. However, the main motivation to introduce the sqpor

approach is to make the theory of applications conditions available for arbitrary
rule spans.

3 On Nested Application Conditions

Application conditions for rules are an elegant and intuitive means to restrict
the allowed matches of each rule individually. We give a short review of nested
application conditions before we demonstrate that conditions can be moved freely
between left and right-hand sides of rules as in previous work on dpo rewriting
with linear rules [13,10]. Before we recall the full definition of nacs, we informally
describe a simple example.

Example 4. We might want to apply the loop rule only at those matches that
map to a node without any incoming edge, and we illustrate this application
condition by adding a “forbidden” dashed edge.

vvvx

Though most examples only require simple negative application conditions,
one occasionally encounters situations where one wants the full generality of
nested application conditions to restrict matches of certain rules, individually.

Definition 6 (Nested Application Condition). A nested application condi-
tion (nac) c on an object P ∈ C, written cB P or P C c, is defined inductively
as follows.

Base Case The trivial nac is ttB P .
Inductive Steps There are three constructors for nacs.

Existential Morphism ∃(a, c′)B P is a nac on P if a : P Q in C is a
morphism and c′ BQ is a nac on Q.

Negation ¬c′ B P is a nac on P if c′ B P is so.
Conjunction

∧
i∈I ci B P is a nac if {ci B P}i∈I is a family of nacs on

P indexed over a non-empty set I 6= ∅.

The negative application condition that we described in Example 4 can be
formulated as ¬∃(v ⊆ vw , tt) on the left-hand side of the loop-rule.

Concerning the semantics of nacs, several routes have been taken in the
literature; the next definition strikes a compromise between generality and
relevance for the present paper; we write |P↓C| for the collection of all C-
morphisms with domain P , for any P ∈ C.

Definition 7 (Semantics of NACs). Let X be a collection of morphisms in C,
referred to as splitting set; for each nac cB P , its set of instances, denoted by
JcB P K ⊆ |P↓C|, is defined by mutual recursion as follows.

– For every object P ∈ C, we define JttB P K = |P↓C|.
– If c = ∃(a, c′)B P with a : P Q in C and c′ BQ a nac, we define

J∃(a, c′)B P K =
(
Jc′ BQK ∩ X

)
◦ a :=

{
n ◦ a

∣∣ (Q n A) ∈ Jc′ BQK ∩ X
}
.

– If c = ¬c′ B P with c′ B P a nac, we define

J¬c′ B P K = |P↓C| \ Jc′ B P K .

– If c =
∧
i∈I ci B P with {ci B P}i∈I a family of nacs, we define

r∧
i∈I

ci B P
z

=
⋂
i∈I

Jci B P K .

We write m �X cB P , or m �X c for short, if m ∈ JcB P K.

Note that the splitting set features only at one place in this definition, namely
in the clause that gives semantics to the ∃-constructor.7 Every element of
J∃(a, c′)B P K is factored as an element of the splitting set X after a, thus “split-
ting off” from each candidate f ∈ |P↓C| some morphism in X that satisfies c′. A
second reason for the name splitting set is its function in Theorem 2, where we
shall decompose rewriting diagrams using pushout splitting for which we need
splitting sets to be robust.

Definition 8 (Robust Splitting Set). A collection of monos M in a cate-
gory C is a robust splitting set if

– the set M contains all identities and is closed under composition,
– the category C has pushouts and pullbacks along M,
– the set M is stable under pushout and pullback, and

7 There is indeed a hidden existential quantifier in the definiens of J∃(a, c′)B P K,
namely

{
n ◦ a

∣∣ n ∈ Jc′ BQK ∩ X
}

=
{
f ∈ |P↓C|

∣∣ ∃n ∈ Jc′ BQK ∩ X. f = n ◦ a
}
.

– pushouts along morphisms in M yield pullback squares.

The reader that is familiar with adhesive categories and related concepts [9] will
recognise these properties (see also Section 5).

For our running example G, we chose the class of regular monos as splitting
set, where a mono m : G H is regular iff it reflects edges, i.e. if it satisfies the
equation (m×m)(EG) = EH ∩

(
m(VG)×m(VG)

)
.

Lemma 5. Regular monos are a robust splitting set.
The use of regular monos as splitting set has some subtle consequences.
Example 5 (Cloning Nodes without Loops). Consider the clone-rule with the
application condition that the node to be cloned does not have a loop.

v uw uw

The corresponding nac for the clone-rule is c¬	 := ¬∃(v ⊆ v , tt); however,
(ab)using the fact that we have fixed regular monos as our splitting set, we could
as well use the following nac c[:= ¬∃(v id v , tt) (where the morphism is the
identity on a single node). The two are equivalent, in the sense that Jc¬	K =
Jc[K. While this example is admittedly somewhat pathological, it illustrates the
functioning of the regular monos as the splitting set.

Our main result about nacs is the following (cf. [13, Theorem 6] and [10,
Lemma 3]).
Theorem 2 (NAC translation). Let M be a robust splitting set in a category
with pushouts; then for each rule ρ = L α K β R, and every nac cBR (resp.
c̄BL), there exists a nac cρBL (resp. c̄ρrBR) such that for every sqpor-diagram

cρ B L K RC c
α β

A

m

D Bγ δ

no

we have n �M c iff m �M cρ (resp. m �M c̄ iff n �M c̄ρr).
Much more interesting than repeating all minute details of the translation of
nacs is the fact that there is no hope that exactly the same result could be
obtained for sqpo-rewriting, as illustrated by the following example.
Example 6 (Failure of nac Translation). Applying the loop-rule (using plain
sqpo) to v or to v we get the same result, and thus the same co-match; note
that the match into v is not reversible. Adding the nac ¬∃(v id v , tt) to
the loop-rule forbids application to the graph v but it can still be be applied to
v . Thus, a corresponding equivalent application condition on the right-hand side
of the loop-rule cannot exist, because either it admits the comatch into v or
not, but in both cases it does not distinguish between the two matches. Hence,
we have shown that ¬∃(v id v , tt) does not have any exact counterpart on
the right-hand side in the sense of Theorem 2.

It is not obvious how one could work around this counter-example in general.
However, for the case of monic matches, the next section describes how Theorem 2
can be applied even to sqpo-rewriting, at least in favourable cases.

4 On Reversibility of Sesqui-Pushout Rewriting

After the generalisation of key results of dpo rewriting to sqpor rewriting, we
shall describe a method that gives for each sqpo-diagram (with monic match
and co-match) a minimal rule-instance that can be used to achieve the same
rewriting effect using sqpor-rewriting. This method can be understood as a
natural measure for how far away a sqpo-derivation is from being reversible.
More precisely, we can divide each sqpo direct derivations into a sqpo-derivation
(the rule-instantiation) over a sqpor-diagram such that vertical composition of
the fpbc and pushout squares yield the original sqpo-diagram. Intuitively, the
rule-instance contains just enough additional context to cover the side-effects of
the original sqpo-diagram.

Theorem 3 (Instantiation Thoerem). Let C be a category with pullbacks in
which pushouts are stable; then for each sqpo-diagram with match m : L A
such that A is finitely powered, there exists a least subobject [m′ : L′� A] of A
such that the match m factors as m = m′ ◦ i (for a unique i) and the original
sqpo-diagram is the vertical composition of an sqpo-diagram with match i over
a sqpor-diagram with match m′, i.e. we have the following diagram.

L K R
α β

A

m

D Bγ δ

n

o

L K R
α β

L′

i

K ′ R′
γ′ δ′

jk

A

m′

D Bγ δ

n′
o′

For the case of simple graphs, we illustrate the idea that the construction of the
(proof of the) theorem just adds minimal context in the neighbourhood of nodes
that are merged or deleted.8

Example 7. The below diagram (where i,m′, and α are inclusions) is an example
for a decomposition of an sqpo-diagram according to Theorem 3.

u v w x z

u v w v w

v w x z

y

x zy = B

u v w x v w x xy

α β

γ′ δ′
i k j

γ δ

m′ o′ n′

8 For the case of multi-graphs, the situation is slightly different because merging is in
general not the inverse operation to cloning.

It is important to remember that we are working in the category of simple graphs
because the outer double square diagram would not be an sqpo-diagram in the
category of multi-graphs, as there would be an additional edge from y to z in B.
The upper row is an sqpo-diagram and the lower row a sqpor-diagram; moreover,
the subobject [m′] is minimal in the sense of Theorem 3, which we will explain
using the metaphor of minimal context.

We want to argue (informally) that [m′] is obtained by just adding enough
context to the left-hand side L. First, we have to add the edges at node u, which
have been left “dangling” in the left square/column of the outer sqpo-diagram;
second, and slightly more intricate, we also need to add the node x and the
edge (y, x) because merging nodes v and w (in the right column) has “side-effects”
as the nodes v and w differ in their local structure w.r.t. node x in B. We do not
need to add z, as its connectivity to nodes v and w is the same.

As announced before, we can now lift Theorem 2 to sqpo-rewriting, as follows.
For any rule ρ = L α K β R with nac cBL and rule application A Z=〈ρ,m〉⇒ B,
we can use Theorem 3 to factor the match into m = m′ ◦ i, obtaining a rule
instance ρ′ = L′ α′ K ′ β′ R′. Now we can use [13, Corollary 3] to shift cB L
from ρ to ρ′ along i, i.e. there is a nac i(c)B L′ such that, for every morphism
f : L X, we have f �M i(c) iff f ◦ i �M c; finally, we apply the construction of
Theorem 2 to ρ′ and thus obtain c′i BR′.

In favourable cases, there are only a finite number of rule-instances that
matter for a given graph transformation system. In fact, we expect this to be
the case for systems where all reachable graphs have bounded node degree and
sqpor-diagrams are required to have monic matches and co-matches. If there are
only finitely many (relevant) rule instances, we can “compile” a set of sqpo-rules
into an equivalent set of sqpor-rules. This means that, at least in favourable
cases, the theory of nacs might even be applicable for general sqpo-rewriting.

5 Related and Future Work

The properties of robust splitting sets (see Definition 8) are reminiscent of vertical
weak adhesive hlr categories (see [9] for an overview of this and related concepts),
which more or less exactly fulfil these requirements. To obtain the commutativity
result of Theorem 1, even if we restrict matches and co-matches of sqpor-diagrams
to the relevant class of monos, we need the additional requirement of stability
of these pushouts under pullback. However, in our running example G, we do
not need to restrict to regular matches as actually all pushouts are stable; we
take this as evidence that sqpor-rewriting calls for a revision of the categorical
frameworks for graph rewriting.

Concerning other span-based rewriting approaches besides sqpo-rewriting,
we mention [17,7,18]; sqpor-rewriting is probably best understood as a very
restricted instance of these (for a restricted notion of rule in the case of [18])
since none of these approaches requires a double pushout diagram. A concrete
example where the difference becomes apparent is the last forbidden application

of the merge rule in Example 2: it is forbidden by sqpor-rewriting but would be
allowed by all of the three other approaches [17,7,18].

As future work, a thorough comparison with recent proposals for the trans-
formation of simple graphs is in place; e.g. we conjecture that for simple graphs,
sqpor-diagrams comprise a pair of minimal pushout complements [2], using spans
of (arbitrary) monos for rules. Finally, we plan a fundamental study of sqpo-
rewriting and sqpor-rewriting in the span bi-category to unify the main algebraic
approaches to rewriting by universal properties in the span-bicategory whenever
the category of rewriting is suitably well-behaved, following up on previous work
on adhesive categories [15].

6 Conclusion

We have proposed sqpor-rewriting as a symmetric variant of sqpo-rewriting, which
ensures that each rule application has a corresponding inverse application using
the reversed rule. We have established a commutativity result, which incorporates
sequential and parallel commutativity into a single theorem. Furthermore, we
have shown that nested application conditions can be expected to function in
the same way as for double pushout rewriting with linear rules as our Theorem 2
generalises a corner stone of the theory of nacs if we have a suitable class of
monos that endows the category of rewriting with the structure of a vertical
weak adhesive hlr category. Finally we have given a construction that allows
to give for each sqpo-diagram (with monic match and co-match) the “best
approximation” by a sqpor-diagram using a minimally extended rule-instance,
which makes Theorem 2 even applicable to sqpo-rewriting. All these results hold
in the category of simple graphs with the class of regular monos as splitting set;
we take this as a promising indicator that sqpor-rewriting should be studied in
more detail, for the particular case of simple graphs but also in the context of
categorical frameworks for graph rewriting.

Acknowledgements Thanks to Ilias Garnier for help finding the term splitting
set and feed-back on an early draft of this paper. We also thank the anonymous
reviewers for their insightful comments.

References

1. Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Unfolding Gram-
mars in Adhesive Categories. In: Proceedings of the 3rd International Conference
on Algebra and Coalgebra in Computer Science. pp. 350–366. Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Heidelberg (2009)

2. Braatz, B., Golas, U., Soboll, T.: How to delete categorically — Two pushout
complement constructions. Journal of Symbolic Computation 46(3), 246 – 271
(2011), applied and Computational Category Theory

3. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Handbook
of graph grammars and computing by graph transformation. chap. Algebraic

Approaches to Graph Transformation. Part I: Basic Concepts and Double Pushout
Approach, pp. 163–245. World Scientific Publishing Co., Inc., River Edge, NJ, USA
(1997)

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout Rewriting. In:
Proceedings of the Third International Conference on Graph Transformations. pp.
30–45. Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg
(2006)

5. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: Exact and automated model reduction. In:
Logic in Computer Science (LICS), 2010 25th Annual IEEE Symposium on. pp.
362–381 (July 2010)

6. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) FSTTCS.
LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2012)

7. Duval, D., Echahed, R., Prost, F.: Graph rewriting with polarized cloning. CoRR
abs/0911.3786 (2009)

8. Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback
complements. Journal of Pure and Applied Algebra 49(1-2), 103–116 (1987)

9. Ehrig, H., Golas, U., Hermann, F.: Categorical Frameworks for Graph Transforma-
tion and HLR Systems Based on the DPO Approach. Bulletin of the EATCS 102,
111–121 (2010)

10. Ehrig, H., Habel, A., Lambers, L.: Parallelism and concurrency theorems for rules
with nested application conditions. ECEASST 26 (2010)

11. Garner, R., Lack, S.: On the axioms for adhesive and quasiadhesive categories.
Theory and Applications of Categories 27(3), 27–46 (2012)

12. Habel, A., Müller, J., Plump, D.: Double-pushout Graph Transformation Revisited.
Mathematical Structures in Computer Science 11(5), 637–688 (Oct 2001)

13. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19(2),
245–296 (2009)

14. Hayman, J., Heindel, T.: Pattern graphs and rule-based models: The semantics of
kappa. In: Pfenning, F. (ed.) Foundations of Software Science and Computation
Structures, Lecture Notes in Computer Science, vol. 7794, pp. 1–16. Springer Berlin
Heidelberg (2013)

15. Heindel, T., Sobociński, P.: Being Van Kampen is a universal property. Logical
Methods in Computer Science 7(1) (2011)

16. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theoret-
ical Informatics and Applications 39(3), 511–545 (2005)

17. Löwe, M.: Refined graph rewriting in span-categories: A framework for algebraic
graph transformation. In: Proceedings of the 6th International Conference on Graph
Transformations. pp. 111–125. Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Heidelberg (2012)

18. Monserrat, M., Rosselló, F., Torrens, J., Valiente, G.: Single-pushout rewriting
in categories of spans I: The general setting. Tech. rep., Informe d’investigació,
Department of Software (LSI) Universitat Politècnica de Catalunya (1997)

A Proofs of Lemmata

This section provides proofs for those results in Section 1, which cannot be found
easily in the literature or are new.

A.1 Lemma 3: FPBC splitting

Let the leftmost diagram in Figure ?? be a pair of pullback squares such that
C z Z g′◦f ′ X is an fpbc of C g◦f A x X and the span B f A id A is
a pullback of B g C g◦f A; then we have fpbc squares as in the rightmost
diagram in Figure ??, i.e. C z Z g′ Y is an fpbc of C g B y Y and
B y Y f ′ X is an fpbc of B f A x X.

Proof. Using the three assumptions, we have the following commutative cube in
which all faces are pullback squares.

X

A

Z

C

x

g◦f
z

X

A

Y

B

x

f ′

f

y

id

g′

g

Using Lemma 1, we conclude that B y Y f ′ X is an fpbc of B f A x A.
The assumption that C z Z g′◦f ′ X is an fpbc of C g◦f A x X is
equivalent to having an isomorphism of homsets C↓C(_, z) ∼= C↓A(f∗(g∗(_)), x)
(natural in the first argument); similarly, that B y Y f ′ X is an fpbc of
B f A x A means that we also have C↓B(_, y) ∼= C↓A(f∗(_), x). Thus, we
obtain C↓B(g∗(_), y) ∼= C↓A(f∗(g∗(_)), x) ∼= C↓C(_, z), which it turn lets us
conclude that B y Y f ′ X is an fpbc of B f A x X. ut

A.2 Lemma 4: Pushout Splitting

Let the leftmost diagram in Figure ?? be a pair of pullback squares such that
Z z C g◦f A is a pushout of Z g′◦f ′ X x A that is pullback stable and
B f A id A is a pullback of B g C g◦f A; then the first two pullback
squares are also pushout squares, i.e. Z z C g B is a pushout of Z g′ Y y B
and Y y B f A is a pushout of Y f ′ X x A.

Proof. Using the three assumptions, we have the following commutative cube in
which all faces are pullback squares.

X

A

Z

C

x

g◦f
z

X

A

Y

B

x

f ′

f

y

id

g′

g

Using that the bottom pushout is pullback stable, also the top square is a pushout
square. Using the folklore Pushout Lemma, we conclude that also Z z C g B
is a pushout of Z g′ Y y B.

B Proofs of Main Theorems

Before we restate the main results and provide their proofs, we first derive two
auxiliary lemmata that cover two rather technical points in the proofs.

Lemma 6. Given the diagram

D1

A1

γ1

L1

K1

α1

F
φ1

E2

γ̃1

d′

d̃

m1

o1

γ′
2

with pushouts and pullbacks as indicated, and assuming that the pushout is stable
and that all pullbacks exist, if K1 id K1 d′ F is a pullback of K1 o1 D1 φ1

F then L1 id L1 d̃ E2 is a pullback of L1 m1 A1 γ′
2 E2.

Proof. First note that, by pullback splitting, L1 α1 K1 d′ F is a pullback of the
co-span L1 d̃ E2 γ̃1 F . Take L1 i L l E2 as pullback of L1 m1 A1 γ′

2 E2;
this gives a mediating morphism a : K1 L and K1 id K1 a L is a pullback
of K1 α1 L1 i L; as the pushout is stable under pullback, K1 α1 L1 i L
is the pushout of K1 id K1 a L, and thus, w.l.o.g, i = idL1 (and a = α1),
whence the desired follows. ut

Lemma 7. Given the sqpor-diagram on the left in (4)

L K R
α β

A

m

D Bγ δ

no

L K R
α β

Q

b

U Pφ ψ

ai

A

p

D Bγ δ

qk

m (4)

in a category with pushouts with a robust splitting set M, if m = p ◦ b for some
p ∈M and morphism b, we can construct a pair of sqpor-diagrams as in (4) on
the right.

Proof. First, we take Q φ U k D as pullback of Q p A γ D; we obtain
i : K U as mediating morphism and apply the pushout and fpbc splitting

lemmata to obtain the left column of the right-hand diagram in (4). Next, we
take U ψ P a R as pushout of U i K β R, and obtain q : P B as
mediating morphism. Using the folklore Pushout Lemma, D δ B q P is a
pushout of D k U ψ P . As M is stable by pullback, we have k ∈M, and thus
q ∈M since M is also stable under pushout. Using that pushouts along M yield
pullbacks, D k U ψ P is the pullback of D δ B q P and thus, by fpbc
splitting, we conclude that we also have fpbc and pushout squares as in the
right column in the right diagram in (4). ut

Corollary 1. Given the sqpor-diagrams

L K R
α β

A

m

D Bγ δ

no
and

L K R
α β

Q

b

U Pφ ψ

ai

in a category with a robust splitting set M, any p ∈ M such that m = p ◦ b is
a reversible match for rule Q φ U ψ P and gives rise to a pair of stacked
sqpor-diagrams as follows.

L K R
α β

Q

b

U Pφ ψ

ai

A

p

D Bγ δ

qk

m n

B.1 Theorem 1: Commutativity

Let C be a category that has pullbacks and pushouts such that all pushouts are
stable. Then for each pair of independent sqpor-diagrams with left and right
witness as below on the left

L1 K1 R1
α1 β1

A1

m1

D1 B1γ1 δ1

n1
o1

L2 K2 R2
α2 β2

A2

m2

D2 B2γ2 δ2

n2o2
db 7

L2 K2 R2
α2 β2

A1

m2

E2 Cγ′
2 δ′

2

n′
2o′

2

L1 K1 R1
α1 β1

C

m′
1

E1 B2γ′
1 δ′

1

n1o′
1

there exists a corresponding pair of independent sqpor-diagrams as above on the
right with m2 = γ1 ◦ b and n1 = δ2 ◦ d, reversing the order of rule application.

A birds eye view of the proof is illustrated in Figure 3.

Proof. First, take the pullback D1 φ1 F φ2 D2 of D1 δ1 (B1 = A2) γ2 D2.
Using fpbc splitting, i.e. Lemma 3, and that b and d are left and right witnesses
of independence, respectively, we conclude that (B1 = A2) γ2 D2 φ2 F is an
fpbc of (B1 = A2) δ1 D1 φ1 F , and also that (B1 = A2) δ1 D1 φ1 F is an
fpbc of (B1 = A2) γ2 D2 φ2 F , yielding a “symmetric” fpbc-square, which

we shall refer to as Square (i) in this proof. Moreover, using pushout splitting,
i.e. Lemma 4, Square (i) is also a pushout square, i.e. D δ1 (B1 = A2) γ2 D2
is a pushout of D1 φ1 F φ2 D2.

Now, we obtain a mediating morphism b′ : K2 F such that L2 α2 K2 b′ F
is a pullback of L2 b D1 φ1 F , exploiting that Square (i) is a pullback and also
L2 α2 K2 o2 D2 is a pullback of L2 m2 (B1 = A2) γ2 D2. Moreover, using
fpbc splitting and that b is a left witness, we conclude that D1 φ1 F b′ K2
is an fpbc of D1 b L2 α2 K2. Next, using the fact that γ1 ◦ b is a match for
ρ2, we have A1 γ′

2 E2 o′
2 K2 as fpbc of A1 (γ1◦b) L2 α2 K2. Taking the

pullback of γ′2 and γ1, by fpbc splitting and since b is a left witness, we obtain a
pair of fpbc-squares; w.l.o.g., (as the fpbc D1 φ1 F b′ K2 is unique up to
iso) we get a morphism γ̃1 : F E2 such that A1 γ′

2 E2 γ̃1 F is an fpbc of
A1 γ1 D1 φ1 F , and o′2 = γ̃1 ◦ b′. By pushout splitting (and independence),
the pullback squares are also pushout squares, in particular, D1 γ1 A1 γ′

2 E2
is a pushout of D1 φ1 F γ̃1 E2, and we shall refer as Square (ii) to the
corresponding square. Using the same argument, mutatis mutandis, we get a
morphisms d′ : K1 F and δ̃2 : F E1 such that we have R1 β1 K1 d′ F as
pullback of R1 d D2 φ2 F , B2 δ′

1 E1 δ̃2 F is an fpbc of B2 δ2 D2 φ2 F ,
o′1 = δ̃2 ◦ d′, and E1 δ′

1 B2 δ2 D2 is also a pushout of E1 δ̃2 F φ2 D2, and
we refer to the corresponding square as Square (iii).

To conclude, it remains to show that after taking the pushout E2 δ′
2 C γ′

1

E1 of E2 γ̃1 F δ̃2 E1, yielding Square (iv), we can find suitable morphisms
n′2 : R2 C and m′1 : L1 C to obtain a pair of sqpor-diagrams as postulated in
the statement of the theorem. We shall use Squares (ii) and (iii) for m′1 and n′2,
respectively; we give the complete argument for m′1 and the argument for n′2 is
again completely analogous.

First, we have K1 id K1 d′ F as pullback of K1 o1 D1 φ1 F , since (by
independence) R1 id R1 d D2 is a pullback of R1 n1 (B1 = A2) γ2 D2 and
Square (i) is a pullback square. Next, using the universal property of the fpbc
A1 γ′

2 E2 γ̃1 F of A1 γ1 D1 φ1 F , we obtain a unique arrow d̃ : L1 E2
such that m1 = γ′2 ◦ d̃ and L1 α1 K1 d′ F is a pullback of L1 d̃ E2 γ̃1 F .
Moreover, L1 id L1 d̃ E2 is a pullback of L1 m1 A1 γ′

2 E2 by Lemma 6;
thus, using pushout splitting, we have that L1 d̃ E2 γ̃1 F is actually a
pushout of L1 α1 K1 d′ F , yielding Square (ii′). Mutatis mutantis, we
obtain a morphism b̃ : R2 E1 such that F δ̃2 E1 b̃ R2 is a pushout of
F b′ K2 β2 R2, yielding Square (iii′). Now, we setm′1 := δ′2◦ d̃ and n′2 := γ′1◦ b̃
and obtain the missing pushout squares by pasting (iv) with (ii′) and (iii′),
respectively; these squares are also fpbc squares as (by independence) m2 = γ1◦b
and n1 = δ2 ◦ d are reversible matches of ρ2 and ρ1

r, respectively. ut

As an aside, the proof automatically provides candidates for independence
witnesses for each pair of adjacent sqpor-diagrams and only a small amount of
extra work is needed to verify that we have four pairs of adjacent independent
sqpor-diagrams.

B1 = A2

D1

A1

γ1

δ1

L1

K1

R1

m1

o1

n1

α1

β1

D2

B2

L2

K2

R2

m2

o2

n2

α2

β2
γ2

δ2

F

φ1

φ2

E2

γ′
2

E1

δ′
1

γ̃1

δ̃2

(i)

(ii) (iii)

(iv)

C

δ′
2

γ′
1

(ii′) (iii′)

d

d′

d̃

b

b′

b̃

Fig. 3: Summary of the proof of Commutativity

B.2 Theorem 2: NAC Translation

Let M be a robust splitting set in a category with pushouts; then for each rule
ρ = L α K β R, and every nac cB R, there exists a nac cρ B L such that
for every sqpor-diagram

cρ B L K RC c
α β

A

m

D Bγ δ

no
(5)

the co-match n satisfies the condition c if and only if the match m satisfies cρ ,
i.e. n �M c iff m �M cρ .

Proof. First, the translation cρ is defined recursively as follows.

– If c = tt, then cρ = tt.
– If c = ∃(a, c′)BR where a : R P is a morphism in C and c′ B P is a nac,

we have two cases: either a is not a reversible match for ρr and we define
cρ = ¬tt, or there exists a sqpor-diagram

L K R
α β

Q

b

U Pφ ψ

ai

and we translate c′ using rule Q φ U ψ P =: ρ′, which gives c′ρ′ BQ, and
we define cρ :=

(
∃(b, c′ρ′ BQ)

)
B L.

– If c = ¬c′ BR, we put cρ = ¬(c′ρ B L).
– If c =

∧
i∈I ci BR, we put cρ =

∧
i∈I(ci)ρ B L.

It remains to show that this construction is sound, i.e. it satisfies the property
stated by the theorem. The only non-trivial case of the proof by induction
concerns nacs of the form c = ∃(a, c′)BR relative to a rule ρ. We distinguish
two cases.

1. The morphism a is not a reversible match for ρr; in this case there cannot
be any sqpor-diagram

L K R
α β

A

m

D Bγ δ

no

such that ∃(a, c′) �M n, as otherwise there would be an M-morphism q ∈
Jc′ B P K such that n = q ◦ a, which by Lemma 7 would entail that a is a
reversible match for ρr. Hence, for every diagram as in (5), we have indeed
c �M n iff ¬tt �M m, as both are never satisfied.

2. If there exists a sqpor-diagram

L K R
α β

Q

b

U Pφ ψ

ai
,

each M-morphism p such that m = p ◦ b is a reversible match for Q φ

U ψ P and, w.l.o.g., has a co-match q in M such that n = q ◦ a (by
Corollary 1). By symmetry, each q ∈M satisfying n = q ◦ a has a canonical
counterpart p ∈ M such that m = p ◦ b. The desired property now follows
from the induction hypothesis, which states that c′ρ′ �M p iff c′ �M q (where
ρ′ = Q φ U ψ P).

ut

	Reversible Sesqui-Pushout Rewriting

