Skip to main content

Graph Transformation Meets Reversible Circuits: Generation, Evaluation, and Synthesis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8571))

Abstract

Reversible circuits are intensively studied for some years as a promising alternative to conventional circuits. Mainly for illustrative purposes and in a rather informal way, they are often visually represented. This inspired us to a graph-transformational approach to reversible circuits. The first steps are documented in this paper with emphasis on generation, evaluation, and synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athas, W., Svensson, L.: Reversible logic issues in adiabatic CMOS. In: Proc. Workshop on Physics and Computation, PhysComp 1994, pp. 111–118 (1994)

    Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  4. Cuykendall, R., Andersen, D.R.: Reversible optical computing circuits (1987)

    Google Scholar 

  5. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. International Journal on Software Tools for Technology Transfer 3(2), 112–136 (2001)

    MATH  Google Scholar 

  6. Fredkin, E.F., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3/4), 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Houri, S., Valentian, A., Fanet, H.: Comparing CMOS-based and NEMS-based adiabatic logic circuits. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 36–45. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Knill, E., Laflamme, R., Milburn, G.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  Google Scholar 

  9. Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph transformation units – an overview. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Montanari Festschrift. LNCS, vol. 5065, pp. 57–75. Springer, Heidelberg (2008)

    Google Scholar 

  10. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4(1), 21 (1993)

    Article  Google Scholar 

  11. Miller, D.M., Wille, R., Dueck, G.: Synthesizing reversible circuits for irreversible functions. In: Núñez, A., Carballo, P.P. (eds.) Proc. 12th Euromicro Conference on Digital System Design, Architectures, Methods and Tools, DSD 2009, pp. 749–756. IEEE (2009)

    Google Scholar 

  12. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Proc. of the 40th Design Automation Conference, DAC 2003, pp. 318–323. ACM (2003)

    Google Scholar 

  13. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  14. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  15. Ren, J., Semenov, V., Polyakov, Y., Averin, D., Tsai, J.-S.: Progress towards reversible computing with nSQUID arrays. IEEE Transactions on Applied Superconductivity 19(3), 961–967 (2009)

    Article  Google Scholar 

  16. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)

    Google Scholar 

  17. Thapliyal, H., Srinivas, M.B.: The need of DNA computing: reversible designs of adders and multipliers using Fredkin gate (2005)

    Google Scholar 

  18. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  19. Vos, A.D.: Reversible Computing - Fundamentals, Quantum Computing, and Applications. Wiley (2010)

    Google Scholar 

  20. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)

    Google Scholar 

  21. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275. ACM (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kreowski, HJ., Kuske, S., Lye, A., Luderer, M. (2014). Graph Transformation Meets Reversible Circuits: Generation, Evaluation, and Synthesis. In: Giese, H., König, B. (eds) Graph Transformation. ICGT 2014. Lecture Notes in Computer Science, vol 8571. Springer, Cham. https://doi.org/10.1007/978-3-319-09108-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09108-2_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09107-5

  • Online ISBN: 978-3-319-09108-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics