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Abstract. We propose a new second-order finite volume scheme for
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effectiveness of the method.
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1 Introduction

The finite volume method for the linear diffusion equation is an important
building-block to solve more complex models such as the Navier-Stokes equa-
tions and nonlinear coupling problems. Major efforts have been made to design
very high-order schemes up to sixth-order (see [6, 10, 12, 13, 20] and the references
herein). Nevertheless, the design of second-order schemes is still a challenging
and important question for several reasons: very high-order methods are rather
complicated and require an important implementation effort whereas second-
order methods are quite simple and easy to code.

A popular class of second-order finite volume schemes is based on vertex re-
constructions using point-wise approximations on cells associated to a specific
point location (usually the centroid). Then combining cell and vertex values,
gradient approximations are evaluated to compute the diffusive flux on the in-
terfaces. There exists an important literature on the subject to provide the gra-
dient approximations but there are very few studies about the way to provide the
nodal values, in particular, when dealing with the boundary conditions (essential
or natural).

To sum-up, there exist two main techniques to determine the values at
the vertices from the values associated to the cells: the Frink-Rauch-Batina-
Yang [14–17, 11, 5] way based on the minimization of the coefficients of a linear



combination (one for each cell in the stencil), and the Coudière-Vila-Villedieu-
Bertolazzi-Manzini [2, 3, 7, 9, 18, 19] way based on the minimization of the co-
efficients of a first-degree polynomial. From our point of view, the latter one
presents a major drawback since the preservation of the positivity principle can-
not be guaranteed.

We have considered the Frink-Rauch-Batina-Yang’s method where a more
general technique to provide the coefficients is introduced as well as the notion
of target combination [4], dedicated to homogeneous and isotropic situations,
i.e., the coefficients are simple constant values.

The present work intends to extend the previous study to non-homogeneous
and anisotropic problems where the diffusion coefficient is given by a non-
constant matrix. Such situations give rise to new specific numerical difficulties
when the eigenvalues of the diffusion matrix are very different leading to numer-
ical locking. Another aspect is the maximum principle preservation which is not
fulfilled by the most classical schemes [23, 21, 1]. The present scheme succeed in
maintaining the positivity of the solution and the maximum principle is achieved
in all the tested cases.

The paper is organized as follows. After the introduction of the generic finite
volume scheme for the anisotropic diffusion problem in Sect. 2, we address the
cell to vertex mapping and the polynomial reconstruction issues in Sect. 3. We
devote Sect. 4 to the details on the finite volume discretization. Numerical tests
are given in Sect. 5 and the study ends with a conclusion and some perspectives.

2 Finite Volume for Anisotropic Diffusion Problems

Let Ω be an open bounded polygonal domain of R2 with boundary BΩ. Since we
shall consider situations where the diffusion tensor may comprise discontinuities,
we split Ω into to two non-overlapping subdomains Ω1 and Ω2 such that Ω “

Ω1YΩ2 sharing a common interface Γ where the discontinuity is imposed. Notice
that we only consider one discontinuity in order to simplify the presentation but
one can easily generalize the method to a greater number of discontinuities.
We denote by K1 ” K1px, yq and K2 ” K2px, yq the diffusion (or permeability)
tensors in Ω1 and Ω2, respectively, which can be represented by a 2ˆ2 symmetric
and strictly positive definite real matrices. We seek function

φ ” φpx, yq “

#

φ1 ” φ1px, yq, in Ω1,

φ2 ” φ2px, yq, in Ω2,

solution of the anisotropic steady-state diffusion equations

∇ ¨ p´K1∇φ1q “ f1, in Ω1, (1a)

∇ ¨ p´K2∇φ2q “ f2, in Ω2, (1b)

where the source terms f1 ” f1px, yq and f2 ” f2px, yq are regular functions on
Ω1 and Ω2, respectively. When dealing with a discontinuity, we prescribe the
continuity condition,

φ1 “ φ2, on Γ. (2)



The boundary BΩ is also partitioned into two subsets ΓD and ΓN such that
BΩ “ ΓD Y ΓN, in order to prescribe the Dirichlet and the Neumann conditions

φ “ φD, on ΓD, ´K∇φ ¨ n “ gN, on ΓN,

respectively, where φD ” φDpx, yq and gN ” gNpx, yq are given regular functions,
and n denotes the unit normal to BΩ outward to Ω. The diffusion tensor K
stands for K1 or K2 depending on the domain. We assume that either ΓD or ΓN

may be empty.

2.1 Mesh

To design the numerical schemes, we denote by T a mesh of Ω constituted
of I non-overlapping convex polygonal cells ci, i “ 1, . . . , I, and N vertices vn,
n “ 1, . . . , N . We adopt the following conventions (see Fig. 1) we detail hereafter:

– for any cell ci we represent by Bci its boundary and by |ci| its area; we denote
by qi, bi, and mi a generic point, the centroid, and the centre of mass of ci,
respectively;

– two cells ci and cj share a common edge eij whose length is |eij |, the midpoint
is mij and nij is the unit normal vector to eij outward to ci, i.e. nij “ ´nji;
if an edge of ci belongs to the boundary BΩ, we replace the index j by D or
N if eij belongs to ΓD or ΓN, respectively;

– for any cell ci we associate the index set νpiq Ă t1, ¨ ¨ ¨ , Iu Y tD,Nu such
that j P νpiq if eij is a common edge of ci and cj or with the boundary Γj if
j “ tD,Nu.

Remark 1. If vn is a vertex at the intersection of BΩ and Γ , we assume that vn
belongs to BΩ and will be treated as a Dirichlet or Neumann point depending
on the boundary partition. Moreover, if vn is a vertex at the intersection of ΓD

and ΓN, we consider that vn belongs to ΓD and, therefore, will be treated as a
Dirichlet point.

2.2 Generic Finite Volume Scheme

To provide the finite volume scheme, equations (1a) and (1b) are integrated over
each cell of the mesh and applying the divergence theorem we get

ÿ

jPνpiq

|eij |

|ci|

1

|eij |

ż

eij

p´K∇φ ¨ nijqds´
1

|ci|

ż

ci

fdA “ 0. (3)

Let φi be an approximation of φ on qi and let us gather all the approximations
in vector Φ “ pφiqi“1,...,I . We then substitute the exact scheme (3) by a second-
order accuracy numerical scheme, with respect to the mesh parameter hT , and
depending on vector Φ,

ÿ

jPνpiq

|eij |

|ci|
FijpΦq ´ fi “ Oph2q, (4)

where Fij is an approximation of the diffusive flux through the edge eij and fi
is an approximation of the mean value of f over the cell ci.



Fig. 1. Mesh notations.

3 Cell-vertex Mapping and Interpolation

We want to design a second-order finite volume scheme using both approxi-
mations on the cells and on the vertices where the unknowns are only located
on the cells. It results that an accurate evaluation of the vertex values with
respect to the cell values must be implemented. Let ψn, n “ 1, . . . , N , be an
approximation of φ on vertex vn and let us gather all these approximations in
vector Ψ “ pψnqn“1,...,N . The goal of this section is the design of a procedure to
compute Ψ from Φ.

3.1 The Stencils and the Data

For each vertex vn we define the stencil µpnq Ă t1, . . . , Iu consisting of the indices
of the cells which share vn (first layer of cells). The stencil must gather at least,
the indices of three different cells in order to apply the following method. In
practice, if the first layer is not enough to satisfy the last consideration, we also
include the neighbors of the cells which share vn.

More specifically we have the following situations:

– if vn strictly belongs to Ωk, then the stencil only consists of cells of Ωk,
k “ 1, 2;

– if vn belongs to ΓD, then no stencil is required;

– if vn belongs to Γ excluding the vertex associated to Dirichlet condition,
we define µ1pnq and µ2pnq the stencils consisting of cells of Ω1 and Ω2,
respectively;

– if vn belong to ΓNXΩk, then µpnq consists of cells belonging to Ωk, k “ 1, 2.



3.2 The Interpolation Method

Let us consider the vertex vn and its associated stencil µpnq. We then define ψn
as

ψn “
ÿ

iPµpnq

βniφi, (5)

where we gather in vector Bn “ pβniqiPµpnq the coefficients of the linear com-
bination of the cell data. As observed in [14] and [7], one has to reinforce the
restriction such that equation (5) is consistent for first-degree polynomials. Let
us define the operators

f1pB
nq “

ÿ

iPµpnq

βni, f2pB
nq “

ÿ

iPµpnq

βnixni, f3pB
nq “

ÿ

iPµpnq

βniyni,

where pxni, yniq “ pqix ´ vnx, qiy ´ vnyq “ vnqi. We aim to choose vector Bn

such that
f1pB

nq “ 1, f2pB
nq “ 0, f3pB

nq “ 0. (6)

Linear system (6) has a unique solution in very particular situations (#µpnq “
3 for instance) hence one has to design a strategy to determine a solution in the
general cases. We propose here a new method based on the minimization of a
functional. Let θn “ pθniqiPµpnq be a set of values such that

ř

iPµpnq θni “ 1 (the

target values). We define the quadratic functional

EpBnq “
1

2

ÿ

iPµpnq

ωnipβni ´ θniq
2 (7)

where ωni are strictly positive weights. We seek the unique vector Bn which
minimizes the quadratic functional (7) under constraints (6). Using the classical
minimization method with the Lagrange multipliers, the problem turns to find
vectors Λn “ pλn1, λn2, λn3q and Bn such that

∇EpBnq ` λn1∇f1pBnq ` λn2∇f2pBnq ` λn3∇f3pBnq “ 0.

We deduce that

βni “ θni ´
1

ωni
pλn1 ` λn2xni ` λn3yniq, i P µpnq. (8)

Taking in consideration (6) and (8), we obtain the linear system

λn1
ÿ

iPµpnq

1

ωni
` λn2

ÿ

iPµpnq

xni
ωni

` λn3
ÿ

iPµpnq

yni
ωni

“ 0,

λn1
ÿ

iPµpnq

xni
ωni

` λn2
ÿ

iPµpnq

x2ni
ωni

` λn3
ÿ

iPµpnq

xniyni
ωni

“
ÿ

iPµpnq

θnixni,

λn1
ÿ

iPµpnq

yni
ωni

` λn2
ÿ

iPµpnq

xniyni
ωni

` λn3
ÿ

iPµpnq

y2ni
ωni

“
ÿ

iPµpnq

θniyni.



Assuming that vn and qi, i P µpnq, are non-collinear points, the linear system
above has a unique solution Λn from which we determine the coefficients of
vector Bn with equation (8). Several sets of target coefficients θni and weights
ωni will be proposed. For instance, a simple example may be

θni “
|ci|

ř

jPµpnq

|cj |
, ωni “ 1, i P µpnq. (9)

Notice that the Rauch, Batina, and Yang [14] corresponds to the case θni “
1

#µpnq
and ωni “ 1.

3.3 Polynomial Reconstructions

In order to compute an accurate approximation of Fij , we design the local poly-
nomial approximations of the underlying solution involving vectors Φ and Ψ . As
a first stage, let Sij be the stencil composed of the indices of the two vertices
of the edge eij , j P t1, . . . , I,Du. The second stage, detailed below, consists in
defining the polynomial reconstructions based on the entries of vectors Φ and Ψ
associated to the appropriated stencils.

For a given inner edge eij , we design the first-degree polynomial

φφφijpx, yq “ φi `Rij,xpx´ qixq `Rij,ypy ´ qiyq,

where Rij,x and Rij,y are the coefficients to be determined. We denote by rRij,x

and by rRij,y the unique coefficients such that the associated polynomial function
rφφφij ”

rφφφijpx, yq interpolates φi, defined on qi, and ψn, defined on vn, n P Sij .

Notice that we also perform the polynomial rφφφji ”
rφφφjipx, yq using the reference

cell point qj and the associated value φj .
For an edge eiD Ă ΓD, we proceed in the same way to provide polynomials

rφφφiD ”
rφφφiDpx, yq.

4 Second-order Scheme

In the previous section we introduce a technique to compute Ψ from Φ and we
design local polynomial reconstructions, based on vectors Ψ and Φ, in order to
approximate the fluxes. We now return to the generic finite volume scheme (4)
and we detail the computation of the numerical approximations Fij and fi.

4.1 Diffusive Terms

Having all the polynomial reconstructions in hand, we compute the numerical
fluxes Fij with respect to the interfaces of the cells of the mesh, as follows.

For an inner edge eij in Ω1 or Ω2, we define the polynomials qφφφij “
qφφφji “

σij rφφφij ` σjirφφφji. We choose σij “
|ci|

|ci|`|cj |
and σji “

|cj |
|ci|`|cj |

for the sake of



simplicity but situations with discontinuous diffusion coefficients for instance
may require other expressions.

To compute the numerical approximation of the flux through an edge, we
should take into account four situations:

– if eij is a inner edge in Ω1 or Ω2, the numerical flux at the midpoint mij

writes

Fij “ ´Kpmijq∇qφφφijpmijq ¨ nij ;

– for a Dirichlet boundary edge eiD, the numerical flux at the midpoint miD

writes

FiD “ ´KpmiDq∇rφφφiDpmiDq ¨ niD;

– for a Neumann boundary edge eiN, the numerical flux at the midpoint miN

writes

FiN “ gNpmiNq;

– for an edge eij on Γ , we denote by k the index of one of the two domains and
k1 the other domain. We build the vertex value at vn P Γ using µpnq “ µkpnq
and we compute the flux as

Fij “ ´Kk1pmijq∇rφφφijpmijq ¨ nij ,

where ci belongs to Ωk1 and cj belongs to Ωk.

4.2 Source Term

Second-order approximations fi of the source term require an extra effort because
these expressions do not derive from a flux. To derive second-order approxima-
tions, we split the cell ci into #νpiq triangular subcells denoted by cij , j P νpiq,
associated to edge eij .

The source term is evaluated using the approximation

fi “
1

|ci|

»

–

ÿ

jPνpiq

|cij |

3

¨

˝

ÿ

nPSij

fpvnq ` fpqiq

˛

‚

fi

fl ,

which can be simplified if ci is a triangular cell to fi “
1
3

ř

nPSi
fpvnq.

Remark 2. When f is continuous piecewise on the cells, we compute the mean
value of f on ci using the continuity extension of f at the vertex vn P νpiq. It
results that we may have different values for the same vertex vn depending on
the cell we are computing the mean value.



4.3 Residual Scheme

Since Fij and fi linearly depend on vector Φ, we define the affine operator
ΦÑ GipΦq for each cell ci, i “ 1, . . . , I, as

GipΦq “
ÿ

jPνpiq

|eij |

|ci|
FijpΦqq ´ fi,

which corresponds to the finite volume scheme cast (4) in the residual form.
Gathering all the components GipΦq of the residual in vector GpΦq, we obtain

an affine operator from RI into RI such that vector Φ‹, solution of the problem
GpΦq “ 0I , provides a constant piecewise approximation of the problem. We
obtain a matrix-free scheme and the affine problem is solved by applying a
GMRES procedure as explained in [6].

5 Numerical Tests

In this section we present several tests to quantitatively and qualitatively assess
the robustness and accuracy of the proposed numerical scheme. In order to test
the implementation of the method we check situations for which we manufacture
a solution. All the simulations have been carried out on the academic domain
Ω “ s0, 1r

2
.

Given the numerical approximation Φ‹ “ pφ‹i qi“1,...,I of a function φ on a
mesh T , we evaluate the error using the relative discrete L2´norm given by

E2pT q “

¨

˚

˚

˚

˚

˝

I
ÿ

i“1

|ci|pφpqiq ´ φ
‹
i q

2

I
ÿ

i“1

|ci|φpqiq
2

˛

‹

‹

‹

‹

‚

1
2

respectively. We also compute the convergence order of the error between two
different meshes T1 and T2 as

O2pT1, T2q “ 2
| logpE2pT1q{pE2pT2qq|

| logpI1{I2q|
.

To analyse the maximum and minimum principle preservation we compute
the maximum and the minimum of the numerical solution, including the solution
on vertices Ψ‹ “ pψ‹nqn“1,...,N , as

Max “ max
´

I
max
i“1

φ‹i ,
N

max
n“1

ψ‹n

¯

, Min “ min

ˆ

I
min
i“1

φ‹i ,
N

min
n“1

ψ‹n

˙

,

respectively.
In all tests (except when explicitly mentioned), we assume that q` “ m`,

` “ 1, . . . , I, the weights are ωni “ 1, and the target coefficients θni are given in
(9).



5.1 Mild Anisotropy

In the first test, we consider the homogeneous anisotropic tensor K “

«

1.5 0.5

0.5 1.5

ff

and the solution

φpx, yq “
1

2

„

sinpp1´ xqp1´ yqq

sinp1q
` p1´ xq3p1´ yq2



,

on a square domain Ω “
‰

0, 1
“2

. The source term is manufactured from the exact
solution and we prescribe the non-homogeneous Dirichlet condition φDpx, yq “
φpx, yq on ΓD “ BΩ.

Fig. 2. Triangular mesh with acute angles (left), randomly deformed quadrilateral mesh
(centre), and exact solution on a very fine mesh (right).

This test can be found in [22] and was originally proposed in [21] as a bench-
mark with a slightly modification in order to normalize the exact solution such
that the minimum is equal to 0.

Convergence Analysis. To perform the simulations and analyse the capacity
of the scheme to provide accurate solutions with a second-order convergence,
we use successive finer triangular meshes with strictly acute angles (see Fig. 2,
left). In the same way, we use randomly deformed quadrilateral meshes (see
Fig. 2, centre) to assess the robustness and the capacity of the scheme to handle
complex meshes still providing second-order convergence rates.

These last meshes were obtained from structured meshes where we randomly
move each inner vertex with a specific deformation factor (see the full proce-
dure in [6]). We report in Table 1 the L2-errors and convergence rates for the
two classes of mesh and check an effective second-order of convergence for the
method.



Table 1. L2
´norm error and convergence rates using triangular meshes with acute

angles and deformed quadrangular meshes.

I
Triangular meshes

I
Deformed meshes

E2 O2 E2 O2

224 4.97E´03 — 400 8.16E´04 —

896 1.26E´03 1.98 1600 2.20E´04 1.89

3584 3.15E´04 1.99 6400 5.43E´05 2.02

14336 7.91E´05 2.00 16900 2.11E´05 1.95

Maximum and Minimum Principle Preserving. The same problem was
carried out with two distorted quadrangular meshes (see Fig.3, left and right) as
proposed in [21] to check the maximum and minimum principle preservation.

Fig. 3. Distorted quadrilateral meshes with 17ˆ 17 cells (left) and 33ˆ 33 cells.

Notice that the exact solution is located in the interval
“

0, 1
‰

. Table 2 shows
the minimum and maximum of the solution and prove that the scheme preserves
the expected bounded since the numerical solution ranges in the interval r0, 1s.

Table 2. Minimum and maximum values of the numerical solution using distorted
quadrangular meshes.

I N Min Max

289 324 0.00E`00 1.00E`00

1089 1156 0.00E`00 1.00E`00



5.2 Heterogeneous Rotating Anisotropy

In this test, we deal with a rotating and heterogeneous anisotropic tensor given
by

Kpx, yq “

«

αx2 ` y2 pα´ 1qxy

pα´ 1qxy x2 ` αy2

ff

, α ě 1.

The exact solution is φpx, yq “ exp
`

´20πppx´ 0.5q2 ` py ´ 0.5q2q
˘

(see Fig. 4,
centre) and the source term f is computed from the exact solution applying the
operator. We prescribe a full Dirichlet boundary condition (ΓD “ BΩ) with non-
homogeneous Dirichlet condition φDpx, yq “ φpx, yq on ΓD. As described in [22],
the source term f corresponds to an injection at the center of Ω, between two
sinks (see Fig. 4, right). Clearly, the magnitude of the injection as well as the sinks
increase as α increase. Moreover, the two eigenvalues of K are λ1px, yq “ x2`y2

and λ2px, yq “ αpx2 ` y2q, which correspond to an anisotropic ratio equal to
α in the whole domain, and we have infpx,yqPΩ λ2 “ 0 and suppx,yqPΩ λ2 “ 2α.
Given that, for large values of α we have a highly heterogeneous case which can
induces numerical locking. As in [22] we use successive finer structured triangular

Fig. 4. An example of a structured triangular mesh (left), the exact solution on a very
fine mesh (centre), and the source term for α “ 1000 (right).

meshes (see Fig. 4, left) to evaluate the convergence rates and the maximum and
minimum principle preserving for α P t10, 100, 1000u. We present in Table 3 the
L2´error and the convergence rates for three values of α. We get an effective
second-order of convergence and no numerical locking is reported.

5.3 Numerical Locking Test

We consider the anisotropic tensor K “

«

1 0

0 δ

ff

, where δ ą 0, the exact solution

is taken to be φpx, yq “ sinp2πxq exp
´

´2π?
δ
y
¯

and the source term is fpx, yq “ 0



Table 3. L2-norm errors and convergence rates for three values of α using structured
triangular meshes.

I
α “ 10 α “ 100 α “ 1000

E2 O2 E2 O2 E2 O2

180 1.12E´01 — 1.39E´01 — 1.44E´01 —

760 2.26E´02 2.22 2.89E´02 2.18 3.04E´02 2.16

3120 5.40E´03 2.03 7.02E´03 2.00 7.62E´03 1.96

12640 1.33E´03 2.01 1.74E´03 1.99 1.95E´03 1.95

on a square domain Ω “
‰

0, 1
“2

. Note that φ depends on δ such that the solution
is almost constant in the y´direction for large values of δ. We consider three
situations:

– Case A: we prescribe a Dirichlet boundary data with non-homogeneous
Dirichlet condition on ΓD “ BΩ and ΓN “ H;

– Case B: we prescribe a mixed Dirichlet-Neumann boundary data with the
conditions φDpx, yq “ φpx, yq on ΓD “ tpx, yq : x “ 0 _ y “ 0u and gN “
´K∇φ ¨ n on ΓN “ tpx, yq : x “ 1_ y “ 1u;

– Case C: we prescribe a pure Neumann boundary data gN “ ´K∇φ ¨ n on
ΓN “ BΩ and ΓD “ H. Since we only use the Neumann condition, the
operator is singular and an extra condition will be provided to ensure the
uniqueness, For example, one can impose the solution to have zero mean
value on the whole domain. In practice, such property is achieved by using the
GMRES solver without introducing explicitly the zero mean value condition.

We carried out the simulations for a mild anisotropic diffusion case with δ “ 10,
for a high anisotropic diffusion case with δ “ 103, and at last we set δ “ 106

for a very high anisotropic diffusion case. Notice that for large values of δ the
diffusion occurs mainly in the y´direction while the information is transmitted
mainly in the x´direction (see Fig. 5). Due this fact, some numerical schemes
have difficulties to achieve an accurate solution and the expected convergence
order. We cite [22, 23] and the benchmark [21]. We report in Tables 4, 5, and 6
the results for cases A, B, and C with the three values of δ.

Table 4. L2
´norm errors and convergence rates for case A with three values of δ.

I
δ “ 10 δ “ 103 δ “ 106

E2 O2 E2 O2 E2 O2

896 1.44E´02 — 1.12E´02 — 1.11E´02 —

3584 3.51E´03 2.04 2.46E´03 2.19 2.41E´03 2.21

14336 8.64E´04 2.02 5.79E´04 2.09 5.64E´04 2.10

57344 2.14E´04 2.01 1.42E´04 2.03 1.38E´04 2.04



Fig. 5. Exact solution on a very fine mesh mesh with δ “ 10 (left), δ “ 103 (centre),
and δ “ 106 (right).

Table 5. L2
´norm errors and convergence rates for case B with three values of δ.

I
δ “ 10 δ “ 103 δ “ 106

E2 O2 E2 O2 E2 O2

896 7.07E´03 — 1.70E´02 — 1.91E´02 —

3584 1.64E´03 2.11 2.55E´03 2.74 2.79E´03 2.77

14336 4.05E´04 2.02 5.35E´04 2.25 7.12E´04 1.97

57344 1.07E´04 1.92 1.26E´04 2.09 1.67E´04 2.09

Table 6. L2
´norm errors and convergence rates for case C with three values of δ.

I
δ “ 10 δ “ 103 δ “ 106

E2 O2 E2 O2 E2 O2

224 7.20E´02 — 3.75E´01 — 4.20E´01 —

896 1.47E´02 2.29 6.46E´02 2.54 7.21E´02 2.54

3584 3.49E´03 2.08 1.39E´02 2.22 2.16E´02 1.74

14336 8.62E´04 2.02 3.61E´03 1.94 — —

When including Dirichlet condition on a part of the domain, no numerical
locking phenomenon is observed and we get the optimal convergence order. For
the pure Neumann case, no numerical locking appears for δ “ 10 and δ “ 103

and we also get a second-order convergence rate. For δ “ 106 (the worst case),
we face to difficulties to get the full convergence but, on the contrary of the
most of finite volume schemes, we overcome the numerical locking and get a
rather good convergence rate. The two last results for this test are not shown
due the inability of the GMRES procedure to return an acceptable residual.
We highlight that for such a simulation, the preconditioning matrix choice is of
crucial importance.



5.4 Discontinuous Anisotropy with the Continuity Condition

We now turn to the situation where the diffusion tensor is discontinuous across
the interface Γ . We consider the domain Ω “ Ω1 YΩ2 with Ω1 “s0, 0.5rˆs0, 1r
and Ω2 “s0.5, 1rˆs0, 1r while the interface is given by Γ “ t0.5uˆs0, 1r (see
Fig. 6). The exact solution is given by φ1px, yq “ cospπxq sinpπyq and φ2px, yq “
0.01 cospπxq sinpπyq, and the diffusion tensor is given by

K1 “

«

1 0

0 1

ff

, K2 “

«

100 0

0 0.01

ff

,

on Ω1 and Ω2, respectively. The source terms are f1px, yq “ 2π2 cospπxq sinpπyq
and f2px, yq “ p1` 0.012qπ2 cospπxq sinpπyq and we set ΓD “ BΩ with Dirichlet
condition φDp0, yq “ sinpπyq on the left side, φDp1, yq “ 0.01 sinpπyq on the right
side, and φDpx, 0q “ φDpx, 1q “ 0 on the other sides. At last, we prescribe the
continuity condition φ1 “ φ2 on interface Γ . The test was initially proposed
in [24].

Fig. 6. Regular triangular Delaunay mesh in both subdomains Ω1 and Ω2 (left), and
exact solution on a very fine mesh (right).

Table 7. L2-norm errors and convergence rates when the vertices on Γ are computed
with the cells from Ω1 using µpnq “ µ1pnq and from Ω2 using µpnq “ µ2pnq

I
µpnq “ µ1pnq µpnq “ µ2pnq

E2 O2 E2 O2

236 7.38E´03 — 6.82E´03 —

936 1.80E´03 2.05 1.58E´03 2.13

3962 4.13E´04 2.04 3.96E´04 1.92

17010 9.13E´05 2.07 8.83E´05 2.06



We have performed two type of tests. In a first run, the reconstructions
for the vertices vn on Γ are carried out with the cells from Ω1 using µpnq “

µ1pnq while the gradient is computed with the function rφij located on the cell
ci belonging to the domain Ω2. The second run provides a numerical solution
where we take µpnq “ µ2pnq and the gradient is computed with the data of cell
ci Ă Ω1. We present in Table 7 the two situations and we observe that the scheme
provides the same accuracy. Nevertheless, our numerical experience highlights
that the number of GMRES iteration is larger (two times) when dealing with
the first case, i.e. the problem needs a higher computer effort when the gradient
is computed on the side where the diffusion tensor is larger.

6 Conclusion

An extension of the original Frink’s method has been proposed and implemented
to perform the cell-to-vertex reconstruction applied in the context of anisotropic
and discontinuous diffusion tensors. The method enables to associate the cell
value at any location point inside the cell still preserving both the second-order
accuracy and the robustness, even for difficult diffusion problem such as numer-
ical locking. Several numerical experiences have been carried out to assess the
method performance and demonstrate the capacity to handle a wide range of
situations in the context of the anisotropic and discontinuous diffusion equation.
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