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Towards a new generation ACO-Based Planner

M. Baioletti, R. Minciarelli, F. Paolucci, V. Poggioni

Abstract

In this paper a new generation ACO-Based Planner,
called ACOPlan 2013, is described. This planner is an
enhanced version of ACOPlan, a previous ACO-Based
Planner (Baioletti et al. 2011), which differs from the
former in the search algorithm and in the implementa-
tion, now done on top of Downwards. The experimental
results, even if are not impressive, are encouraging and
confirm that ACO is a suitable method to find near op-
timal plan for propositional planning problems.

Introduction
The basic principle of the first generation of ACO-Based
planner ACOPlan, described in (Baioletti et al. 2011; 2009a;
2009b), was to use the well knownAnt Colony Optimization
metaheuristic (ACO) (Dorigo and Stuetzle 2004) to solve
planning problems with the aim of optimizing the quality
of the solution plans. The approach was based on the strong
similarity between the process used by artificial ants to build
solutions and the way used by state–based planners to find
solution plans. Therefore, we had defined an ACO algorithm
which handles a colony of planning ants with the purpose
of solving planning problems by optimizing solution plans
with respect to the overall plan cost.

ACO is a metaheuristic inspired by the behavior of nat-
ural ants colony which has been successfully applied to
manyCombinatorial Optimizationproblems. Being ACO a
stochastic incomplete algorithm, there is no guarantee that
optimal solutions are ever found, but in many CO problems
ACO is able to find very good or near optimal solutions,
sometimes being competitive with state-of-arts algorithms.

In this paper a new generation of planners based on ACO
search algorithm is introduced. The most important change
lies in the search process performed by the ants. In particu-
lar the ants start from the most promising states reached in
the previous generations and perform a variable number of
steps. A smaller number of stepsL is used to enhance ex-
ploitation, while a larger number of stepsB gives more im-
portance to exploration. The parametersL andB are tuned
by means of an auto-adaptive process. Other new features
are described in Section 4.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The paper is structured as follows. In the two first sections
a brief introduction to the metaheuristic ACO, and the previ-
ous generation of ACOPlan algorithm are described, while,
in the next section the characteristics and peculiarity of new
generation of ACO based algorithms are presented. The ex-
perimental results are described in Section 5, while some
conclusions are drawn in Section 6.

Ant Colony Optimization
ACOis a well–known metaheuristic to tackle Combinatorial
Optimization problems introduced since early 90s by Dorigo
et Al. (Dorigo and Stuetzle 2004). It is inspired by the for-
aging behavior of natural ant colonies. When walking, nat-
ural ants leave on the ground a chemical substance called
pheromonethat other ants can smell. This stigmergic mech-
anism implements an ”indirect communication way” among
ants, in particular when looking for the shortest path to reach
food.

ACO is usually applied to optimization problems whose
solutions are composed by discrete components. A Combi-
natorial Optimization problem is described in terms of aso-
lution spaceS, a set of (possibly empty)constraintsΩ and
anobjective functionf : S → R

+ to be minimized (maxi-
mized).

The colony of artificial ants builds solutions in an incre-
mentally way: each ant probabilistically chooses a compo-
nent to add to a partial solution built so far, according to the
problem constraints. The random choice is biased by thear-
tificial pheromone valueτ related to each componentc and
by a heuristic functionη. Both terms evaluate the desirability
of each component. The probability that an ant will choose
the componentc is

p(c) =
[τ(c)]α[η(c)]β

∑

x[τ(x)]
α[η(x)]β

(1)

where the sum onx ranges on all the components which
can be chosen, andα andβ are tuning parameters which
differentiate the pheromone and heuristic contributions.

The pheromone values represent a kind of memory shared
by the whole ant colony and are subject toupdate and
evaporation. In the most applications only the best solutions
are considered in the pheromone update phase: the global
best solution found so far (best–so–far) and/or the best so-



lution found in the current iteration (iteration–best). More-
over, most ACO algorithms use the following update rule
(Blum 2005):

τ(c)← (1− ρ) · τ(c) + ρ ·
∑

s∈Ψupd : c∈s

F (s) (2)

whereΨupd is the set of solutions involved in the update,
F is the so calledquality function, which is a decreasing
function of the objective functionf (increasing iff is to
be maximized), andρ ∈]0, 1[ is the pheromone evaporation
rate.ρ is a typical ACO parameter which was introduced
to avoid a premature convergence of the algorithm towards
sub–optimal solutions.

The simulation of the ant colony is iterated until a satis-
factory solution is found, a termination criterion is satisfied
or a given number of iterations is reached.

First generation ACO based planners
According to the main features of ACO the ants–planners of
the colony are stochastic and heuristic–based.

Each ant–planner executes a forward search, starting from
the initial stateI and trying to reach a state in which the goal
G is satisfied. The solution is built step by step by adding
components. At each step, the search process performs a
randomized weighted selection of a solution componentc
which takes into account both the pheromone valueτ(c) as-
sociated to the component and the heuristic valueη(a) com-
puted for each actiona executable in the current state and
related to the chosen solution component. Once an actiona
has been selected, the current state is updated by means of
the effects ofa.

The construction phase stops when at least one of the fol-
lowing termination condition is verified

1. a solution plan is found, i.e. a state where all the goals are
true is reached;

2. a dead end is met, i.e. no action is executable in the current
state;

3. an upper boundLmax for the number of execution steps
is reached.

Variants of the system was been presented and experi-
mented, for example in (Baioletti et al. 2011; 2009a; 2009b).
These variants differ in several point, for example in terms
of pheromone models, evaluation functions and implemen-
tation, but they share the general algorithm presented in Fig.
1. The experimental evaluation presented in (Baioletti et al.
2011) shows that the approach was competitive and compa-
rable with the state of the art. There was also an unsuccess-
ful version that due to some unexpected bugs run at the IPC
2011 with terrible results.

Let (I,G,A) be the planning problem, the optimization
process is iterated for a given numberN of iterations, in
which a colony ofna ants build plans with a maximum num-
ber of stepsLmax. At each step, each ant chooses an ac-
tion among the executable ones by theChooseActionfunc-
tion that encodes the transition probability function previ-
ously described. When all ants have completed the search
phase, the best planπiter of the current iteration is selected

and the global best planπbest is possibly updated. Finally,
the pheromone values of the solution components are up-
dated by means of the functionUpdatePheromonethat im-
plements the updating rules 2. Relevant parameters arec0
which denotes the initial value for the pheromone,ρ which
represents the evaporation rate andσ that is a parameter of
the pheromone update rule (see 3).

Algorithm 1 The algorithm ACOPlan

1: πbest ← ∅
2: InitPheromone(c0)
3: for g ← 1 toN do
4: for m← 1 to na do
5: πm ← ∅
6: s← I
7: A1 ← executable actions inI
8: for i← 1 toLmax while Ai 6= ∅ and G 6⊆ s do
9: a← ChooseAction(Ai)

10: extendπm with a
11: s← Res(s, a)
12: Ai+1 ← executable actions ons
13: end for
14: end for
15: find πiter

16: updateπbest

17: UpdatePheromone(πbest, πiter, ρ, σ)
18: end for

Pheromone Models
The effectiveness of an ACO algorithm firstly depends on
the choice of the pheromone model and its data structures. A
good model should be simple to compute but enough infor-
mative to characterize the context in which an ant–planner
can choose a specific action. Moreover it should allow them
to distinguish the context of most successful choices from
the worst ones. On the other hand the characterization of the
component should not be too much detailed in order to allow
the pheromone to deposit in a significant quantity.

In (Baioletti et al. 2011) several pheromone models have
been proposed and empirically compared by systematic ex-
periments.

State-State (SS): A component is defined by the current
states. This is one of the most expensive pheromone model
from the space complexity point of view, because the num-
ber of possible states is exponential with respect to the prob-
lem size.

State-Action (SA): The pheromone valueτ depends on the
current states and on the actiona to be executed. This model
is even more expensive than SS, because for each state s
there can exist several actions executable (and chosen) in s.
On the other hand, the pheromone values can be interpreted
in terms of a preference policy:τ(a, s) represents how much
it is desirable, or it has been useful, to execute a in state s.

Action-Action (AA): In this model a notion of local history
is introduced: the pheromone depends both on the actiona
under evaluation and on the last executed actiona′, i.e. the
pheromone is a functionτ(a, a′). Considering only the pre-



vious action is the simplest way in which the action choice
can be directly influenced by history of previous decisions.
AA allows a manageable representation and defines a sort of
local first order Markov property.

Fuzzy Level-Action (FLA): The basic idea underlying this
model is to associate the action under evaluation with the
plan time step, i.e. the planning graph level, where it is exe-
cuted. Since the limited number of levels, such approach has
a more tractable space complexity with respect to theSA
model. On the other hand a pure LevelAction model would
present the drawback that the pheromone of an action at a
time stept cannot be used in other close time steps, while
it is often likely that an action desirable at certain time step,
say 2, will also be desirable at close time steps, say 1 and
3. To solve this problem theFLA model which fuzzifies
the LevelAction representation just described has been in-
troduced: when pheromone is distributed over an action a
executed at time stept is also spread in decreasing quan-
tity over the same action in the close time steps, conversely
the pheromone level computed for an actiona to be exe-
cuted at timet is computed as the weighted average of the
pheromone valuesτ(a, t), wheret = tW, ..., t + W com-
puted with the LevelAction model, where weights, i.e. the
spread distribution, and the time windowW are parame-
ters of the model. The two models showing the best perfor-
mances wereAAandFLA.

The heuristic
The heuristic function is a key feature of ACOPlan because
it directly affects the transition probability function (1) used
to synthesized the solution plan. The heuristic value for a
componentc is defined by

η(c) =
1

h(sc)

whereh is an heuristic function which evaluates the statesc
resulting from the execution of the actionac associated to
the componentc in the current state.

The ACOPlan variants used both the heuristic function
FF and its variant FFAC for actions costs. This function was
presented in (Baioletti et al. 2011); to note that FFAC does
not have static costs as in the heuristic proposed by Keyder
and Geffner in (Keyder and Geffner 2008) but dynamic costs
depending on the level at hand; it is similar to the heuristic
function used in SAPA (Do and Kambhampati 2003) with
the sum propagation for action cost aggregation.

Plan comparison and Pheromone updating
A critical point of the optimization process is the ability of
comparing plans found by the colony of planner ants. This is
particularly important in pheromone updating phase where
the best plan of the iteration must be selected, as well as in
the general ACOPlan which returns the best plan found in
all the iterations.

Any comparison criteria should obviously prefer asolu-
tion planto anon solution plan. On the other hand compari-
son of twosolution plansπ, π′ can be easily based on actions
costs. A comparison criteria cannot be easily defined when

both plansπ andπ′ are not solution plans. In this case a plan
π is evaluated by a combination of the heuristic value on the
best states ever reached byπ with the cost of reachings.

The pheromone update phaseevaporates all the
pheromone values and increases the pheromone value
of the components belonging toπiter andπbest according
to the formula

τ(c)← (1− ρ) · τ(c) + ρ ·∆(c) (3)

where

∆(c) =











σ if c belongs toπiter

1− σ if c belongs toπbest

1 if c belongs to both
0 otherwise

andσ is usually set to2
3

to give more influence to the explo-
ration.

Second generation ACO based planners
The new version of ACOPlan, called ACOPlan 2013, differs
from the previous implementation in several points.

A first important difference is that ACOPlan 2013 is now
implemented in top of Fast Downwards (Helmert 2006), as
other planners, like Lama (Richter and Westphal 2010). In
this way we can exploit of efficient routines for parsing the
planning problem, translating into a finite domain represen-
tation, finding landmarks and computing heuristic functions.
Nevertheless, our search engine is independent on the actual
representation of states and only uses some Downward in-
ternal procedures, like the successor generator procedure.

The most important algorithmical difference lies in the
choice of starting point and the length of the exploration
performed by each ant. In the previous version of ACOPlan,
each ant starts from the initial state and begins to build a plan
for at most a certain numberN of steps.

Since each ant always starts from the initial state, all the
states close to the initial state are explored very often, thus
wasting a lot of computation time. The repeated exploration
of some states is a major problem in this kind of algorithms.
LAMA and other similar planners avoid at all to explore a
states more than once, except whens is reachable from the
initial state by a path shorter than before. In ACOPlan, a state
could be explored several times, in different iteration or by
different ants, and forcing the algorithm to avoid already vis-
ited states would make the search process incomplete. The
use of a cache data structure, where information about al-
ready visited states are stored, only mitigates the computa-
tion efforts of re-exploring states.

In ACOPlan2013 the choice of the starting point is made
in two steps.

First of all, an already found planp, among the best-so-far
and the iteration-best, is selected at random with equal prob-
abilities. Then a states is randomly chosen in the following
way. With equal probability,s is the last state reached byp,
the best state in the wholep, or the best state reached in the
last10 steps inp.

Then the ant starts its exploration froms and its initial
plan is the prefix of the planp, truncated at the step corre-
sponding tos.



In this way, an important drawback of ACOPlan is over-
come, i.e. that each generation tries to build plans starting
from scratch, thus discarding many information acquired by
the previous generations (except for the pheromone contri-
bution). Indeed, in ACOPlan 2013, the ants start from the
best states reached in the previous generations.

The boundN on the plan length was another major prob-
lem of ACOPlan. It is obvious thatN should be large enough
to allow the ant to find a plan, for instanceN ≥ PL, where
PL is the length of a solution plan, which should be esti-
mated somehow from the problem to be solved (for instance
as a multiple of a relaxed plan starting from the initial state)
or fixed to a large enough value.

In ACOPlan 2013, the exploration is performed using two
different bounds, denoted byL (Little) andB (Big), on the
number of steps froms. UsuallyL < B. The boundsL and
B are used in alternation, and the sequence of generation
whereL is used is called “Little” phase, while in those where
L is used is called “Big” phase.

In the “Little” phase, the ants explore for a small number
of steps, and in this way they can exploit and continue, as
much as possible, the exploration performed in the previous
generation. The aim of a “little” number of steps is to make
small, but progressive enhancements.

In the “Big” phase, the ants explore for a greater number
of steps, thus the possibility of finding completely different
solutions and the exploration of a larger part of the search
space are possible.

Hence, the alternation between “Little” and “Big” phases
then corresponds to having phases in which a different
weight is given to the exploitation and to the exploration ap-
titudes.

The boundsL andB start with the valueL = 10 and
B = 100 and are changed in a dynamic way, making them
converging to a common intermediate value.

In this way, the algorithm dynamically adapts the search
process to give more importance to the exploration or to ex-
ploitation, according to the number of improvements of the
heuristic function and the number of solutions found.

Another important new feature is the particular use of
two heuristic functions,hFF (i.e. the FF heuristics) and
hLM (i.e. the Landmarks count heuristics), both used also
by LAMA (Richter and Westphal 2010).

In Lama each state is evaluated with both heuristic func-
tions. In the ACOPlan approach, the simultaneous use of
both of them, although possible, is a little bit problematic.
While the formula for the transition probabilities can be eas-
ily extended to take into account of two heuristic functions,
the major difficulty is that states (and plans) are evaluated
by using heuristic values, hence the presence of two heuris-
tic functions can cause situations of incomparable states.

Moreover, since the number of state evaluations required
by ACOPlan is large, a double heuristic evaluation can be
computationally heavy.

Therefore, we decide to mostly use one heuristic function
and the decision is automatically taken during the search
process seeing the progress obtained by using all the two
heuristics for some generations each. If both heuristic func-
tions produces comparable results, they are kept for the next

sequence of generations. On the other hand, if a heuristic
functionh appears to work better than the otherh′, a “last
chance” is given toh′. After this period, ifh is still better
thanh′, h′ is removed and onlyh is used in the remaining
generations.

Experiments
This section presents and discusses the results of experi-
ments held with this new generation of ACOPlan optimizing
the overall plan execution costs.

The benchmarks domain problems from the last planning
competition IPC2011 () has been used in the experiments.
The results presented here refers to the domainsBarman,
Elevators, andParcprinter.

In these experiments the pheromone modelFLA has been
used.

Since the behavior of ACOPlan depends on many parame-
ters, a preliminary phase of parameters tuning has been held
by systematic tests in order to establish the ACOPlan gen-
eral setting:10 planner–ants,α = 3, β = 3, ρ = 0.10.
Moreover, since ACOPlan is a not deterministic planner, the
results collected for each single problem instance are the me-
dian values obtained over 15 runs. The experiments were run
on the EGI grid.

Comparisons have been made with LAMA 2011 (Richter
and Westphal 2010) and FDss-1(Fawcett et al. 2011) re-
spectively the winner and the runner-up planners at the Se-
quential Satisficing track of the last planning competition
IPC2011.

For each tested domains a table showing the score ob-
tained by each planner with respect the best cost solution
(the known best cost). The score is computed as in the plan-
ner competition, that is the ratio between the solution cost
and the cost of the best solution known so far,score =
cost/best cost.

The tests show ACOPlan 2013 obtain comparable results
with respect to the other planners, even if it is apparent that
ACOPlan 2013 is not competitive with them. Anyway its re-
sults on Elevators are better than those of LAMA and FDss-
1.

Conclusions and Future Works
In this paper we have described ACOPlan 2013, a new ver-
sion of the planner ACOPlan, which is based on a new search
algorithm and a new implementation. This new planner is
then compared with some state-of-arts planners, obtaining
encouraging results. Although ACOPlan 2013 is not com-
petitive, it appears to be comparable with them and the im-
provements obtained with respect to the results obtained by
ACOPlan are impressive both from the quality of the solu-
tions found and the number of problems solved whith the
time limit. Hence, we believe that ACO still remains a good
method to solve planning problems.

Following this line, it is apparent that for this approach
there is room for improvement and it can be made compet-
itive with the state-of-art by using, for instance, learning or
auto-adaptivity methods to tune the parameters of the algo-
rithm.



Table 1: Results for plan quality onBarman domain

Problem Lama-2011 FDss-1 ACO (avg) best sol
score score score cost

p01 0.92 0.99 0.70 279
p02 0.98 0.87 0.66 259
p03 0.85 0.99 0.75 274
p04 0.86 0.99 0.70 281
p05 0.86 0.92 0.69 297
p06 0.90 0.83 0.72 322
p07 0.98 0.99 0.63 305
p08 0.86 0.83 0.73 290
p09 0.91 0 0.58 348
p10 0.93 0.94 0.70 323
p11 0.86 0 0.70 354
p12 0.82 0.75 0.54 334
p13 0.90 1.00 0.71 396
p14 0.85 0.72 0.60 372
p15 0.96 0.99 0.64 387
p16 0.87 1 0.65 386
p17 0.87 1 0.62 383
p18 0.73 0.62 0.65 380
p19 0.90 1 0.65 387
p20 0.89 0.91 0.70 356

total 17.70 16.34 13.3

Table 2: Results for plan quality onElevators domain

Problem Lama-2011 FDss-1 ACO (avg) best sol
score score score cost

p01 0.52 0.75 0.73 191
p02 0.46 0.71 0.75 417
p03 0.45 0.62 0.76 464
p04 0.92 0.75 0.59 256
p05 0.48 0.61 0.80 253
p06 0.47 0.68 0.67 513
p07 0.48 0.66 0.63 409
p08 0.38 0.68 0.58 505
p09 0.45 0.73 0.74 671
p10 0.40 0.61 0.68 602
p11 0.58 0.56 0.53 635
p12 0.48 0.53 0.57 691
p13 0.53 0.72 0.88 992
p14 0.55 0.61 0.62 804
p15 0.57 0.42 0.69 923
p16 0.50 0.62 0.53 891
p17 0.53 0.64 0.52 1066
p18 0.47 0.59 0.57 1148
p19 0.41 0.41 0.56 1417
p20 0.64 0.61 0.85 1386

total 10.28 12,52 13.25

Table 3: Results for plan quality onParcprinter domain

Problem Lama-2011 FDss-1 ACO (avg) best sol
score score score cost

p01 1.00 1.00 1.00 1383121
p02 1.00 1.00 1.00 1852217
p03 0.93 1.00 0.96 2490322
p04 1.00 0.78 0.91 2754187
p05 1.00 1.00 1.00 1216462
p06 1.00 1.00 1.00 1270874
p07 0.91 1.00 0.98 2121255
p08 1.00 1.00 1.00 1681282
p09 1.00 1.00 0.97 2387265
p10 1.00 1.00 0 2021893
p11 0.86 1.00 1.00 1891203
p12 1.00 0.88 0.97 2828340
p13 0.83 0.83 0.99 3335367
p14 1.00 0.74 0.87 3119803
p15 1.00 0.74 0.85 3160821
p16 0.83 0.70 0.81 3526437
p17 0.99 1.00 0 1556448
p18 0.99 1.00 0 2376643
p19 0.98 1.00 0.98 3072626
p20 1.00 1.00 0 2308715

total 19.32 18.68 15.29

As a future work we are also planning to study new
pheromone models, by exploiting, for instance, the finite do-
main representation computed by Fast Downwards (Helmert
2006).
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Abstract

Real-world problems generally involve several an-
tagonistic objectives, like quality and cost for de-
sign problems, or makespan and cost for plan-
ning problems. The only approaches to multiob-
jective AI Planning rely on metrics, that can incor-
porate several objectives in some linear combina-
tions, and metric sensitive planners, that are able
to give different plans for different metrics, and
hence to eventually approximate the Pareto front
of the multiobjective problem, i.e. the set of opti-
mal trade-offs between the antagonistic objectives.
Divide-and-Evolve (DAE) is an evolutionary plan-
ner that embeds a classical planner and feeds it
with a sequence of subproblems of the problem at
hand. Like all Evolutionary Algorithms, DAE can
be turned into a Pareto-based multiobjective solver,
even though using an embedded planner that is not
metric sensitive. The Pareto-based multiobjective
planner MO-DAE thus avoids the drawbacks of the
aggregation method. Furthermore, using YAHSP
as the embedded planner, it outperforms in many
cases the metric-based approach using LPG met-
ric sensitive planner, as witnessed by experimental
results on original multiobjective benchmarks built
upon IPC-2011 domains.

1 Introduction

Multiobjective problems are ubiquitous in the real world,
where most situations often involve at least two antagonis-
tic objectives, such as maximizing some quality criterion (or
even criteria) while minimizing some costs – and quality
increase cannot be obtained without corresponding cost in-
crease. This is true in AI planning too, as witnessed by look-
ing at the most popular test problems that have been used
in IPC competitions. Many domains have been defined in
both categories of actions with cost and temporal planning:
the more general problem is to minimize both the makespan
(where high quality solutions correspond to small makespan

This work was partially funded by the DESCARWIN ANR
project (ANR-09-COSI-002).

values) and the cost of a given plan, while these two objec-
tives are in general antagonistic1.

Given two solutions A and B of such multiobjective prob-
lems, A is obviously to be preferred to B in the case when the
objective values for A are all better than the objective values
of B: in such case, A is said to Pareto-dominate B. However,
Pareto-dominance is not a total order, and most solutions are
not comparable for this relationship. The set of interest when
facing a multiobjective problem is the so-called Pareto set
of all solutions of the search space that are not dominated
by any other solution: such non-dominated solutions are the
best possible trade-offs between the antagonistic objectives,
in that there is no way to improve on one objective without
degrading at least another one. Figure 1 depicts a simple case
of a two objectives AI Planning problem, and presents both
the design space, space of solutions plans, and its projection
on the objective space, here the (makespan×cost) space (both
to be minimized). The Pareto front (circles on the right fig-
ure) is the image of the Pareto set in the objective space.
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Figure 1: Design and objective spaces for a two-objectives
planning problem. The hatched+grey area contains all images
of possible solutions plans; this area defines the hypervolume
of the set of circles, and the hypervolume contribution of each
point is the grey area of the corresponding small rectangle
(see Section 3). Circles are Pareto-optimal (non-dominated)
solutions, aka the Pareto front of the problem at hand.

Sometimes, the user/decision maker might have a very pre-
cise idea of the relative losses induced by the degradation
of one of the objectives with respect to the improvement of

1Though some costs might be proportional to durations in some
domains.



another. It is then possible to turn the multiobjective opti-
mization problem into a single-objective optimization prob-
lem, e.g., by optimizing some weighted sum (or any other
monotonous function) of the objectives, in the so-called ag-
gregation method. Any optimizer can then be used to solve
the aggregated problem. However, this approach requires
some a priori knowledge of the trade-off between the objec-
tives, and/or numerous runs of the optimizer on different ag-
gregations of the objectives. Furthermore, linear aggregation
(the weighted sum case) is not able to identify the complete
Pareto front in case it is not convex.

To address this multidimensional issue, Pareto-based algo-
rithms have been designed in order to directly identify the
complete Pareto front, by computing a set of approximate
non-dominated solutions. This one can then be offered to
the decision maker so that she/he can make an informed de-
cision when choosing a solution. Efficient Pareto-based mul-
tiobjective algorithms have been designed using ideas from
Evolutionary Algorithms, that can easily be turned into Mul-
tiobjective Evolutionary Algorithms (MOEAs) by modifying
their selection process to account for Pareto dominance [Deb,
2001].

In the domain of AI planning, most works only ad-
dress single-objective problems, and the very few recent ap-
proaches rely on metric sensitive planners to optimize met-
rics built as weighted sums of the objectives (more in Section
2). This paper introduces MO-DAE, the first (to the best of
our knowledge) truly Pareto-based Multiobjective AI Plan-
ning System. MO-DAE is a multi-objectivization of DAE,
a domain-independent satisficing planner that has been orig-
inally designed for single-objective planning [Schoenauer et
al., 2006; Bibaı̈ et al., 2010a], and won the IPC-2011 tempo-
ral deterministic satisficing track at ICAPS 2011. DAE uses
an Evolutionary Algorithm (EA) to evolve sequences of par-
tial states for the problem at hand, calling an embedded plan-
ner to solve in turn each subproblem of the sequence. If the
embedded planner is able to compute metrics along any plan
it builds, then MO-DAE will take care of the global search for
the Pareto front, without the need for the embedded planner
to be metric sensitive. After a brief survey of Multiobjective
Evolutionary Algorithms (MOEAs, Section 3), Section 4.2
details DAE and MO-DAE.

Although there exist many single-objective planning
benchmarks, thanks to the IPC competitions, none has been
proposed yet for multiobjective planning. Both a specific tun-
able artificial benchmark, and a general method to turn some
well-known IPC benchmarks into multiobjective domains are
presented in Section 5. In Section 6, MO-DAEYAHSP, the in-
stantiation of MO-DAEX with YAHSP [Vidal, 2004] as the
embedded planner, is validated on these instances, and com-
pared to the metric-based approach using the metric sensi-
tive planner LPG [Gerevini et al., 2008], following Sroka and
Long [2012b]. Finally, Section 7 discusses these results and
sketches the directions for further research.

2 Multiobjective AI Planning

Temporal planning and numerical state variables have been
formalized in PDDL2.1 [Fox and Long, 2003], as well as met-

ric functions that allow to optimize an aggregation of some
criteria based on time and numerical variables. This language
has been extended in PDDL3 [Gerevini and Long, 2006] in
order to express preferences and soft constraints, which de
facto increase the expressivity and complexity of the metric
function to be optimized. However, even though optimizing
such functions is a standard way to tackle multiobjective op-
timization problems, its extension to Pareto-based multiob-
jective optimization is not straightforward and nothing had
been proposed in AI Planning for that purpose until very re-
cently. Indeed, all the literature about multi-criteria/objective
planning, such as the works on the planners GRT [Refanidis
and Vlahavas, 2003], SAPA [Do and Kambhampati, 2003] or
LPG [Gerevini et al., 2008], are concerned with optimizing
an aggregation of the objectives.

The concept of metric sensitive planners has been recently
defined in Sroka and Long [2012a], in order to identify plan-
ners able to give diverse solutions when faced with – possibly
small – variations of the metric function. With such a planner,
the Pareto front can be approximated by adequately weight-
ing an aggregation of the objectives and running the planner
several times within some time limits. An example of such a
metric function is α×makespan+(1−α)×cost, where alpha
is sampled in [0, 1]. The authors experimented several candi-
dates and retained LPG which exhibited by far the best per-
formance in terms of metric sensitivity and generated Pareto
front quality [Sroka and Long, 2012b]. For this reason, this
approach, named here MO-LPG, will also be used as a base-
line for the validation here (Section 6). To overcome the met-
ric insensitivity limitation of other planners, Sroka and Long
[2012a] suggest to add artificial bounds on numerical vari-
ables, which gave comparable results with the other planners
in comparison with MO-LPG. However, this requires signif-
icantly more engineering, as defining the bounds requires an
in-depth analysis of the planning problem, while defining ob-
jective weights is straightforward.

3 Multiobjective Evolutionary Algorithms

Evolutionary Algorithms (EAs) [Eiben and Smith, 2003] are
heuristic stochastic search algorithms that crudely mimic nat-
ural evolution. A population of individuals (a set of poten-
tial solutions in the search space) evolves according to two
main driving forces: reproduction through blind variations
(random moves in the search space) and natural selection,
aka “survival of the fittest”. Blind variations depend on the
search space, and are usually classified into crossover opera-
tors, that involve two or more parent individuals to create one
offspring, and mutation operators, that modify a single parent
to create one offspring. Selection is applied to choose which
parents will reproduce, and also which from the parents plus
offspring will survive to the next generation. It can be deter-
ministic or stochastic, but has to be biased toward the fittest
individuals.

In the case of single-objective optimization of some ob-
jective function F (e.g., to be minimized), the fitness of
an individual x simply is the value F(x). In the case of
multiobjective optimization, however, Pareto-dominance is
not a total order, and hence cannot be used as sole selec-



tion criterion. Several Pareto-based Multiobjective Evolu-
tionary Algorithms (MOEAs) have thus been proposed, that
use some diversity measure as a secondary criterion when
Pareto-dominance cannot distinguish between individuals.

Several indicators have been proposed for comparing the
results of different multiobjective optimization algorithms,
i.e., that compare sets of solutions. The most popular is the
hypervolume indicator (Figure 1), because it is the only one
that has been proved to-date to be consistent with the Pareto-
dominance relation. But indicators can also be used to build
a fitness function for some MOEAs: the fitness of an indi-
vidual (compared to the other individuals in the population)
is its contribution to the indicator of the population, i.e., the
difference between the indicator of the whole population and
that of the population without it. Such MOEAs are called In-
dicator Based Evolutionary Algorithms (IBEA) [Zitzler and
Künzli, 2004] – and IBEAH, that will be used throughout this
paper, is the one using the hypervolume indicator.

4 Divide-and-Evolve

4.1 Single-Objective Divide-and-Evolve

This section introduces the main principles of the satisficing
planner DAE, referring to [Bibaı̈ et al., 2010a] for a com-
prehensive presentation. Given a planning problem P =
〈A,O, I,G〉, where A denotes the set of atoms, O the set
of actions, I the initial state, and G the goal state, DAEX

searches the space of sequences of partial states (si)i∈[0,n+1],
with s0 = I and sn+1 = G: DAEX looks for the se-
quence such that the plan σ obtained by compressing sub-
plans σi found by some embedded planner X as solutions
of Pi = 〈A,O, ŝi, si+1〉i∈[0,n] has the best possible quality
(with ŝi denoting the final state reached by applying σi−1

from ŝi−1). Each intermediate state (si)i∈[1,n] is first seen
as a set of goals and then completed as a new initial state
for the next step by simply applying the plan found to reach
it. In order to reduce the number of atoms used to describe
these states, DAE relies on the admissible heuristic function
h1 [Haslum and Geffner, 2000]: only the ones that are pos-
sibly true according to h1 are considered. Furthermore, mu-
tually exclusive atoms, which can be computed at low cost,
are also forbidden in intermediate states si. These two rules
are strictly imposed during the random initialization phase,
and progressively relaxed during the search phase. The com-
pression of subplans is required by temporal planning where
actions can run concurrently: a simple concatenation would
obviously not produce the minimal makespan.

Due to the weak structure of the search space (variable-
length sequences of variable-length lists of atoms), Evolu-
tionary Algorithms (EAs) have been chosen as the method
of choice: EAs are metaheuristics that are flexible enough
to explore such spaces, as long as they are provided with
some stochastic variation operators (aka move operators in
the heuristic search community) – and of course some objec-
tive function to optimize.

Variation operators in DAE are (i) a crossover opera-
tor, a straightforward adaptation of the standard one-point
crossover to variable-length sequences; and (ii) different mu-
tation operators, that modify the sequence at hand either at

the sequence level, or at the state level, randomly adding or
removing one item (state or atom).

The objective value is obtained by running the embedded
planner on the successive subproblems. When the goal state
is reached, a feasibility fitness is computed based on the com-
pression of solution subplans, favoring quality; otherwise, an
unfeasibility fitness is computed, implementing a gradient to-
wards satisfiability (see [Bibaı̈ et al., 2010a] for details).

DAE can embed any existing planner, and has to-date been
successful with both the optimal planner CPT [Vidal and
Geffner, 2004] and the lookahead heuristic-based satisficing
planner YAHSP [Vidal, 2004]. The latter has been demon-
strated to outperform the former when used within DAE
[Bibaı̈ et al., 2010b], so only DAEYAHSP has been considered
in this work.

4.2 Multiobjective Divide-and-Evolve

Two modifications of DAEYAHSP are needed to turn it into a
MOEA: (i) use some multiobjective selection (Section 3) in
lieu of the single-objective tournament selection that is used
in the single-objective context; (ii) use the embedded plan-
ner to compute the values of both objectives (e.g., makespan
and cost). The former modification is straightforward, and
several alternatives have been experimented within [Khouad-
jia et al., 2013]. The conclusion is that IBEAH [Zitzler
and Künzli, 2004] (see Section 3) performs best on instances
MULTIZENO (see Section 5) – and only this one will be men-
tioned in the following.

As explained above, the computation of the fitness is done
by YAHSP – and YAHSP, like all known planners to-date,
is a single-objective planner. It is nevertheless possible, since
PDDL 2.1, to specify other metrics that are to be computed
throughout the execution of the final plan. For the metric sen-
sitive planners, this metric is directly used to bias the search,
while some other planners, like YAHSP, simply compute it
along the solution plan without interfering with the search.
However, because YAHSP is both a temporal planner and a
cost planner, two strategies are possible for YAHSP within
MO-DAE: it can be asked to optimize only the makespan
(resp. the cost), and to simply compute the cost (resp. the
makespan) when executing the solution plan.

In MO-DAEYAHSP, the choice between both strategies
is governed by user-defined weights. For each individual,
the actual strategy is randomly chosen according to those
weights, and applied to all subproblems of the individual. An-
other important feature of YAHSP for the computation of the
objectives of MO-DAEYAHSP is its stochasticity: YAHSP
explores the plan space stochastically, and different runs on
the same instance with different random seeds give different
answers. This stochasticity, and the effect of the choice of
YAHSP strategy, can be observed on Figure 4a, that rep-
resent the different objective values of the same individual
obtained within MO-DAEYAHSP when YAHSP uses either
the makespan strategy, or the cost strategy, or strategies that
are independently randomly chosen for each subproblem: the
bias is clear when a unique strategy is chosen for the MUL-
TIZENO9 instance, and the corresponding part of the objec-
tive space is sampled, while the hybrid strategy spreads the
values in-between these two clouds of points. Note that on



Dur. A B C

1 2 2 2

2 4 4 3

3 6 6 4

4 3 3 1

5 5 5 2

6 3 3 1

7 2 2 2

8 4 4 3

9 6 6 4

Cost

1 30 30 30

2 20 11 29

3 10 10 10

Figure 2: Schematic view, and 3 instances, of MULTIZENO

benchmark. Flight durations are attached to the possible
routes (white circles), costs/risks are attached to landing in
the central cities (grey circles). Three sets of values are given
on the right, corresponding to Pareto fronts of Figure 3.

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

	


�
�


�������

�����
��
����
�

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

	


�
�


�������

�����
��
����
�

����

����

����

����

����

����

��� ��� ��� ��� ���

�
	


�

�
��
�
�

�
���	�
	����	�

A - Linear B - Convex C - Concave

Figure 3: Pareto fronts for the instances from Figure 2.

some other instances (OPENSTACKS, FLOORTILE, see Sec-
tion 5), the three strategies are absolutely indistinguishable
(not shown here).

Some preliminary experiments were also conducted in
order to try to take advantage of the stochastic nature of
YAHSP evaluations, running YAHSP several times for each
individual and keeping the best plan. But surprisingly, even
without considering the additional CPU cost, such approach
proved detrimental on the quality of the Pareto approxima-
tion: such observation had also been made when trying to
hybridize EAs with local search methods (iterated YAHSP
can indeed be viewed as some sort of local search) - the local
search should not try to improve the solutions too early.

Final note regarding the evaluation: the strategy weights,
like all parameters of MO-DAEYAHSP, have been tuned using
ParamILS (see Section 6.1), and it turned out that the optimal
values for MO-DAEYAHSP have always been equal weights:
something that was to be expected, as no objective should be
preferred to the other.

5 Benchmark Domains and Instances

Two approaches were used to design multiobjective bench-
mark problems: first, using a highly simplified version of the
well-known IPC domain ZENOTRAVEL, a simple and easy to
tune domain was built, and the exact Pareto front can be eas-
ily identified for all its instances. The other approach is based
on modifying IPC-2011 problems.

5.1 MULTIZENO Instances

The MULTIZENO problem domain involves cities, passen-
gers, and planes. One plane can carry at most one passen-

ger from one city to another (action fly), following an ex-
isting link of Figure 2, with corresponding flight durations
(see Table). Costs are landing taxes for each of the middle
cities. All instances in this work have 2 planes, all passengers
are initially in city 0, and must reach city 4. The sim-
plest non-trivial instance MULTIZENO3 has 3 passengers. In
its default configuration (column A in Table), the makespan-
optimal solution has a total makespan of 8, as the reader will
easily find out. But all flights have to land in city 1, result-
ing in a cost of 120. The alternative route through city 2

(resp. city 3) has a makespan of 16 (resp. 24), and a cost
of 80 (resp. 40). By increasing the number of passengers,
and modifying the flight durations and landing costs, differ-
ent trade-offs are made possible. Figure 3 displays the 3 exact
Pareto fronts (in the makespan × cost space) corresponding
to the durations and costs of the table in Figure 2, for a total
of 6 passengers (aka MULTIZENO6). Note that the second
objective could also be considered as a risk [Khouadjia et al.,
2013], and the objective is then to minimize the maximum
risk encountered during the execution of the plan. This vari-
ant of MULTIZENO domain will not be considered here.

5.2 Multi-Objectivization of IPC Problems

Two satisficing tracks were open at IPC-2011: sequential sat-
isficing, i.e., sequential STRIPS planning in which actions
have a cost and where the total cost is to be minimized, and
temporal satisficing, where actions have a duration and can
be run in parallel and where the total makespan is to be min-
imized2. Three possible ways of generating multiobjective
instances have been considered. When the domains appeared
in both tracks, with the same instances, and when the cost
increases as the makespan decreases, a simple merge of both
instances is enough. This was the case for domain ELEVA-
TORS.

For some domains, the cost values of the cost instance
did not ensure that both objectives would be antagonistic.
This is the case for CREWPLANNING, FLOORTILE, and PAR-
CPRINTER. For these instances we arbitrarily set the cost
values to a maximum cost minus the value of the duration.
FLOORTILE will be the typical domain from this category
considered here. Finally, for the OPENSTACKS domain, the
cost version has a single costly action, that penalizes the use
of a new stack: such scheme is very general in scheduling
applications with resources (with more resources, things get
done faster, but cost more). For this domain, this cost action
was simply added to the temporal domain.

6 Experiments

The goal of the following experiments is to assess the effi-
ciency of MO-DAEYAHSP, and its robustness with respect
to some variety of planning domains and the size of the in-
stances. The instances presented in Section 5 will be used in
turn, and the performance of MO-DAEYAHSP will also be as-
sessed against the baseline MO-LPG, the approach proposed
in Sroka and Long [2012b] (see Section 2) which will also be
evaluated. The experimental conditions will first be detailed.

2www.plg.inf.uc3m.es/ipc2011-deterministic



6.1 Parameter Tuning – Experimental Conditions

DAEYAHSP, and even more so, MO-DAEYAHSP, have a num-
ber of free parameters that need to be tuned in order to ob-
tain the best possible results. It is well-known that param-
eter tuning can make a complete difference between failure
and success for the same algorithm on the same problem. In
this work, all user-defined parameters have been tuned us-
ing the framework PARAMILS [Hutter et al., 2009], that han-
dles any parameterized algorithm whose parameters can be
discretized, and uses some Iterated Local Search (ILS) to ex-
plore the space of parameter configurations. Furthermore, be-
cause the goal of this work is to demonstrate the efficiency of
MO-DAE to robustly find a good approximation of the Pareto
front of multiobjective AI Planning problems, those parame-
ters were tuned anew for one instance of moderate complexity
in each domain (see Section 5.2), and the resulting parameter
set was used for all instances of the same domain. This rep-
resents a trade-off between CPU cost and performance: there
is little hope to ever find some universal parameters for DAE,
that would allow DAE to obtain its best quality performance
on all possible instances; on the other hand, such best qual-
ity can obviously be obtained by optimizing the parameters
anew for each new instance, but at the price of a huge CPU
cost. On the other hand, following Sroka and Long [2012b],
within MO-LPG, LPG was ran in local-search mode, and
given the same overall CPU time for its multiple restarts.

The main goal of the experiments presented here is to as-
sess the ability of MO-DAEYAHSP to find good quality ap-
proximations of the Pareto front. Hence the performance of
the different algorithms will be reported w.r.t. the quality
of the identified Pareto front after an arbitrary CPU time of
30 min (long enough to allow the algorithms to reach some
steady population, as confirmed by preliminary runs). All
runs were conducted on one core of the same 24-cores server
with Xeon X5650@2.67GHz processors, running Ubuntu
10.04 Lucid. DAE was implement within the PARADISEO-
MOEO framework [Liefooghe et al., 2007]. For all exper-
iments, 11 independent runs were performed. All the per-
formance assessment procedures, including the hypervolume
calculations, have been achieved using the PISA performance
assessment tool suite [Bleuler et al., 2003].

6.2 Results on MULTIZENO Instances

Experiments have been conducted on the 3, 6 and 9 passen-
gers versions of MULTIZENO (Section 5.1), with the Lin-
ear configuration (Figure 3-a). The MULTIZENO3 instance
proved to be too easy, and both MO-DAEYAHSP and MO-
LPG could rapidly find the complete Pareto front. For MUL-
TIZENO6, the situation is drastically different for MO-LPG,
that is only able to find a few points far away from the Pareto
front (see Figure 4c). On the other hand, MO-DAEYAHSP per-
fectly identifies the complete Pareto front in all runs for the
“Linear” and “Concave” cases, while 2 runs out of 11 miss
one point each in the “Convex” case. Finally, when tack-
ling MULTIZENO9 (and while MO-LPG fails to find a single
feasible plan), MO-DAEYAHSP is able to approach the true
Pareto front rather robustly, as witnessed by Figure 4b, that
represents the aggregated 11 Pareto fronts of the 11 indepen-
dent runs.

6.3 Results on Modified IPC-2011 Instances

Figure 5 exhibits some results on multi-objectivized IPC-
2011 instances (Section 5.2) for MO-DAEYAHSP and MO-
LPG. Indeed, because the exact Pareto front of these in-
stances is unknown, the only possible assessment of MO-
DAEYAHSP is by comparison to MO-LPG results.

For the ELEVATORS domain, instances 1, 5, 10 were ex-
perimented. For instance 1 (Figure 5a), MO-DAEYAHSP and
MO-LPG find exactly the same Pareto front, but MO-LPG
is unable to find any solution for instances 5 and above. On
the other hand, MO-DAEYAHSP identifies some Pareto front,
as can be seen for instance 10 on Figure 5d.

On the OPENSTACKS domain, experiments involved in-
stances 1, 5, 10, 15 and 20. For the small instances, 5 (Fig-
ure 5b), and 1 and 10 (not shown), MO-DAEYAHSP clearly
finds a much better Pareto front than MO-LPG. For larger
instances (15 and 20, not shown), the situation is even worse
for MO-LPG, that only finds very poor solutions (w.r.t. the
ones found by MO-DAEYAHSP). As an illustration of how
both algorithms explore the objective space, Figures 5e and
5f show that the complete solution set computed by DAE
(merge of the 11 independent approximations) is nicely dis-
tributed along the Pareto front, whereas the solutions of LPG
are much more scattered in the design space.

The situation changes for FLOORTILE domain: instances
0, 3 and 4 were used, and here MO-LPG outperforms MO-
DAEYAHSP, as can be seen for instance 3 in Figure 5c. How-
ever, as the instance size increases (instance 4 and above), the
gap between LPG and DAE decreases (not shown here).

7 Discussion and Conclusion

Not all planners are metric sensitive, in the sense advocated
by Sroka and Long [2012a]: the main contribution of this
work is to demonstrate the ability of the MO-DAE approach
to turn any planner into a multiobjective planner, provided it
can reason on either objectives alone (e.g., the makespan and
the cost), as has been done here with YAHSP. The result-
ing algorithm is a truly Pareto-based multiobjective planner,
that consistently outperforms the MO-LPG metric-based ap-
proach on all instances tested here except the small FLOOR-
TILE instances. MO-DAEYAHSP is able to solve much larger
instances, and to find most of the time better approximations
of the Pareto front than MO-LPG. More work is needed to
improve even more the MO-DAE approach to multiobjective
planning. But we strongly believe that the rationale underly-
ing the original DAE is still valid, and that the decomposition-
based approach that it implements will push upward the com-
plexity of the problems that we can solve.

The second contribution of this work is the proposition for
procedures to build multiobjective benchmark suites for AI
Planning. There is no need to advocate the usefulness of
large and diverse benchmark suites: in the context of single-
objective optimization, advances in research (from the differ-
ent versions of PDDL to the numerous powerful planners we
know of today) have coevolved together with the design of
the successive IPC benchmarks. Because multiobjective opti-
mization is mandatory in order to tackle real-world problems,
we strongly believe that progress in multiobjective planners
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(a) Importance of YAHSP strategy
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(b) MULTIZENO9: exact (•) & approx. (�)
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(c) MULTIZENO6: DAE (�) vs LPG (△)

Figure 4: Experiments on MULTIZENO instances (see text for details).
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(a) ELEVATORS01:DAE (�) vs LPG (△)
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(b) OPENSTACKS5: DAE (�) vs LPG (△)
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(c) FLOORTILE03: DAE (�) vs LPG (△)
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(d) ELEVATORS10: DAE
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(e) OPENSTACKS15: DAE

���

���

���

���

���

���

���� �	�� �	�� ����� ����� ����� ����� ����� �����



��




��������

���

(f) OPENSTACKS15: LPG

Figure 5: Pareto fronts identified by DAE and LPG for multi-objectivized IPC-2011 instances (a – c) and complete solution
sets found by DAE (d and e) and by LPG (f), though displayed with different scales.

requires as well the design of meaningful multiobjective AI
Planning benchmarks with gradual difficulties. The MULTI-
ZENO suite detailed here is a first step in this direction: it
is a tunable artificial testbed, and was shown to be able to
generate interesting Pareto fronts (e.g. convex with a knee
as well as non-convex). Furthermore, it has many degrees
of freedom that still have not been explored: other combina-
tions of durations and makespans, more intermediate cities,
with more possible routes between them. Another possi-
bility would have been to use the benchmarks designed by
Sroka and Long [2012a; 2012b], but unfortunately the current
implementation of MO-DAEYAHSP relies on YAHSP, which
does not handle numerical state variables except for the spe-
cial case of action costs. However, we believe that multi-
objective instances with time and cost objectives are already
challenging enough, and could enable the use or extension of
many more existing planners which mainly optimize cost or
time. The multi-objectivization of IPC-2011 domains is an-
other possible route we have sketched, though more work is
still required to transform the single-objective domains into

“interesting” multiobjective ones, even in the favorable case
where both a cost and a temporal version of the same do-
main already exist. When both objectives are not antagonistic
enough, setting one as the inverse of the other does the trick,
but the Pareto fronts remain close to linear fronts, while more
interesting fronts (e.g. non-convex, “discontinuous”, . . . ) are
necessary to test different characteristics of the planners. Fur-
thermore, such multiobjective instances can hardly be tackled
by state-of-the-art metric sensitive planners, which are among
the only potential competitors as of today: beside the general
difficulty of finding the proper weights depending on the ob-
jective scales, linear combinations of the objectives can only
give in that case one single non-dominated plan, and other ag-
gregations are not guaranteed to lead to points on the Pareto
front. Final word on the modified IPC-2011 instances, the
failure of LPG on even rather small instances suggests that
we should probably have started with easiest instances (e.g.,
IPC-2008), since at IPC-2011 the easiest instances are signif-
icantly harder than those of IPC-2008.
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Abstract

To improve overall equipment efficiency (OEE) of
cluster tools, a differential evolution (DE) algorithm
was proposed in the paper, with residency time con-
straints considered in the process modules. To begin
with, scheduling problem domains in cluster tools were
supposed and defined, then a non-linear programming
model was developed to minimize the makespan with
no defective wafers. Based on the model, a scheduling
algorithm using the DE algorithm was presented. The
performance of the algorithm proposed was analyzed
and evaluated by simulation experiments. Results indi-
cated that the proposed algorithm was valid and practi-
cal to generate satisfied scheduling solutions.

1 Introduction

In semiconductor manufacturing fabrications, processes
consist of oxidizing a wafer surface, coating photosensitive
chemicals onto the surface, exposing it to a circuit image
from a light source, developing and etching the circuit pat-
tern, depositing other chemicals onto it, diffusing and im-
planting additional chemicals on the etched pattern, and so
on. Cluster tools (Zant 2004), which are complex in the
framework and prohibitively expensive in cost, have been
increasingly used for most of these fabrication processes.
Thus, in order to schedule and control cluster tools to im-
prove the Overall Equipment Efficiency (OEE), developing
effective and practical methods has become significant tasks
to be dealt with in the semiconductor manufacturing indus-
try.

According to SEMI Standard E21-96, a cluster tool is de-
fined as an integrated, environmentally isolated and vacu-
umed manufacturing system consisting of process, transport,
and cassette modules mechanically linked together. Fig. 1
shows a cluster tool with 4 process modules (PM) and a
single-armed robot as the transport module (TM). There
are many new challenges for this special type of integrated
manufacturing systems, which are quite different with tradi-
tional manufacturing situations. Wafers are transported by
the single-armed robot between process modules and /or
cassette modules. At most one wafer can stay (for process-
ing or waiting) at a processing module and the robot is able

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A single-arm cluster tool with 4 process modules

to move only one wafer at a time. There are residency time
constraints for processing wafers in process modules. That
means the time of each wafer in process modules cannot ex-
ceed the upper bounds allowed, i.e. maximal residency times
permitted. This forms a processing time window for a wafer
in each process. If the residency time constraints were vio-
lated, the wafers would become defective. Moreover, there
is no buffer between adjacent process modules. As a result,
after a wafer has completed its operations in a process mod-
ule, including processing the wafer and staying at the pro-
cess module within the residency bound after processing,
the wafer must be moved to the next module immediately
by the single-armed robot.

For the multi-type wafer case, the objective of scheduling
discussed is to minimize the makespan of wafers in the sys-
tem. The scheduling procedure to improve manufacturing
performances of cluster tools can be divided into two stages.
The first stage is to determine the sequence of wafers en-
tering the cluster tool for processing, and the second one is
to schedule the operation sequence of the transport single-
armed robot in the cluster tool. Combinations of the two
stages will give the final executable scheduling solutions.
To the best of our knowledge, little work has been done on
scheduling in cluster tools where the processing sequence



and the operation sequence are considered simultaneously.

In this paper, a differential evolution (DE) algorithm is ap-
plied to optimize the processing sequence. A try and error-
based scheduling algorithm (TE) (Zhou and Li 2012) is used
to optimize the operation sequence. Hence integrating the
two scheduling stages proposed in the paper differs signifi-
cantly from past work.

2 Literature Review

In order to complete a wafer as early as possible, it is rea-
sonable to start it as early as possible at the appropriate pro-
cess modules. Based on this principle, Song et al. (Song,
Zabinsky, and Storch 1993) suggest a heuristic algorithm
called the earliest starting time heuristic (EST) in single-
type job scenarios. Paul et al. (Paul, Bierwirth, and Kopfer
2007) present an approach based on defining time windows
related to any activity. These time windows are continuously
adjusted, giving an adaptive time window (ATW) heuris-
tic. Hindi and Fleszar (Hindi and Fleszar 2004) propose a
heuristic algorithm based on a non-standard constraints sat-
isfaction model with routine ordering, forward checking and
backtracking. Kharbeche et al. (Kharbeche et al. 2011) and
Carlier et al. (Carlier et al. 2010) propose an approximate de-
composition algorithm which breaks and solves the schedul-
ing problem in two stages, i.e. a flow shop problem with ad-
ditional constraints (blocking and transportation times) and
a single machine problem with precedence constraints, time
lags, and setup times. In order to solve these two problems,
an exact branch-and-bound algorithm and a genetic algo-
rithm are proposed.

Kim and Lee (Kim and Lee 2008) propose an extended
Petri net for modeling the scheduling problems and analyze
scheduling conflicts with constraints in residency time and
resource capacity. Yih (Yih 1994) presents a heuristic algo-
rithm based on trial and error methods, using the residency
time of the coming wafer to eliminate resource conflicts.
Chauvet et al. (Chauvet, Proth, and Wardi 2001) present a
time-window based scheduling algorithm for a no-wait man-
ufacturing system with constraints in residency processing
time. However, the authors do not elaborate the time re-
quired for the transportation of jobs. Yoon and Lee (Yoon
and Lee 2005) develop a real-time scheduling algorithm
using a temporal constraint set to form the problem. The
scheduling algorithm consists of two procedures. The first
one computes feasible operations for newly inserted wafers
in every process module, expressed with a temporal con-
straint set, and the best schedule is built using backward in-
ference. Lee et al. (Lee, Lee, and Lee 2007) schedule a wet
station with multiple-part flows and multiple-wafer handling
robots using a Petri net model without considering process-
ing time windows.

3 Methodology

3.1 Problem Formulation

The notations used to formulate the scheduling problem are
listed as follows.

m: the number of process modules;

PMi: the process module indexed by i, where i =
1, 2, ...,m;

PM0: the cassette module for input wafers;

PMm+1: the cassette module for output wafers;

n: the number of wafers to be processed;

Wk: the wafer indexed by k, where k = 1, 2, ..., n;

Q: a processing sequence of n wafers where Q =
(q1, q2, ..., qh, ..., qn) and qh is the h-th wafer enters
the cluster tool based on the corresponding sequence;

f(Q): the makespan for a given processing sequence Q of
wafers based on the TE algorithm;

QRD: a random processing sequence;

QDE : a processing sequence based on the DE algorithm.

The problem here is to decide a processing sequence of
wafers which minimizes the makespan T (Q). It is a permu-
tation problem. To formulate it, 0-1 decision variables Yh,ks
are defined, i.e.

Yh,k =

{

1 if qh = k,

0 otherwise,
for all h, k = 1, 2, ..., n.

It means that the waferWk is the h-th wafer processed in
the processing sequence. Yh,k should satisfy the following
constraints:

n
∑

h=1

Yh,k = 1 k = 1, 2, ..., n (1)

n
∑

k=1

Yh,k = 1 h = 1, 2, ..., n (2)

Equation (1) shows that the waferWk can enter the cluster
tool to be processed at only one position in the sequence
Q. Equation (2) indicates that there is only one wafer at the
h-th position in the sequence Q. Equations (1) and (2) are
the necessary and sufficient conditions to generate a feasible
processing sequence.

As mentioned above, the TE algorithm is used to deal with
the second scheduling stage and obtain the makespan f(Q),
under the conditions which the sequence Q is determined.
The objective function of the scheduling problem can be de-
scribed as follows:

min f(Q) (3)

Therefore, the scheduling problem mentioned above can
be expressed as a nonlinear programming problem with (3)
as the objective function, equations (1) and (2) as constraints
and the TE algorithm is used to adopt the second scheduling
stage.

3.2 Canonical Differential Evolution

Differential evolution algorithm is firstly proposed by Storn
and Price (Storn and Price 1997) for global optimization
over continuous spaces. More details can be referred to Price
et al. (Price, Storn, and Lampinen 2005). It is a population
based evolutionary type algorithm including initialization,



mutation, crossover and selection phases. There are NP D-
dimensional vectors xi,g , where i = 1, 2, ..., NP , as a popu-
lation (Pg) to form the g-th generation, where g = 0, 1, 2, ...,
i.e. Pg = {x1,g, x2,g, ..., xNP,g}.
NP does not change during the minimization process.

xi,g is also named as a target vector. The DE algorithm’s
basic processes are given in details as follows. During the
initialization phase, since there is no initial intelligent in-
formation for the system, the initial population (i.e. the 0-th
generation) is randomly generated according to a uniform
probability distribution in the search region. During the mu-
tation, a mutant vector is generated according to Equation
(4) for each target vector xi,g , where i = 1, 2, ..., NP .

vi,g+1 = xr1,g + F (xx2,g − xr3,g) (4)

r1, r2 and r3 are mutually different random indexes in
{1, 2, ..., NP}. Moreover, the three random indexes are cho-
sen to be different from the running index i. F is a real
and constant amplification factor, where F ∈ [0, 1]. Dur-
ing the crossover phase, the trial vectors ui,g+1 are obtained
according to Equation (5) based on target vectors and mutant
vectors, where ui,g+1 = (u1,i,g+1, u2,i,g+1, ..., uD,i,g+1).
uj,i,g+1 is the j-th component of the vector ui,g+1.

uj,i,g+1 =

{

vj,i,g+1 if FR(j) ≤ CR or j = IR(i)

xj,i,g if FR(j) > CR or j �= IR(i)

where j = 1, 2, ..., D

(5)

vj,i,g+1 and xj,i,g are the j-th component of the vectors
vi,g+1 and xi,g respectively. FR(j) is a randomly generated
float number for each j where FR(j) ∈ (0, 1). IR(i) is a
randomly generated integer in the set{1, 2, ..., D} each time.
CR is the crossover constant in [0, 1] determined by the user.
The selection phase decides how to obtain each number of
the generation g + 1. During this phase, each trial vector
ui,g+1 is compared to the target vector xi, g using the given
evaluation function. If the vector ui,g+1 yields a better value,
i.e. a smaller cost for minimization problem, then xi,g+1 is
set to be ui,g+1; otherwise, the old value xi,g is retained to
the next generation. The evaluation function given depends
on special problems.

Finally, the iteration is terminated when the generation
achieves the pre-set maximal generation number.

3.3 Transformation Approach

Parameters in the DE algorithm are floating-point numbers.
Although DE is simple and effective, it cannot be used for
combinatorial optimization problems (COPs). The sequenc-
ing scheduling problem researched in this paper is a typi-
cal COP. To solve this COP, Nearchou and Omirou’s (2006)
approach (NOA) is applied in this paper to correspond a
floating-point vector to an integer vector which describes a
sequence or permutation of the COP. For NOA, each com-
ponent of the vectors xj,i,g , vj,i,g and uj,i,g lie within the in-
terval [0, 1], i.e. xj,i,g , vj,i,g and uj,i,g ∈ [0, 1]. Components

zj,i,g of an integer vector for sequence zi,g are mutually dif-
ferent integers in the set {1, 2, ..., D}. The transformation
approach from xi,g to zi,g is as follows.
Step 1: The range [0, 1] is divided into D equal

sub-ranges. They are ordered as SR =
([0, 1

D
), [ 1

D
, 2

D
), ..., [D−1

D
, 1]). The h-th interval

is [h−1

D
, h
D
), where h = 1, 2, ..., D.

Step 2: For each component xj,i,g of xi,g , if xj,i,g lies in the
h-th interval of SR, then, set zj,i,g = h.

Step 3: Set the duplicate components of zi,g as 0 and then
fill the components equal to 0 by selecting randomly
the unused integers in the set {1, 2, ..., D}.

For example, set D = 5 and
xi,g = (0.42, 0.57, 0.23, 0.89, 0.34). SR =
([0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1]). For
Step 2, xi,g = (3, 3, 2, 5, 2). In Step 3, xi,g = (3, 0, 2, 5, 0),
and integers 1 and 4 are not used now. They are selected ran-
domly as the components equal to 0, i.e., the 2nd and the 4th
components for this example. Then, xi,g = (3, 4, 2, 5, 1).
Further explanation can be found to Nearchou and Omirou’s
paper (Nearchou and Omirou 2006).

3.4 Scheduling Algorithm

Using a DE algorithm to solve the sequencing problem men-
tioned above, let the vector dimension D be n, representing
the number of wafers. For this problem, zi,g is the sequence
of wafers which has the same means of Q mentioned above.
During the initialization, set g = 0 and each component
xj,i,0 of every vectorxi, 0 in P0 is randomly generated in
the interval [0, 1]. Each vector xi,0 is transformed to zi,0 ac-
cording to NOA and the related makespan is calculated. The
minimal makespan fbest and the related sequence Qbest are
found. Set parameters CR, F and the maximal generation
numberMaxG.

The procedure of the DE algorithm for the sequencing
problem is described as follows:
Step 1: Generate each mutant vector vi,g+1 for the (g+1)-th

generation according to Equation (4).
Step 2: Generate each trial vector ui,g+1 for the (g + 1)-th

generation according to Equation (5).
Step 3: (Selection phase)
Step 3.1: Set i = 1.
Step 3.2: Transform vectors xi,g and ui,g+1 to zi,g and

zi,g+1 according to NOA respectively.
Step 3.3: If f(zi,g) < f(zi,g+1), then set xi,g as xi,g+1;

otherwise, set ui,g+1 as xi,g+1.
Step 3.4: Transform each vector xi,g to zi,g according to

NOA. If f(zi,g) < fbest, set f(zi,g) as fbest and zi,g
as Qbest.

Step 3.5: Set i = i+ 1. If i < D, go to Step 3.1.
Step 4: Set g = g + 1. If g < MaxG, go to Step 1.
Step 5: Generate the minimal makespan fbest and the related

best sequence Qbest. Complete the algorithm.

4 Simulation analysis

The performance of the proposed DE algorithm is evalu-
ated through extensive simulation experiments. The objec-
tive of the scheduling problem in this paper is to minimize



Figure 2: Improvement rates

Figure 3: Standard deviations of maksespans

the makespan of a number of wafers, say 25. Makespans
of randomly processing sequences are used as reasonable
benchmarks for the proposed DE algorithm. The criterion
called the improvement rate (R) is defined as

R =
f(QRD)− f(QDE)

f(QRD

× 100% (6)

where QRD is a random processing sequence and QDE is
a processing sequence based on the DE algorithm. As men-
tioned above, f(Q) is the makespan related to the given se-
quence Q for a given instance. It is obtained based on the
TE algorithm as the second scheduling algorithm. Another
criterion is called makespan standard deviation. To calculate
this criterion, a given instance is run 30 times. The 30 results
(makespans) form a statistical sample. Then the standard de-
viation is calculated using statistical formula.

Set the number of wafers n = 25, i.e. a lot, and the
number of process modules m = 8. Processing times
and most permitted residency times are randomly generated
from a uniform distribution U [a, b] for each case. There are

Figure 4: Makespans of a given instance

five examples where processing times are from U [60, 80],
U [55, 85], U [50, 90], U [45, 95] and U [40, 100] respectively.
Permitted residency times are all randomly generated from
U [40, 60]. The time unit is second(s). Robot transport time is
equal to 9s. For each case, the improvement rate is the mean
of 15 instances in each example.

For the DE algorithm, a population of generation NP =
100, maximal generation number MaxG = 1000 are used.
The constant amplification factor F = 0.5 and the crossover
rate R = 0.5.

The simulation program is coded in Visual C++ 6.0 to run
on the IBM personal computer with 160GB hard disk, 1GB
DDR2 memory and 2.00 GHz Intel Core 2 CPU.

Fig. 2 shows the improvement rates for the 5 cases. The
smallest R = 7.461% and the largest R = 9.074%. The
improvement rates are between R = 7.461% and R =
9.074%. It shows that the DE algorithm is effective to ob-
tain a smaller makespan compared with the case without DE
algorithm.

Since DE algorithm is a stochastic scheduling algorithm,
it obtains different results (makespan) for each run of the
same given instance. The makespan standard deviation pro-
vides the stability of the proposed algorithm. When the stan-
dard deviation of makespan is small, it means the algorithm
always achieves a better scheduling performance in the in-
stance. Fig. 3 shows the results of the 5 cases. For each case,
an instance is selected and it is run 30 times during the sim-
ulation. The makespan standard deviations from DE algo-
rithm are all far less than those without DE algorithm. It
means that the DE algorithm is more stable in all the 5 cases.
Fig. 4 shows the makespans for an instance from U [55, 85].
It is run 30 times. Each point is related to a makespan for a
run, i.e. an iteration index. It shows that DE algorithm gives
better stability.

5 Conclusions

In this paper, the DE algorithm is applied to schedule pro-
cessing sequence of wafers in cluster tools. To evaluate the
proposed algorithm, experiment simulation is designed and



implemented. The simulation results show that: 1) the wafer
processing sequence has a greater impact on scheduling per-
formance in cluster tools. 2) An appropriate algorithm of the
first scheduling stage can improve overall efficiency of clus-
ter tools well. The DE algorithm proposed in this paper can
effectively improve the system efficiency. With reductions in
makespans, more stability can be obtained for diverse cases
of processing time.

In future research, the DE algorithm will be tested to un-
derstand the relationship between the parameters in cases to
improve the performance of the algorithm cases. The DE
algorithm will also be compared with other evolution algo-
rithms.

Acknowledgements

The work described in this paper was supported by a Re-
search Grant from General Research Fund (GRF) of Hong
Kong (RGC # CityU 113609).

References

Carlier, J.; Haouari, M.; Kharbeche, M.; and Moukrim,
A. 2010. An optimization-based heuristic for the robotic
cell problem. European Journal of Operational Research
202(2):636–645.

Chauvet, F.; Proth, J.-M.; and Wardi, Y. 2001. Scheduling
no-wait production with time windows and flexible process-
ing times. IEEE Transactions on Robotics and Automation
17(1):60–69.

Hindi, K. S., and Fleszar, K. 2004. A constraint propagation
heuristic for the single-hoist, multiple-products scheduling
problem. Computer and Industrial Engineering 47(1):91–
101.

Kharbeche, M.; Carlier, J.; Haouari, M.; and Moukrim, A.
2011. Exact methods for the robotic cell problem. Flexible
Services and Manufacturing Journal 23(2):242–261.

Kim, J.-H., and Lee, T.-E. 2008. Schedulability analysis of
time-constrained cluster tools with bounded time variation
by an extended petri-net. IEEE Transactions on Automation
Science and Engineering 5(3):490–503.

Lee, T.-E.; Lee, H.-Y.; and Lee, S.-J. 2007. Scheduling a wet
station for wafer cleaning with multiple job flows and multi-
ple wafer-handling robots. International Journal of Produc-
tion Research 45(3):487–507.

Nearchou, A. C., and Omirou, S. L. 2006. Differential evo-
lution for sequencing and scheduling optimization. Journal
of Heuristics 12(6):395–411.

Paul, H. J.; Bierwirth, C.; and Kopfer, H. 2007. A heuristic
scheduling procedure for multi-item hoist production lines.
International Journal of Production Economics 105(1):54–
69.

Price, K. V.; Storn, R. M.; and Lampinen, J. A. 2005. Differ-
ential Evolution: A Practical Approach to Global Optimiza-
tion. Natural Computing Series. Springer Berlin Heidelberg.

Song, W.; Zabinsky, Z. B.; and Storch, R. L. 1993. An
algorithm for scheduling a chemical processing tank line.
Production Planning and Control 4(4):323–332.

Storn, R., and Price, K. 1997. Differential evolution – a sim-
ple and efficient heuristic for global optimization over con-
tinuous spaces. Journal of Global Optimization 11(4):341–
359.

Yih, Y. 1994. An algorithm for hoist scheduling problems.
International Journal of Production Research 32(3):501–
516.

Yoon, H. J., and Lee, D. Y. 2005. Online scheduling of
integrated single-wafer processing tools with temporal con-
straints. IEEE Transactions on Semiconductor Manufactur-
ing 18(3):390–398.

Zant, P. V. 2004. Microchip Fabrication: A Practical Guide
to Semiconductor Processing. New York: McGraw-Hill, 5th
edition.

Zhou, B.-h., and Li, X. 2012. Try and error-based schedul-
ing algorithm for cluster tools of wafer fabrications with res-
idency time constraints. Journal of Central South University
19(1):187–192.



Local Search in the Space of Valid Plans

Fazlul Hasan Siddiqui and Patrik Haslum
The Australian National University & NICTA Optimisation Research Group

Canberra, Australia
{firstname.lastname}@anu.edu.au

Abstract

Producing high quality plans and producing them fast are two
of the main aims of automated planning. There is, however, a
tension between these two goals: plans of good quality tend
to be hard to find, and plans found quickly are often of poor
quality. Anytime planners try to balance these objectives by
producing plans of better quality over time, but current any-
time planners often are not effective at making use of increas-
ing runtime beyond the first few minutes. Local search in
planning, for example, is a powerful method to quickly find
plans, although their quality is usually far from optimal, as
the behaviour of the search depends crucially on the topology
of the search space. Nevertheless, inspired by its scalability,
we hybridize the local search with bounded-cost search to ap-
ply in the space of valid plans. To perform successful local
search, we make good use of plan structure by decomposing
a given plan into meaningful subplans. Each subplan is op-
timised iteratively, and the resultant improved subplans are
combined with each other, wherever possible, into an over-
all plan. The decomposition exploits block-structured plan
deordering to identify coherent subplans resulting in “easy”
subproblems for the local optimiser. Repeating the above pro-
cess successively produces better quality plans, which ex-
tends the “anytime capability” of current planners – to pro-
vide continuing plan quality improvement at any time scale.

Introduction

Solution quality and solver efficiency are of particular in-
terest in automated planning. Much progress has been made
separately on those two targets, but few planners have the
flexibility to be used at any point on the efficiency–quality
trade-off scale. Planners that are able to find plans quickly
(for example, greedy heuristic search based planners), usu-
ally find plans of poor quality. In contrast, recent advances
in the design of PDDL planners have focused on plan quality
as witnessed by the 6th and 7th International Planning Com-
petition (IPC), but the planners that guarantee solution opti-
mality, or bounded sub-optimality, do not scale up to large
problems. Therefore, a gap exists between the capabilities of
these two classes of planners.

Anytime planners try to strike a balance between (slow)
optimal and fast (but non-optimal) planning methods, by
finding an initial plan, possibly of poor quality, quickly and
then continually finding better plans the more time they are
given. But current anytime planners often are not effective at

making use of increasing runtime beyond the first few min-
utes. Examples range from ARA* (Likhachev et al. 2003)
to LAMA (Richter and Westphal 2010), where the current
best approach, LAMA, is based on restarting weighted A*
search with a schedule of decreasing weights. However, as
the weight used in WA* decreases, it fairly quickly con-
sumes all memory by degenerating into a plain A* search.
Therefore, this method does not quite live up to the promise
of continually improving plans over time.

Apart from planning, finding high quality solutions in rea-
sonable time is also a key issue in combinatorial optimisa-
tion and Operations Research (OR) problems, where local
search is extensively used for improving solution quality.
The basic idea of local search is to start from an initial so-
lution and to search for successive improvements by exam-
ining neighboring solutions. Coming back to planning, lo-
cal search has also been used successfully in several recent
satisficing planners, like FF (Hoffmann and Nebel 2001),
LPG (Gerevini and Serina 2002), and Arvand (Nakhost et al.
2011). Unlike OR, local search in planning is primarily used
to find a solution quickly. However, the neighborhood struc-
ture plays a crucial role in the performance of a local search
method (Hoffmann 2001). In designing such methods, there
is often a compromise between the size of the neighbor-
hood to use and the computational complexity of explor-
ing it. Large Neighborhood Search (LNS) is another local
search technique that is designed to explore large promising
regions of the search space. LNS treats the problem of find-
ing a good neighbor as an optimisation problem. Theoretical
and experimental studies have shown that the increase of the
neighborhood size may improve the effectiveness (quality of
provided solutions) of local search algorithms (Ahuja et al.
2007). Even though local search is incomplete, its scalabil-
ity makes it superior for many large applications. Because of
having complementary strengths, sometimes, local search is
coupled with systematic search in combinatorial problems
to provide better quality solutions.

In summary, our challenge is to design a planning sys-
tem that can continue to improve the plan quality even when
the current best planners stop improving. We are inspired by
the power of local search, in particular, the large neighbor-
hood search for anytime solution quality improvement, and
aim to apply this in domain independent planning. The main
challenge in doing this is identifying good subplans to re-



optimise, and in planning, we need to do that by automatic
and domain independent methods. For this, we make use
of plan deordering. Standard plan deordering, however, re-
quires unordered plan steps to be non-interfering. This lim-
its its applicability, so that in many cases no deordering of a
sequential plan is possible. To overcome this limitation, we
have proposed block decomposition of plans (Siddiqui and
Haslum 2012), which is a new form of plan decomposition
that allows two groups of plan steps to be unordered even
when their constituent steps cannot. This increased deorder-
ing of the plan makes our strategy for finding subplans more
effective.

After the block decomposition, we apply a windowing
heuristic over the block decomposed plan to formulate a
set of windows (comprising one or more subplans, with a
possible reordering of the sequential plan) for local optimi-
sation separately using bounded-cost search. The improved
subplans are recomposed into a complete plan with multiple
such recompositions made if possible, resulting a new better
valid plan. The process is then repeated, starting from the
new best plan. This results in a local search in the space of
valid plans, and we move from one valid plan to the next
by replacing one or more subplans with the improved sub-
plans. Since every successive plan is of better quality, the lo-
cal search performs a hill climbing. The possibility of local
optima in this case is generally low due to the large number
of neighbors in the search space.

Figure 1 shows the compound anytime profile of four dif-
ferent planners. The plan quality improvement (as measured
by the summed IPC quality score) by LAMA rises very
sharply in the beginning, meaning that a small amount of ad-
ditional time at this stage leads to a big improvement (mainly
due to more problems solved), but then quickly flattens out.
From 30 minutes to the time limit (1 hour CPU time), the
improvement is less than 1%. Yet, as the figure also shows,
it is possible to attain a considerably greater improvement
by switching to a different method at this point.

Related Work

A good number of methodologies have been developed so
far for plan quality improvement, most of which can be
broadly classified into three categories as discussed below.

Local Search and Anytime Planning

Local search is a powerful method to address domain inde-
pendent planning and has been used successfully in several
satisficing planners.

LPG (Gerevini and Serina 2002), for example, uses a lo-
cal search in the space of action graphs, which are partic-
ular subgraphs of the planning graph, representing partial
plans (Blum and Furst 1995). The aim of using local search
is to quickly find a plan. The search steps of LPG are certain
graph modifications transforming an action graph into an-
other one (corresponding to particular revisions of the par-
tial plan). If no plan is found after a certain number of search
steps, a restart is performed. It also performs a restart when
a plan has been found. In this way, a sequence of plans
are produced, and only the better quality plans are stored.
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Figure 1: Total IPC quality score as a function of time for
LAMA and three plan optimisation methods, on all prob-
lems used in our experiments (606 problems, of which
LAMA solves 577). The score of a plan is calculated as cref/c,
where c is the cost of the plan and cref the “reference cost”
(best cost of all plans for the problem). Thus, a higher score
reflects a lower-cost plan. Note that the y-axis is truncated.

Therefore, it behaves like an anytime process. FF (Hoffmann
and Nebel 2001) is a forward chaining state space planner,
guided by a heuristic that estimates goal distances by ig-
noring delete lists. It uses an enforced form of hill climb-
ing, combining local and systematic search. FF also em-
ploys a pruning technique that selects a set of promising
successors to each search node, and another pruning tech-
nique that cuts off branches where it appears that some goal
has been achieved too early. Arvand (Nakhost et al. 2011)
is a new addition in this category, which is built upon the
FF heuristic. It uses a forward-chaining local search, and at
each search step the next state is chosen from a set of ran-
dom samples obtained by random walks. In comparison to
the above methods, we use local search in the space of valid
plans rather than the space of invalid or partial plans. They
take small step in the local search having smaller neighbor-
hood, whereas our system uses a large neighborhood search.

Anytime planning, as mentioned before, is particularly
appealing when time is limited. This is because an anytime
algorithm can quickly produce an initial plan, then continue
to return a stream of better plans. The LAMA planner, for
example, uses weighted A* with a large initial value of the
weight to quickly produce an initial plan, then gradually re-
duces the weight, while using the cost of the best found plan
for additional pruning. However, it quickly reaches a limit
where its ability to find further improvements stops. An-
other anytime planner, Lamar (Olsen and Bryce 2011), is
built upon LAMA with the addition of randomizing plan-
ning graph construction so that heuristic plateaus are less
frequent.



Post-Processing for Plan Improvement

There are a good number of methods for plan quality im-
provement working as post-processing tools. Nakhost and
Müller (2010) constructs a plan neighborhood graph (termed
as PNGS), which is a subgraph of the state space of the prob-
lem, limited to a fixed distance d from states traversed by the
current plan. They then search for the cheapest plan in this
subgraph. If it improves on the current plan, the process is
repeated around the new best plan; otherwise, the distance
is increased. ITSA* (Furcy 2006) similarly explores an area
of the state space near the current plan. Compared to our
method these methods can be seen as using a different neigh-
borhood, that includes only small deviations from the cur-
rent plan, but anywhere along the plan. In contrast, we focus
on a small section of the plan at a time, but put no restric-
tion on how much the replacement subplan differs from the
original plan section. As we will show, our method and PNG
search have somewhat complementary strengths. Thus, a lo-
cal search over both types of neighborhoods might be even
more effective.

Ratner and Pohl (1986) use local optimisation for short-
ening solutions to sequential search problems. However,
their approach to subproblem identification is a simple slid-
ing window over consecutive segments of the current path.
This is unlikely to find relevant subproblems for optimis-
ing plan cost in general planning problems, where the se-
quential plan is often an arbitrary interleaving of separate
causal threads. A large majority (at least 75%) of the sub-
problems for which we find an improved subplan correspond
to non-consecutive parts of the original plan. Likewise, Ba-
lyo, Barták and Surynek (2012) use a sliding window to min-
imise parallel plan length (that is, “makespan”, assuming all
actions have unit duration).

The planning-by-rewriting approach (Ambite and
Knoblock 2001) also uses local modifications of partially
ordered plans to improve their quality. Plan modifications
are defined by (domain-specific) rewrite rules, which have
to be provided by the domain designer or learned from many
examples of both good and bad plans. Apart from the issue
of domain dependency, this technique is effective while
solving many problem instances from the same domain.

Using instead a planner to solve the local improvement
subproblem may be more time-consuming than applying
pre-defined rules, but makes the process fully automatic.
However, if we consider solving many problems from the
same domain it may be possible to reduce average planning
time by learning (generalised) rules from the local plan im-
provements we discover and using these where applicable to
avoid calling the planner.

Hybridizing Planning with other Techniques

The cross fertilization of planning community with tech-
niques from other fields like evolutionary algorithms is still
quite rare. According to Schoenauer et al. (2008), Evolution-
ary Algorithms (EAs) can rarely efficiently solve combina-
torial optimization problems on their own, i.e., without being
hybridized, one way or another. The most successful of such
hybridizations use Operational Research (OR) methods to

locally improve any offspring that was born from EA vari-
ation operators (crossover and mutation): such algorithms
have been termed “Memetic Algorithms” or “Genetic Lo-
cal Search” (Merz and Freisleben 1999). Standard Memetic
Algorithms use local search methods to improve the evolu-
tionary solutions, and thus fail when the local method stops
working on the complete problem. The Divide-and-Evolve
approach (Bibaı̈ et al. 2010) divides a complex planning task
into (hopefully) easier subtasks using a state-based decom-
position strategy. A satisficing planner is used to solve each
subtask driven by an evolutionary algorithm to conduct the
optimization process, i.e., to find solutions of good quality.

LNS, as discussed before, has been used very successfully
in constraint-based approaches to hard combinatorial opti-
misation problems like vehicle routing with time windows
(Shaw 1998) and scheduling (Godard et al. 2005). In this
setting, a local optimisation step solves the constraint prob-
lem, using an expensive but highly optimising method, for
a small set of variables, keeping remaining variables fixed
at their current values. Our plan improvement approach can
be viewed as applying LNS to planning. The main chal-
lenge in applying LNS is identifying good subproblems to
re-optimise. Routing and scheduling solvers using LNS rely
on problem-specific heuristics, based on insights into the
problem and its constraint formulation, for this. For plan-
ning, we need automatic and domain-independent methods:
that is what our decomposition strategy provides. Our local
search is a plain hill-climbing search, always moving to a
better (but not necessarily best) plan in the neighbourhood. It
might be improved through use of more sophisticated meta-
heuristics, such as simulated annealing or restarts.

Partial-Order and Block-Deordered Plans

We use the standard STRIPS model of classical planning
problems. We briefly recap some basic notions concerning
partially ordered plans. For a detailed introduction, see, for
example, the book by Ghallab et al. (2004).

Partially Ordered Plans

A partially ordered plan (POP) is a tuple (S,≺), where S is
the set of plan steps and ≺ is a strict partial order on S; ≺+

denotes the transitive closure of≺. A linearisation of a POP
is a strict total order that contains≺. Each step s ∈ S, except
for the initial and goal steps, is labelled by an action, act(s),
which, as usual, has precondition (or consumed), added (or
produced) and deleted (or threatened) sets of propositions.
With slight abuse of terminology, we talk about the precon-
ditions and effects of a step, meaning those of its associated
action. A causal link, (si, p, sj), records a commitment that
the precondition p of step sj is supplied by an add effect
of step si. The link is threatened if there is a step sk that
deletes p such that si ≺ sk ≺ sj is consistent. The validity
of a POP can be defined in two equivalent ways: (1) a POP
is valid iff every linearisation of its actions is a valid sequen-
tial plan, under the usual STRIPS execution semantics; and
(2) a POP is valid if every step precondition (including the
goals) is supported by an unthreatened causal link. (That is,
essentially, the modal truth condition (Chapman 1987).)



Figure 2: A sequential plan and its block deordering. Prece-
dences are labelled with their reasons: producer–consumer
(i.e., a causal link), denoted PC(p); threat–producer, de-
noted TP(p); and consumer–threat, denoted CT(p).

Block Semantics and Block Decomposition

A block is a part of the plan, i.e., a subset of plan steps,
that must not be interleaved with steps not in the block.
Unordered blocks can be executed in any order, and steps
within a block may also be partially ordered.

Definition 1. Let (S,≺) be a partially ordered plan. A block
w.r.t. ≺ is a subset b ⊂ S of steps such for any two steps
s, s′ ∈ b, there exists no step s′′ ∈ (S − b) such that s ≺+

s′′ ≺+ s′ or s′ ≺+ s′′ ≺+ s.

Blocks behave much like (non-sequential) macro actions,
having preconditions, add and delete effects that can be a
subset of the union of those of its constituent steps. This en-
ables blocks to encapsulate some plan effects and precondi-
tions, reducing interference and thus allowing more deorder-
ing. The following definition captures those preconditions
and effects that are visible from outside the block, i.e., those
that give rise to dependencies or interference with other parts
of the plan. These are what we need to consider when decid-
ing if two blocks can be unordered.

Definition 2. Let (S,≺) be a partially ordered plan, where
S is a set of plan steps, and b be a block. The block semantics
are defined as:

• b adds m iff b does not have precondition m, and there is
a responsible step ŝ ∈ b with m ∈ add(ŝ), such that there
is no step s′ ∈ b with s′ 6≺ ŝ that deletes m.

• b has the precondition m iff there is a responsible step
ŝ ∈ b with m ∈ pre(ŝ), and there is no step s′ ∈ b with
an unthreatened causal link (s′,m, ŝ).

• b deletes m iff there is a responsible step ŝ ∈ b with m ∈
del(ŝ), and there is no step s′ ∈ b with ŝ ≺ s′ that adds
m.

A decomposition of a plan into blocks can be recursive,
i.e., a block can be wholly contained in another. However,
blocks cannot be partially overlapping. The semantics of
a partially ordered block decomposed plan are defined by
restricting its linearisations (for which it must be valid) to
those that respect the block decomposition, i.e., that do not
interleave steps from disjoint blocks. Validity of such plans

can be established in the same way as for POPs, by sup-
porting each precondition of each block with an unthreated
causal link.

Block Deordering

Deordering converts a sequential plan into a partially or-
dered plan (POP), but the conventional deordering approach
restricts the deordering to only the cases where individual
steps are independent and non-interfering. Block deordering
eliminates that restriction by forming new blocks, remov-
ing ordering constraints, and possibly also adding some ex-
plicit ordering constraints that were transitively implied by
the removed constraints. It enables deordering in many cases
where no deordering is possible under the standard interpre-
tation. This maximized deordering help us to cleary exhibit
the plan structure.

We have proposed a block deordering procedure (Siddiqui
and Haslum 2012) for automatically finding a block decom-
position of a plan that maximises deordering of a partially
ordered plan. This procedure works in a check-and-remove
fashion: First it checks the reasons behind every necessary
ordering si ≺ sj within the current plan structure, and forms
two blocks bi and bj with the initial element si and sj re-
spectively. Then the blocks gradually expand in opposite di-
rections picking one after another steps from the plan struc-
ture until those reasons (and newly added reasons) behind
the ordering no longer exist (due to the encapsulation within
the blocks) or the expansion has reached the boundary. If no
reason is left at the end, the ordering is removed as well, and
this process is repeated until all the necessary orderings have
been checked or the allotted time is up. As a simple example,
Figure 2(i) shows a sequential plan for a small Blocksworld
problem. This plan can not be deordered into a convential
POP, because each plan step has a reason to be ordered after
the previous. Block deordering, however, is able to break the
ordering (a2 ≺ a3) by removing the only reason producer-
consumer(handempty) based on the formation of two blocks
b1 and b2 as shown in (ii). Neither of the two blocks delete
or add proposition handempty (though it is a precondition
of both). This removes the interference between them, and
allows the two blocks to be executed in any order but with-
out any interleaving. Therefore, the possible linearisations
of the block decomposed partially ordered plan are only (a1,
a2, a3, a4) and (a3, a4, a1, a2).

Our interest in block decomposition is to use it as a
basis for finding subplans suitable for local optimisation.
However, block deordering tends to produce blocks that lo-
calise interactions as much as possible, i.e., that are as “self-
contained” as they can be, and this is useful also for local
plan optimisation. The block deordering algorithm returns
not just the decomposed and deordered plan, but also a justi-
fication for its correctness, by labelling ordering constraints
with their reasons (causal links or threats). We exploit this
when merging improvements to separate parts of a plan.

Local Optimisation
The plan optimisation algorithm (Algorithm 1) consists of
three main steps, where the second and third steps are iter-
ated within a loop. First, block deordering is applied to the



Figure 3: Illustration of the plan optimisation process: The
sequential input plan (i), with cost 16, is converted into a
standard POP (ii), and then a block deordered plan (iii). The
first improvement (iv) replaces block 4, reducing the cost to
14. The next (v) replaces the window consisting of blocks 2
and 5, reducing the cost to 13.

input plan (πin), producing a block decomposition that min-
imises inter-block dependencies.

Second, a set of candidate subplans, termed “windows”,
for optimisation, are extracted from the block deordered
plan. There are a number of window formation rules, which
are divided into three groups, and in each iteration the win-
dows are extracted based on the rules from one group only.
Each of those extracted windows generates a bounded-cost
subproblem, which is the problem of finding a cheaper re-
placement for that subplan. Third, the algorithm calls a plan-
ner on each of these subproblems, with a cost bound equal to
the cost of the current subplan, and a time-out. In principle,
the subplanner can be any planning method that accepts a
bound on plan cost; we use an iterative bounded-cost search.
Whenever a better replacement subplan is found, all replace-
ment subplans found so far (Csp) are fed into a merge pro-
cedure, which tries to combine several of them to achieve a
greater overall improvement. (At least one replacement sub-
plan can always be merged, so if Csp is non-empty, πlast is
better than πin.) If, at the end of the inner loop, any improve-
ment has been found, the procedure starts over with the new
best plan (πlast). In the recursive invocation, window forma-
tion will start with the group of rules that has been successful
in the last iteration. If, on the other hand, no improvement
has been found, the outer loop starts over with the window
formation based on the next group of rules. If all the groups
of rules have been applied and yet no improvement has been
found, the time-out is doubled and the outer loop starts over
from the third step, where the subplanner is tried again on
each subproblem from the next group, except those known
to be solved optimally already. This can be detected by com-
paring the subplan cost with a lower bound (obtained from
an admissible heuristic, h), or by the subplanner proving
the bounded-cost subproblem unsolvable. The initial time
bound is 15 seconds, or tlimit/|W1∪W2∪W3|, whichever is
smaller. Figure 3 illustrates the process on an example prob-
lem (#2-5, data set 2-nd, from the Genome Edit Distance
domain).

Window Formation

Before extracting windows, we extend blocks to cover com-
plete non-branching subsequences of the plan. That is, if a
block bi is the only immediate predecessor of block bj , and
bj the only immediate successor of bi, they are merged into
one block. (Note that when we talk about blocks here and in

Algorithm 1 Block Decomposition Plan Optimisation

1: procedure BDPO(Γ, πin, tlimit, g)
2: Initialise telapsed = 0, Csp = ∅, πlast = πin.
3: πbdp = BLOCKDEORDER(πin).
4: Set time bound tb = initial time bound.
5: while Csp = ∅ do
6: if Wg not initialised then
7: Set Wg = FORMWINDOWS(πbdp, g).

8: for each window (pi, wi, si) ∈Wg do
9: if telapsed ≥ tlimit then return πlast.

10: Γi
sub = SUBPROBLEM(pi, wi, si).

11: if h(πi
sub) = cost(wi) then

12: Set Wg = Wg \ {(pi, wi, si)}.
13: continue
14: πi

sub = BOUNDEDCOSTPLANNER

(Γi
sub, cost(wi), tb).

15: if Γi
sub proven unsolvable then

16: Set Wg = Wg \ {(pi, wi, si)}.
17: else if πi

sub 6= null then

18: /* cost(πi
sub) ≤ cost(wi) */

19: Csp = Csp ∪ {(wi, π
i
sub)}.

20: π̂bdp = MERGE(Csp, πbdp).
21: if cost(π̂bdp) < cost(πlast) then
22: πlast = SEQUENCEPLAN(π̂bdp).

23: if πlast 6= πin then
24: return BDPO (Γ, πlast, tlimit − telapsed, g).

25: Set g = (g + 1)mod 3 /* next group */
26: if all groups have been tried at tb then
27: if W1 = W2 = W3 = ∅ then return null

28: Set tb = 2 ∗ tb.

the following, these can also consist of single actions.)
A window is a triple (p, w, s), where w is the set of blocks

in the subplan (to be replaced), and p and s are sets of blocks
to be placed before and after w, respectively. Any block that
is ordered before (resp. after) a block in w must be assigned
to p (resp. s), but for blocks that are not ordered w.r.t. any
block in w we have a choice of assigning them to either p or
s. Let Un(b) be the set of blocks not ordered w.r.t. b, IP(b)
its immediate predecessors of b, and IS(b) its immediate suc-
cessors. For each block b, we generate a set of windows ac-
cording to the following rules, which are categorized into
three groups:

First
w ← {b}, p← Un(b);
w ← {b}, s← Un(b);
w ← {b} ∪ IP(b), s← Un(b);
w ← {b} ∪ IS(b), p← Un(b);
w ← {b} ∪Un(b).

Second
w ← {b} ∪Un(b) ∪ IP(b);
w ← {b} ∪Un(b) ∪ IS(b);
w ← {b} ∪Un(b) ∪ IP(b) ∪ IS(b).

Third
w ← {b} ∪Un(b) ∪ IP({b} ∪Un(b));



w ← {b} ∪Un(b) ∪ IS({b} ∪Un(b));
w ← {b}∪Un(b)∪ IP({b}∪Un(b))∪ IS({b}∪Un(b)).

Applied to all blocks, these rules can produce duplicates;
of course, only unique windows are kept. Each group of
rules generally produces a set of windows with smaller vari-
ations of window sizes (measured by the number of actions
in w), while the higher indexed groups of rules produce win-
dows of bigger sizes compared to that of the lower indexed
groups in general. In every iteration, the algorithm exploits
only one group of window formation rules, rather than all
the rules from different groups. Those windows are eventu-
ally processed by BDPO in order of their increasing size.
If, at the end of the loop, at least one window from that
group has been improved, then the complete BDPO pro-
cess is restarted with the new best plan. In that case, the next
window formation will be based on the rules from the last
successful group. Otherwise, if there is no improvement, the
process continues from formulating the next group of win-
dows.

Grouping the window formation rules is useful mainly for
two reasons: First, applying all the rules at the same time
may produce a large number of windows with possibly a lot
of overlap among them. Hence, most of the optimised win-
dows will be discarded while recomposing into a single plan.
Furthermore, attempting to improve the windows that con-
tain one or more sub-windows that have been improved ear-
lier may not be successful quite often, which leads to a waste
of CPU time. Second, improvement of windows based on a
group of rules renders a heuristic for selecting the group of
rules for window formation in the next iteration, rather than
restarting from a lower indexed group. However, too much
grouping is not worthwhile either, since it forces restarting
the whole procedure after only a few improvements. As a
result, it does not properly make use of the block decom-
posed plan space. Moreover, it increases the possibility of
running out of the allotted time (30 minutes in our case)
without exploring the bigger-sized windows where an im-
provement could be possible. The current grouping of the
rules is a compromise which we found working reasonably
well in a broad range of domains.

Subproblem Construction and Subplanner

Each window (p, w, s) gives rise to a bounded-cost subprob-
lem. This is the problem of finding a replacement for the part
w of the plan, of cost less than cost(w), that can be substi-
tuted between plan parts p and s. The subproblem differs
from the original problem only in its initial state and goal.

To find the initial state for the subproblem, we generate a
linearisation, ap1

, . . . , apk
, of the actions in p, and progress

the original initial state through this sequence, i.e., apply the
actions in this sequence. To find the goal, we pick a lin-
earisation, as1 , . . . , asm , of the actions in s, and regress the
original goal backwards through this sequence. This ensures
that for any plan a′1, . . . , a

′

n returned by the subplanner,
the concatenation of the three sequences, i.e., ap1

, . . . , apk
,

a′1, . . . , a
′

n, as1 , . . . , asm , is a plan for the original problem.

The subplanner must return a plan of cost less than the
given bound, cost(w). We use a simple bounded-cost greedy

Algorithm 2 Merging Candidate Subplans

1: procedure MERGE(Csp, πbdp)
2: Initialise π̂bdp = πbdp.

3: Sort Csp by decreasing (cost(wi)− cost(πi
sub)).

4: for each (wi, π
i
sub) ∈ Csp in order do

5: πtemp = REPLACEIFPOSS(wi, π
i
sub, π̂bdp).

6: if πtemp 6= null then
7: π̂bdp = πtemp

8: Csp = Csp \ {(wj , π
j
sub) ∈ Csp |

wj overlaps with wi}.

9: return π̂bdp

search, guided by the (unit-cost) FF heuristic and using an
f-value based on the admissible LM-Cut heuristic (Helmert
and Domshlak 2009) to prune states that cannot lead to a
plan within the cost bound. It is implemented in the Fast
Downward planner. The search is complete: if there is no
plan within the cost bound, it will prove this by exhausting
the search space, given sufficient time. Because bounded-
cost search can return any plan that is within the cost bound,
we iterate it: whenever a plan is found, as long as time re-
mains, the search is restarted with the bound set to be strictly
less than the cost of the new plan. This ensures we get not
just an improved subplan, but the best improved subplan that
the search can find within the given time limit. Also, while
attempting to improve a subplan which is the strict superset
of a subplan that has been improved earlier, the cost bound
is set so that the improvement of the bigger window must be
greater than what has already been achieved for the subwin-
dow. This avoids finding the same improvement twice.

Constructing the subproblem from a linearisation of the
block deordered plan leads to an initial state with more facts
and a goal with fewer, which simplifies solving the subprob-
lem. However, it also complicates the merging of separate
improved subplans (described in the next subsection). As an
alternative, we could take a “least committment” approach,
taking as initially true only those facts that hold after any
linearisation of p, and as goal all facts that must hold for ev-
ery linearisation of s to succeed. (This is the same principle
used to compute the preconditions and effects of a block,
since steps in the block may be partially ordered.) However,
this severely restricts the choices available to the subplanner,
and thus reduces the chances of finding an improvement.

Merging Improved Subplans

If an improved subplan for a window is found, replacing the
window (i.e., the w part) of the original plan with the new
subplan is always possible, by construction of the subprob-
lem. Obviously, we gain a greater improvement if we are
able to make several such replacements simultaneously. This
is what subplan merging tries to do.

The set of candidate replacements (windows with im-
proved subplans) is kept in Csp. Merging all candidates is
usually not possible, since windows may overlap. Merging
is further complicated by the fact that each subproblem is
constructed from a, potentially different, linearisation: Be-



cause of this, the replcement subplan may have additional
preconditions or delete effects that the replaced window did
not, or lack some of its add effects. For a single candidate,
these “flaws” can always be resolved by adding more or-
dering constraints on the plan, but different candidates may
require contradictory orderings.

Merging is done by a greedy procedure (Algorithm 2). It
takes a current, block deordered, plan (πbdp), and a set of
candidates (Csp), and sorts the candidates in decreasing or-
der of their contribution to decreasing plan cost, i.e., the cost
of the replaced plan part minus the cost of the new subplan.
Each candidate is considered in turn, in this order: If the
replacement is still possible, it is made, and any remaining
candidates that overlap with the window are removed from
further consideration. Since the first replacement is always
possible, at least one most improving candidate is merged,
so the new plan returned by merging has lower cost than the
input plan.

MERGE maintains at all times a valid block deordered
plan (π̂bdp), meaning that each precondition of each block
(and each goal) is supported by an unthreatened causal link.
Initially, this is the input plan, for which causal links (and
additional ordering constraints) are computed by block de-
ordering. The REPLACEIFPOSS subroutine takes the current
plan, and returns an updated plan (which becomes the cur-
rent plan), or failure if the replacement is not possible. Re-
call that preconditions and effects of a block are computed
using least-committment semantics. This is done for both the
replaced window (wi) and the replacement subplan (πi

sub),
where the subplan is treated as a single block whose ac-
tions are totally ordered. For any atom in pre(πi

sub) that is
also in pre(wi), the existing causal link is kept; likewise,
causal links from an effect in add(wi) that are are also in
add(πi

sub) are kept. (These links are unthreatened and con-
sistent with the order, since the plan is valid before the re-
placement.) For each additional precondition of the new sub-
plan (p ∈ (pre(πi

sub) \ pre(wi))), a new causal link must be
found, and likewise for each precondition of a later block
(or the goal) that was supplied by wi but is missing from
add(πi

sub). Finally, πi
sub may threaten some existing causal

links that wi did not; for each of these preconditions, we
also try to find a new link.

The subroutine FINDCAUSALLINK takes the current
block deordered plan (π̂bdp), the consumer block (b), which
can also be the goal, and the atom (p) that the consumer re-
quires, and performs a limited search for an unthreatened
causal link to supply it. Specifically, it tries the following
two options:

1. If there is a block b′ ≺+ b with p ∈ add(b′), and for every
threatening block (i.e., b′′ with p ∈ del(b′′)), either b′′ ≺ b′

or b ≺ b′′ can be added to the existing plan ordering without
contradiction, then b′ is chosen, and the ordering constraints
necessary to resolve the threats added.

2. Otherwise, if there is a block b′ with p ∈ add(b′) that
is unordered w.r.t. b, and for every threatening block either
b′′ ≺ b′ or b ≺ b′′ can be enforced, then b′ is chosen, and the
causal link and threat resolution ordering constraints added.

If these two steps cannot find one of the required causal

links, the replacement fails, and the candidate is skipped by
merge.

Note that some of the ordering constraints between wi and
the rest of the plan may become unnecessary when wi is re-
placed with πi

sub, because πi
sub may not delete every atom

that wi deletes and may not have all preconditions of wi.
Even if an ordering b ≺ wi, for some block b, is not required
after replacing wi with πi

sub, removing it may make πi
sub un-

ordered w.r.t. blocks b′ ≺ b. Each of these must be checked
for potential threats, either due to atoms deleted by πi

sub or

by b′, and new ordering constraints b′ ≺ πi
sub added where

needed. In the same way, if an ordering πi
sub ≺ b is removed,

potential threats with blocks b′ ≻ b must be checked.

Theorem 1. If the input plan, πbdp is valid, then so is the
plan returned by MERGE.

Proof sketch. This is shown by induction on the sequence of
accepted replacements. Initially, the current plan is the valid
input plan. It changes only when a replacement is made.
A successful replacement does not invalidate the plan: All
necessary causal links to and from the replacement subplan
are established by REPLACEIFPOSS. Likewise, any causal
links threatened by the new subplan are re-established. The
remaining possibility, that the new subplan becomes un-
ordered w.r.t. a block b′ that wi was not, and therefore πi

sub

threatens a causal link that wi did not, or a causal link to or
from πi

sub is threatened by b′, is explicitly checked for before
removing any ordering constraint. �

Results

In our experiments, we have used problems from the satis-
ficing track of the 2008 and 2011 IPC1, data set 2-nd of the
Genome Edit Distance (GED) domain (Haslum 2011), and
the Alarm Processing for Power Networks (APPN) domain
(Haslum and Grastien 2011). The starting point for plan im-
provement is the best plan found by LAMA (Richter and
Westphal 2010, IPC 2011 version) in 30 minutes (called
“LAMA@30” in the following). The compared methods
are block decomposition plan optimisation (BDPO), plan
neighbourhood graph search (PNGS), iterated bounded-cost
search (IBCS) and letting LAMA continue (LAMA@60).
Each is given 30 minutes and 3Gb memory per problem.
IBCS uses the same bounded-cost search as local plan opti-
misation, applied to the whole problem.

Figure 1 shows the cumulative IPC quality score over
time. Most of the plan improvement achieved by LAMA
is done early: During the first 30 minutes, it reduces plan
cost, from that of the first plan it finds, by an average 17.9%,
but the reduction over the next 30 minutes is only 0.8%.
In contrast, BDPO, starting from the plan by LAMA@30,
achieves an average plan cost reduction of 8%, and PNGS
7.3%. PNGS is also fast (99.6% of its improved plans are
found in the first 5 minutes), and limited mainly by memory
(it runs out of memory on 86% of problems, and out of time

1We exclude the CyberSec domain, which our current imple-
mentation is unable to deal with. For domains that appeared in both
the 2008 and 2011 IPC, we use only the instances from 2011 that
were new in that year.
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Figure 4: Cost of plans found by improvement methods applied to LAMA’s best plan at 30 minutes (one problem per column)
on IPC 2008 and 2011 problems. Costs are normalised to the interval between the initial plan and the highest known lower
bound.

on 8.5%), while BDPO is limited mainly by time and con-
tinues to find better plans (though at a decreasing rate) even
beyond 30 minutes.

Although Figure 1 depicts a convenient summary, it does
not convey the complete picture: it is strongly weighted
by coverage (the score taking only the first plan found by
LAMA for each problem is 404.77), and, more importantly,
does not tell us anything about how much plan quality can
actually be improved. To this end, we compare plan costs
with the highest known lower bound for each problem (ob-
tained by a variety of methods, including several optimal
planners; cf. (Haslum 2012)). For 163 out of 576 problems
solved by LAMA@30, the best plan cost already matches
the lower bound, which means no improvement is possible.
Figure 4 shows for the remaining problems (excluding the
Tidybot domain and one problem in the PegSol domain) the
cost of the best plan found by the plan optimisation methods,
normalised to the gap between the initial plan cost and the
highest lower bound. The results clearly show strong com-
plementarity between the methods, both across domains and
in time. Only IBCS does not outperform all other methods in
any domain. In the PegSol domain, all plans but one found
by LAMA@30 are optimal and no method improves on
the cost of the last one. In OpenStacks and VisitAll, PNGS
and BDPO find very few improvements, while LAMA finds
more but smaller.

Figure 5 separately depicts the plan costs for 156 prob-
lems from the GED domain, including also results by a non-
optimal problem-specific algorithm (GRIMM). 2 GRIMM
finds better solutions than all planners in most cases. How-
ever, BDPO and PNGS both find a better plan than GRIMM
for 12 out of 156 problems, while LAMA@60 manages 6.
BDPO is the best performing anytime planner in this domain
finding better plans than LAMA, PNGS, and IBCS for 108,

2http://grimm.ucsd.edu/GRIMM/

BDPO PNGS IBCS LAMA
@60

= < ⋆ = < ⋆ = < ⋆ = < ⋆

APPN 100 76 24 24 0 4 8 0 0 8 0 0
Barman 0 0 0 100 100 0 0 0 0 0 0 0
Elevators 42 26 0 61 45 0 29 13 0 13 0 0
Floortile 0 0 0 100 100 67 0 0 0 0 0 0
NoMystery 83 33 50 33 17 0 50 0 33 17 0 0
OpenStacks 67 0 0 67 0 0 76 5 5 95 24 5
ParcPrinter 100 50 28 28 0 6 44 0 6 22 0 0
Parking 60 0 0 95 35 0 50 0 0 55 5 0
Scanalyzer 33 0 22 100 61 28 39 0 22 17 0 6
Sokoban 50 0 12 75 38 0 50 0 12 50 12 12
Transport 3 0 0 100 97 0 0 0 0 0 0 0
VisitAll 21 0 0 84 63 0 21 0 0 37 16 0
Woodworking 97 86 11 9 3 6 6 0 6 0 0 0
GED 83 30 0 38 8 0 43 4 0 18 4 0

Table 1: For each plan improvement method, the percent-
age of instances where it matches the best plan (=); finds
a plan strictly better than any other method (<); and finds
a plan that is known to be optimal, i.e., matched by the
highest lower bound (⋆). The percentage is of instances in
each domain that are solved, but not solved optimally, by
LAMA@30.
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75, and 79 problems respectively. Table 1 provides a differ-
ent summary of Figures 4 and 5.

Figure 6 shows the effect of switching from LAMA to
BDPO and LAMA to PNGS at different times during the
total runtimes of 30 and 60 minutes. We have used prob-
lems from all the domains except Tidybot. It is clear from
the figure that allocating relatively more time to BDPO
than LAMA leads to a better result (as measured by the
summed IPC quality score). The LAMA+BDPO combina-
tion achieves its best score when switching at around 10 and
20 minutes during the 30 and 60 minutes total runtimes, re-
spectively. In contrast, running PNGS for relatively shorter
time (less than 10 minutes) after a long run of LAMA gives
the best score in their combination for both runtimes. In
30 minutes total runtime, switching to PNGS is better than
switching to BDPO. However, if the total runtime extends

to 1 hour, the LAMA+BDPO combination improves its best
score by 10.38 units compared to its best score in 30 min-
utes total runtime, whereas LAMA+PNGS improves that by
3.43 units only. This suggests that the best result could be
achieved by a sequential portfolio of LAMA-PNGS-BDPO,
where PNGS is run for a short time, and BDPO for relatively
longer time.

Conclusions
Continuing plan quality improvement is crucial in auto-
mated planning. The anytime search approach has been most
successful so far to meet this goal, but also quickly reaches a
limit where it becomes unable to find further improvements.
Optimising a solution one small part at a time is a good idea
in this respect, but the main challenge is to identify the right
subproblems to re-optimise. In our experiments, we have
found that at least 75% of subproblems for which we find
an improvement could not have been formed by taking only
sequences of consecutive actions in the input plan.

Different approaches to planning and plan optimisation
have their strength at different time scales. This suggests that
truly anytime planning (which provides continuing improve-
ment of plan quality at any time scale) is best achieved by
a combination of methods. PNGS, for example, can make
a quick improvement over LAMA. We have shown in our
experiments that extending the anytime capability of cur-
rent planners with our BDPO optimisation method can fur-
ther improve plans substantially, especially at a larger time
scale. To achieve this, we have used a local search in the
space of valid plans, where the space is formulated using a
windowing heuristic over a block decomposed plan. How-
ever, the degree of block decomposition varies a lot from
domain to domain. Elevator, Transport, Scanalyzer, Pegsol,
and Openstack problems, for example, exhibit a high degree
of decomposition, whereas Sokoban is hard and time con-
suming to decompose. Problems in the Woodworking and
Parcprinter domains, on the other hand, can not be block-
decomposed in most cases, but still exhibit good plan quality
improvement by making use of our window formation and
local search strategies on top of the partially ordered form.

There are many promising directions for future work. At
present, we use eleven window formation rules based on the
placement of predecessor, successor, and unordered blocks
with respect to a candidate block. These rules only extract
windows with causal chains at most three blocks long. In
the experiments, we have found that different window types
and sizes perform well in different domains. Therefore, dy-
namic rule generation for window formation based on the
problem structure of different domains may perform better.
We can also extend the “neighborhood” not only with larger
windows but also with other types of improvement searches,
like PNGS (Nakhost and Müller 2010). There is room to
improve the subproblem formulation, since constructing the
subproblem from different linearisations may produce dif-
ferent overall improvements. At present, we are using a rel-
atively simple hill climbing search to merge the best im-
provements, but an alternative better merging can be done.
We want to further investigate the block decomposition to
get better plan structure, and are also keen to know whether



adding further encapsulation into the existing blocks could
produce more coherent subplans to re-optimise. We can
think of better alternative heuristics to be used in bounded-
cost search: The lower bound (lmcut) in bounded-cost search
is not incremental, and therefore the search may spend a lot
of time trying to optimise an already optimal subplan. In on-
going experiments, we have found that using lazy weighted
A* search (the same as used in LAMA) instead of bounded-
cost greedy search in the subplanner produces much better
results than our current results in most of the domains (but
not all). Finally, it will be interesting to see whether our algo-
rithm can be extended to be used during the initial planning
phase to analyse the partial solution structure, and then to
give a good heuristic for the remaining search by biasing the
action selection towards more promising actions and away
from non-promising ones.
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