Skip to main content

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree with Neighborhoods

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8596))

Abstract

We consider a setting where we are given a graph \(\mathcal {G}=(\mathcal {R},E)\), where \(\mathcal {R}=\{R_1,\ldots ,R_n\}\) is a set of polygonal regions in the plane. Placing a point \(p_i\) inside each region \(R_i\) turns \(G\) into an edge-weighted graph \(G_{\varvec{p}}\), \({\varvec{p}}=\{p_1,\ldots ,p_n\}\), where the cost of \((R_i,R_j)\in E\) is the distance between \(p_i\) and \(p_j\). The Shortest Path Problem with Neighborhoods asks, for given \(R_s\) and \(R_t\), to find a placement \(\varvec{p}\) such that the cost of a resulting shortest \(st\)-path in \(\mathcal {G}_{\varvec{p}}\) is minimum among all graphs \(\mathcal {G}_{\varvec{p}}\). The Minimum Spanning Tree Problem with Neighborhoods asks to find a placement \(\varvec{p}\) such that the cost of a resulting minimum spanning tree is minimum among all graphs \(\mathcal {G}_{\varvec{p}}\). We study these problems in the \(L_1\) metric, and show that the shortest path problem with neighborhoods is solvable in polynomial time, whereas the minimum spanning tree problem with neighborhoods is \(\mathsf {APX}\)-hard, even if the neighborhood regions are segments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahadi, A., Mozafari, A., Zarei, A.: Touring disjoint polygons problem is NP-hard. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 351–360. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A., Seco, D.: On minimum-and maximum-weight minimum spanning trees with neighborhoods. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 93–106. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 473–482 (2003)

    Google Scholar 

  4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 38–46 (2001)

    Google Scholar 

  5. Elbassioni, K.M., Fishkin, A.V., Mustafa, N.H., Sitters, R.A.: Approximation algorithms for euclidean group TSP. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1115–1126. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Knuth, D., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Löffler, M., Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica 56(2), 235–269 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Löffler, M., van Kreveld, M.J.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of pairwise disjoint simple polygons. In: Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG), pp. 175–178 (2010)

    Google Scholar 

  11. Yang, Y., Lin, M., Xu, J., Xie, Y.: minimum spanning tree with neighborhoods. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities and Sustainability), under grant agreement no. 288094 (project eCOMPASS) and by the Alexander von Humboldt-Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Montanari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Disser, Y., Mihalák, M., Montanari, S., Widmayer, P. (2014). Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree with Neighborhoods. In: Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V. (eds) Combinatorial Optimization. ISCO 2014. Lecture Notes in Computer Science(), vol 8596. Springer, Cham. https://doi.org/10.1007/978-3-319-09174-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09174-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09173-0

  • Online ISBN: 978-3-319-09174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics