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Abstract. There exist many orthogonal graph drawing algorithms that
minimize edge crossings or edge bends, however they produce unsatis-
factory drawings in many practical cases. In this paper we present a
grid-based algorithm for drawing orthogonal graphs with nodes of pre-
scribed size. It distinguishes by creating pleasant and compact drawings
in relatively small running time. The main idea is to minimize the total
edge length that implicitly minimizes crossings and makes the drawing
easy to comprehend. The algorithm is based on combining local and
global improvements. Local improvements are moving each node to a
new place and swapping of nodes. Global improvement is based on con-
strained quadratic programming approach that minimizes the total edge
length while keeping node relative positions.

1 Background

Graph drawing algorithms provide a visually appealing way to present the struc-
ture of a graph. Several graph drawing styles are commonly used, each under-
lining some property of the graph suitable for a particular application. We deal
with the orthogonal drawing style where edges are represented by chains of hor-
izontal and vertical line segments connecting the nodes. The goal is to obtain an
aesthetically pleasing drawing of a given graph. Common aesthetic criteria in-
clude alignment of nodes, small area, few bends and crossings, short edge length.
Overlaps of objects are not allowed.

Most of prior work on orthogonal drawing algorithms is dedicated to pro-
ducing drawings of some provable quality aspect. This is the case of the popular
topology-shape-metric approach [5, 9, 17] where the number of bends is mini-
mized respecting some planar embedding. See [6] for an experimental evaluation
of these algorithms. There are a number of works achieving proven area bounds,
or bounds on the number of bends or both [1–3]. Unfortunately these are worst
case bounds and often a given particular graph can be laid out much better as
these algorithms produce. Most of the current orthogonal drawing algorithms
perform poorly in a practical setting. Even simple heuristics often yield a signif-
icant improvement of the drawing quality [8, 16].

We explore the orthogonal drawing problem from a practical point of view
where the goal is to produce nice-looking layouts of typical graphs. To achieve
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this, crossings, bends, area, etc. should be minimized together in some propor-
tion for each particular graph so that the user cannot spot obvious ways of
improvement. Such goal is aimed in [3] where the layout process is divided in
three phases – node placement, edge routing and port assignment. Unfortunately
their node placement phase is weak – each node is placed in a new row and col-
umn thus producing large area and long edges. We generally follow this strategy,
but implement each phase in a different way.

In this paper we present an orthogonal layout algorithm which produces good
drawings for many practical graphs. At first, the algorithm assigns positions to
nodes by putting them on a grid while minimizing the total edge length. Edges
are routed afterwards by using standard techniques from integrated circuit lay-
out [14] and minimally adjusting the node placement [10]. Minimizing the total
edge length also helps to keep the number of crossings and bends low, although
they are not directly minimized. Placing nodes on the grid is an essential ingre-
dient of the algorithm that ensures non-overlapping and nice alignment of nodes
characteristic to the orthogonal style.

2 Overview of the Algorithm

We consider the drawing model where nodes are represented by rectangles of a
given minimum size, edges are represented with orthogonal polylines connecting
the associated nodes. Overlaps between nodes or between nodes and edges are
not allowed and some minimum distance δ between them has to be ensured.
Only point-wise crossings of edges are allowed (no overlaps of segments of the
same direction). We allow nodes to stretch to accommodate adjacent edges but
excessive stretching should be minimized. We do not require strict grid place-
ment of nodes and edges but include alignment as an aesthetic criterion to be
maximized.

Similarly to [3], the layout process is divided into three phases - node place-
ment, edge routing and normalization (see Figure 1). Node placement is the
main phase since it influences the drawing quality the most and other phases de-
pend on it. Then comes edge routing which finds routes for edges that are short
and with few bends [14]. Our employed routing algorithm does not minimize
crossings, although some local crossing minimization heuristics can be easily in-
corporated in the routing algorithm. After routing, there can be overlaps of edge
segments and the minimum distance requirement is violated. The third phase
performs mental map preserving layout adjustment [7, 10] to remove overlaps
while minimizing the node movement.

The quality of the obtained drawings is mostly influenced by the node place-
ment phase which is the main contribution of this paper. Edge routing and
overlap removal phases will not be described any further since good solutions
exist in the given references. In the node placement phase nodes are placed in
a two-dimensional rectangular grid each node occupying one or more grid cells.
Node placement is divided into two stages. In the first stage all nodes are treated
to be of the same size occupying exactly one grid cell. In the second stage a node



can take several grid cells proportional to its given size. The second stage could
be used alone, but obtaining an initial approximation with the unit size nodes
often results in better layouts.

(a) (b) (c)

Fig. 1: Graph obtained after each of the 3 phases: (a) node placement; (b) edge
routing; (c) normalization.

Similarly to [3], we formalize the node placement as an optimization problem
to minimize the total edge length subject to constraints that no two nodes cover
the same grid cell. The basis of our algorithm is inspired by the simulated an-
nealing idea. We perform a greedy optimization that iteratively moves a nodes
to a better place or swaps two nodes. This process is augmented with some
random displacement. The idea of using a grid for node placement(although for
straight-line drawings) together with simulated annealing is used in drawing of
biochemical networks [12,13,15]. But in our algorithm we extend it with repeated
global compaction steps that allow to escape from the many local minima of the
optimization problem. Figure 2 shows a simple example where no node can be
moved to improve the layout but the compaction step of our algorithm in vertical
direction produces the optimal layout. In such small examples random displace-
ments helps to find the optimum, but similar cases when groups of nodes have
to be shifted often occur in larger graphs where randomization is too weak.

Fig. 2: Situation where compaction is needed to improve layout.

3 Detailed Description

In the input to the node placement algorithm we are given a graph G = (V,E)
with a node set V and edge set E to be laid out and the minimum width wi and



height hi of each node. In output the algorithm gives the top-left corner (xi, yi)
of each node.

To deal with nodes of different sizes (relevant only in the second stage of the
algorithm) we need to calculate the size of a grid cell. We assume the grid cell
to be a square of side length c which is calculated as

c =







Lmax if Lmax < 3Lmin
3Lmin

2 if 3Lmin ≤ Lmax < 15Lmin
Lmax

30 if 15Lmin ≤ Lmax

, (1)

where Lmin = min(min(wi + δ),min(hi + δ)) and Lmax = max(max(wi +
δ),max(hi + δ)). The main case of c is the middle one. The first case is cho-
sen when all nodes are of a similar size and we define c such that all boxes take
only one grid cell for more pleasant results. The third case prevents excessive
memory usage in case of widely different node sizes.

When nodes are placed in the grid, they are given integer coordinates and
sizes. The top-left corner of a node vi in the grid will be denoted by (x′

i, y
′

i). Its
width in the grid w′

i is calculated as ⌈wi+δ

c
⌉. Its height in the grid h′

i is calculated

as ⌈hi+δ

c
⌉.

We can use different functions for the edge length to be minimized. Com-
mon examples include Euclidean or Manhattan distance. To deal with nodes of
different sizes better, we use a distance function d(vi, vj) between two nodes vi
and vj defined as follows:

d(vi, vj) = de(vi, vj) +
1

20
min

(

|xc
i − xc

j |

w′

i + w′

j

,
|yci − ycj |

h′

i + h′

j

)

, (2)

where de(vi, vj) is the Euclidean distance between the node rectangle borders
and xc

i = x′

i + 1/2w′

i and yci = y′i + 1/2h′

i are center coordinates of the nodes.
The second addend helps to align node centers when the distance between their
borders is approximately equal. The constant 1/20 was chosen experimentally to
balance the need for short edges with alignment of node centers.

3.1 Compaction

An essential step of the proposed layout algorithm is compaction, which performs
global layout improvements and simultaneously creates new empty places in the
grid. We use a quadratic programming approach [7,10] where compaction in one
dimension is expressed as minimization of a quadratic function subject to two-
variable linear constraints. The function is constructed to minimize the total
edge length but constraints keep the minimum distances between nodes and
maintain their relative ordering.

Compaction is done separately in horizontal and vertical directions. Let us
consider the horizontal direction; the vertical one is similar. The relative ordering
is expressed as a visibility graph. A visibility graph is a directed graph with the
same set of nodes V but with a different set of edges S. There is a directed



edge (i, j) ∈ S in the visibility graph if and only if x′

j > x′

i and it is possible to
connect nodes vi and vj with a horizontal line segment without overlapping any
other node. The visibility graph can be constructed with a sweep-line algorithm
in time |V | log |V | but in our case we can extract it directly from the grid in time
proportional to the number of grid cells.

We construct the following optimization problem

minimize
∑

(i,j)∈E

(zi + 1/2w′

i − (zj + 1/2w′

j))
2 (3)

subject to zj − zi ≥ dij , (i, j) ∈ S

where dij = γ · w′

i and γ ≥ 1 is a coefficient that defines how much empty
space will be left between nodes. To obtain the maximum compaction we should
set γ = 1. Such setting is desirable at the final few iterations of the algorithm but
otherwise using γ > 1 leaves some empty places between nodes giving additional
freedom for node movement to find a better solution.

To perform compaction, the visibility graph is constructed from the current
node positions, the optimization problem is constructed and its minimum is
found by using the solver described in [10]. The node positions are calculated
as x′

i = ⌊zi⌋. Since w′

i are integer and γ ≥ 1, the rounded values satisfy x′

j −
x′

i ≥ w′

i and non-overlapping of nodes is ensured. The rounded solution may
not be optimal with respect to the integer variables x′

i but is good enough for
our purposes. Note that compaction uses a quadratic edge length function but
node swapping uses a linear distance defined by equation (2). In our case such
mismatch does not create obvious bad effects since (2) is used when swapping
nodes and compaction respects the obtained ordering via the constraint graph.

Compaction is used also to switch from the first stage of the algorithm where
all nodes are of a unit size to the second stage with the real node sizes. The
switch is done by simply compacting with dij calculated from the new node
sizes. An example of horizontal compaction with different γ values is shown in
Figure 3.

(a) (b) (c)

Fig. 3: An example graph of four nodes with their horizontal visibility
graph(dashed). (a) before compaction; (b) after compaction with γ = 1; (c)
after compaction with γ = 2.



3.2 Algorithm Pseudocode

The pseudocode for the node placement is shown in Algorithm 1. As the first
steps, the grid of size 5

√

|V |×5
√

|V | is initialized and nodes are randomly placed
in the grid. The first stage of the algorithm(lines 6-20) treats each node of size
1. The grid is dynamically expanded during layout, if required. The algorithm
works in iterations and the number of iterations iterationCount is taken propor-
tional to

√

|V |. At each iteration, local optimization is performed that decreases
the total edge length. The optimization process is based on the simulated an-
nealing idea. It requires the notion of temperature T which influences how much
node positions are perturbed by randomness. The starting temperature T is set
equal to 2

√

|V | to allow nodes to be placed almost everywhere initially. The
temperature is smoothly reduced by a cooling coefficient k until it reaches the
lowest temperature Tmin; we take Tmin equal to 0.2. The cooling coefficient k is
calculated in line 5 such that T reaches Tmin in iterationCount iterations.

To perform local optimization, every node is moved to a location that mini-
mizes the total length of its adjacent edges. We use a heuristic to calculate this
location approximately. Calculating the optimal location is expensive and actu-
ally is not needed since the added random displacement disturbs it anyway. We
calculate an initial estimate to node’s position (x,y) that minimizes the Man-
hattan distance to the adjacent nodes. Such point is found as a median of the
neighbors’ centers. A random displacement proportional to the temperature T
is added to that point.

Then we search the closest place to (x,y), where vj can be put (line 10).
We calculate the Manhattan distance d of the closest free place to (x,y). Then
we check all cells within Manhattan distance d + 1 from (x,y) and choose the
position with the least total edge length according to (2) to place vj . If this
place is different from the location of vj from the previous iteration, we leave
the node there. Otherwise, we try to swap it with the nodes nearby. We do this
by checking the nodes residing in adjacent grid cells to vj . For each of these we
calculate the gain of the total edge length if we swap the adjacent node with vj .
If the gain is positive we swap the nodes.

Compaction is performed every 9-th iteration each time changing direc-
tion(lines 15-18). The variable compactionDir defines direction in which com-
paction is be performed, true for horizontal direction false for vertical. Com-
paction is performed by function compact(boolean horDirection, float γ, boolean
expand) described in section 3.1. The parameter expand is true if boxes need to
be expanded to it’s real sizes, otherwise it is false. In line 16 compaction is
done with γ = 3 and direction is changed after every compaction (line 17). The
temperature T is reduced at the end of the iteration (line 19).

In lines 21 and 22 switching from the first stage to the second is done by
performing compaction with the new node sizes. The second stage (lines 23-37)
is similar to the first one, only all boxes are treated with their prescribed sizes.
Searching for a place for a node has to check if all grid cells under a larger node
are free. This modification influences node swapping – there may be cases when
adjacent nodes of different sizes cannot be swapped. This is the main motivation



why the first stage with unit node sizes is beneficial. In line 33 compaction is
done with gradually decreasing γ which becomes 1 in the last 3 compactions. In
this way the available free space for node movement is gradually reduced giving
more emphasis to node swapping.

1 Initialize the grid of size 5
√

|V | × 5
√

|V | Put nodes randomly into grid (treat
them all 1× 1 sized);

2 compactionDir=true;

3 iterationCount=90
√

|V |;

4 T=2
√

|V | ;

5 k=(0.2/T)1/iterationCount;
6 for ( i=0; i<iterationCount/2; i++ ) do

7 for (j=1; j ≤ |V |; j++) do

8 x=neighboursMedianX(vj) + random(−T, T);
9 y=neighboursMedianY(vj) + random(−T, T);

10 Put vj near (x,y);
11 if vj has not changed it’s place from the previous iteration then

12 Try to swap vj with nodes nearby;
13 end

14 end

15 if iterationCount mod 9 == 0 then

16 compact(compactionDir, 3, false);
17 compactionDir=!compactionDir;

18 end

19 T=T·k;

20 end

21 compact(true, 3, true);
22 compact(false, 3, true);
23 for ( i=iterationCount/2+1; i<iterationCount; i++ ) do

24 for (j=1; j ≤ |V |; j++) do

25 x=neighboursMedianX(vj) + random(−T·w′

j , T·w
′

j);
26 y=neighboursMedianY(vj) + random(−T·h′

j , T·h
′

j);
27 Put vj near (x,y);
28 if vj has not changed it’s place from the previous iteration then

29 Try to swap vj with nodes nearby;
30 end

31 end

32 if iterationCount mod 9 == 0 then

33 compact
(

compactionDir, max
(

1, 1 + 2(iterationCount−i−30)
0.5iterationCount

)

, false
)

;

34 compactionDir=!compactionDir;

35 end

36 T=T·k;

37 end

Algorithm 1: Main algorithm



3.3 Other Starting Layouts

The algorithm described above starts with assigning random positions to the
nodes and later it needs relatively many iterations to find a good layout. We
consider two other initial layouts for increased speed or quality – force directed
placement and arrangement by breadth first search(BFS). The constants of the
algorithm have to be adjusted depending on the chosen initial layout.

One possibility is to use force directed placement for the initial positions of
nodes. Fast methods [11] are known for the force directed placement. Node coor-
dinates in the grid are initialized from the rounded results of the force directed
placement. Since force-directed placement gives a good approximation to the
minimum edge length, iterationCount can be set constant and we made it equal
to 100. Compaction is done at every 3-rd iteration. The starting temperature
should be small, we set T = 3.

Another possibility for the starting layout is to use incremental placement
where nodes are added one by one. We execute a breadth-first search starting
from some arbitrary chosen node and add nodes to the grid in this order. The
position for each node is chosen as a free place that minimizes the total distance
to already placed nodes. We found that BFS placement gives good results with
small graphs or graphs with a small degree. For this starting layout we chose
coefficients as follows: iterationCount = 10

√

|V |, T = 0.2
√

|V |. Compaction is
done after every 3-rd iteration.

4 Results

We have tested our algorithm on many artificial and real world graphs. Figure
8 shows some examples. The algorithm produces pleasant drawings with small
area and low number of crossings and edge bends. For small graphs like these,
all three proposed initial placement methods produce similar results.

(a) (b) (c)

Fig. 4: Examples of the tested graphs. (a) partial grid graph; (b) tree graph; (c)
random graph.



To test the quality and performance of our algorithm we run it on three
automatically generated graph classes – partial grids, random trees and random
graphs, see Figure 4. Three modifications of the algorithm with different initial
placements were tested for each class, the time for initialization is included in
the measurement. For each class of graphs random instances were generated of
progressively increasing size, 10 instances for each size. The running time and
the average number of crossings per edge were calculated. To be independent of
the routing algorithm, edges were treated as straight line segments connecting
the node centers for the crossing calculation. The results were averaged over the
10 generated instances.

The running time measurements are similar for all three graph classes. The
running time mostly depends on the number of iterations chosen in each case of
initialization, random case being the slowest and force-directed case the fastest.
The measurements indicate that the time for initial placement does not add
much overhead.

The results for the partial grid graphs are shown in Figure 5. A partial grid
graph is a square grid with the specified number of nodes where 10% of nodes
are randomly removed. The results show that the algorithm with all the initial
placement methods produce a planar layout of small instances (up to about 1000
nodes) but further only force-directed initialization is able to recover the graph
structure correctly, BFS initialization being the worst. It has to be mentioned
that, if we increase the number of iterations of the BFS case to match the
random case, we obtain drawings of similar quality. But our intention for the
BFS method was to check whether we can improve running time with a better
initialization. Tests showed that BFS initialization does not give any advantage
over the random one.

The quality on tree graphs is similar for all three modifications (Figure 6).
None is able to produce completely planar drawings of larger instances, although
the crossing count is small. The BFS method has slightly more crossings than
the other two.

Random graphs are generated by including randomly chosen node pairs as
edges in the graph with density |E| = 1.2|V |. The quality on random graphs is
similar for all three methods (Figure 7). That is expected since random graphs
cannot be drawn with significantly less crossings than any of these methods
produce.

Overall, the best initialization method is force-directed, which produce the
best drawing quality in the least running time. Of course, this option depends
on the quality and performance of the available force-directed placement imple-
mentation.



(a) (b)

Fig. 5: The running time and crossing count depending on node count of partial
grid graphs. (a) running time; (b) crossing count.

(a) (b)

Fig. 6: The running time and crossing count depending on node count of tree
graphs. (a) running time; (b) crossing count.

(a) (b)

Fig. 7: The running time and crossing count depending on node count of random
graphs. (a) running time; (b) crossing count.



(a) (b)

(c) (d)

Fig. 8: Examples of layouts produced with the proposed algorithm. (a) the graph
presented in [13]; (b) the graph presented in [6]; (c) the graph presented in [4];
(d) a graph with nodes of different sizes.
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9. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In: Graph Drawing. pp. 254–266. Springer (1996)

10. Freivalds, K., Kikusts, P.: Optimum layout adjustment supporting ordering con-
straints in graph-like diagram drawing. In: Proceedings of Latvian Academy of
Sciences, Section B. pp. 43–51. No. 1 (2001)
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