
Algorithmica (2015) 73:289–305
DOI 10.1007/s00453-014-9921-5

b-Coloring is NP-hard on Co-bipartite Graphs
and Polytime Solvable on Tree-Cographs

Flavia Bonomo · Oliver Schaudt · Maya Stein ·
Mario Valencia-Pabon

Received: 8 October 2013 / Accepted: 21 July 2014 / Published online: 2 August 2014
© Springer Science+Business Media New York 2014

Abstract A b-coloring of a graph is a proper coloring such that every color class
contains a vertex that is adjacent to all other color classes. The b-chromatic number
of a graph G, denoted by χb(G), is the maximum number t such that G admits a
b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring
with t colors, for every t = χ(G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2)

for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We
investigate the b-chromatic number of graphs with stability number two. These are
exactly the complements of triangle-free graphs, thus including all complements of
bipartite graphs. The main results of this work are the following: (1) We characterize
the b-colorings of a graph with stability number two in terms of matchings with

F. Bonomo
CONICET and Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina
e-mail: fbonomo@dc.uba.ar

O. Schaudt
Institut de Mathématiques de Jussieu, CNRS UMR7586, Université Pierre et Marie Curie (Paris 6),
Paris, France
e-mail: schaudt@math.jussieu.fr

M. Stein
Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
e-mail: mstein@dim.uchile.cl

M. Valencia-Pabon (B)
LIPN, CNRS, UMR7030, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
e-mail: valencia@lipn.univ-paris13.fr

Present Address:
M. Valencia-Pabon
INRIA Nancy - Grand Est, Nancy, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-014-9921-5&domain=pdf

290 Algorithmica (2015) 73:289–305

no augmenting paths of length one or three. We derive that graphs with stability
number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete
to decide whether the b-chromatic number of co-bipartite graph is at least a given
threshold. (3) We describe a polynomial time dynamic programming algorithm to
compute theb-chromatic number of co-trees. (4)Extending several previous results,we
show that there is a polynomial time dynamic programming algorithm for computing
the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are
b-continuous and b-monotonic.

Keywords b-Coloring · Stability number two · Co-triangle-free graphs ·
NP-hardness · Treecographs · Polytime dynamic programming algorithms

1 Introduction

A b-coloring of a graph G by k colors is a proper coloring of the vertices of G such
that every color class contains a vertex that is adjacent to all the other k − 1 color
classes. Such a vertex will be called a dominating vertex. It is easy to see that any
proper coloring of a graph G with χ(G) many colors is a b-coloring (as usual, we
denote by χ(G) the minimum number of colors needed for a proper coloring of the
vertices of a graph).

The b-chromatic number of a graph G, denoted by χb(G), is the maximum number
k such that G admits a b-coloring with k colors. Clearly, χb(G) ≤ �(G) + 1 where
�(G) denotes the maximum degree of G. The b-chromatic number was introduced in
[11]. The motivation, similarly as the well known achromatic number (cf. e.g., [2,7]
and ref. therein), comes from algorithmic graph theory. Suppose one colors a given
graph properly, but in an arbitrary way. After all vertices are colored, one would wish
to perform some simple operations to reduce the number of colors. A simple operation
consists in recoloring all the vertices in one color class with a possible different color.
Obviously, such recoloring is impossible if each color class contains a dominating
vertex. Hence, the b-chromatic number of the graph serves as the tight upper bound
for the number of colors used by this coloring heuristic. From this point of view, both
complexity results and polynomial time algorithms for particular graph families are
interesting.

Assume that the vertices v1, v2, . . . , vn of a graph G are ordered such that d(v1) ≥
d(v2) ≥ · · · ≥ d(vn), where d(x) denotes the degree of vertex x in G. Let

m(G) := max{i : d(vi) ≥ i − 1}

be the maximum number i such that G contains at least i vertices of degree ≥ i −1. It
is clear that m(G) ≤ �(G) + 1. Irving and Manlove [11] showed that this parameter
bounds the b-chromatic number:

Proposition 1 For every graph G, χ(G) ≤ χb(G) ≤ m(G).

Irving and Manlove [11] also showed that determining χb(G) is NP-complete for
general graphs, but polynomial-time solvable for trees. Kratochvíl et al. [13] proved

123

Algorithmica (2015) 73:289–305 291

that the problem of determining if χb(G) = m(G) is NP-complete even for connected
bipartite graphs G with m(G) = �(G) + 1. A graph G is tight if it has exactly
m(G) dense vertices (a vertex v of a graph G is dense if d(v) ≥ m(G) − 1), each
of which has degree exactly m(G) − 1. Havet et al. [8] recently investigated the
problem on tight graphs. They proved that the problem of determining if a tight graph
G has χb(G) = m(G) is NP-complete for bipartite graphs and ptolemaic graphs, but
polynomial-time solvable for complements of bipartite graphs, split graphs and block
graphs.

In last years, several related concepts concerning b-colorings of graphs have been
studied in [6,8–10,12]. A graph G is defined to be b-continuous [6] if it admits a
b-coloring with t colors, for every t = χ(G), . . . , χb(G). In [12] (see also [6]) it
is proved that chordal graphs and some planar graphs are b-continuous. A graph G
is defined to be b-monotonic [3] if χb(H1) ≥ χb(H2) for every induced subgraph
H1 of G, and every induced subgraph H2 of H1. They proved that P4-sparse graphs
(and, in particular, cographs) are b-continuous and b-monotonic. Besides, they give a
dynamic programming algorithm to compute the b-chromatic number in polynomial
time within these graph classes.

Our paper is organized as follows. In the next section, we characterize b-colorings
of graphs with stability number two in terms of matchings with no augmenting paths
of length one or three.

In Sect. 3, we prove that graphs with stability at most two are both b-continuous
and b-monotonic.

In Sect. 4, we prove that computing the b-chromatic number of co-bipartite graphs
is an NP-complete problem.

Finally, in Sect. 5, first we describe a polynomial-time dynamic programming algo-
rithm to compute the b-chromatic number of co-trees. Next, we extend our results to
the family of tree-cographs by showing that there is a polynomial time dynamic pro-
gramming algorithm for computing the b-chromatic number of graphs in this family
and that these are also b-continuous and b-monotonic.

2 b-Colorings and Matchings

The stability of a graphG is defined as themaximum cardinality of a subset of pairwise
non-adjacent vertices in G. Given a graph G, we denote by G the complement graph
of G, which is the graph on the same set of vertices as G that has an edge between
two different vertices u and v if and only if u and v are non-adjacent in G. It is not
difficult to see that G is a graph with stability one if and only if it is complete, and G
is a graph with stability at most two if and only if G is a triangle-free graph. In this
section, we will see that matchings in triangle-free graphs are very important when
we deal with b-colorings of graphs with stability at most two.

Let M be a matching of a graph G. Denote by V (M) the set of all vertices covered
by M . An augmenting path for M is a path starting and ending outside V (M) whose
edges alternate between E(G)−M and M . Usually, M is calledmaximal if no further
edge can be included in M . In other words, G does not contain an augmenting path
of length one with respect to M . Following this terminology we call M strongly

123

292 Algorithmica (2015) 73:289–305

maximal if G does not contain augmenting paths of length one or three with respect
to M . Trivially, maximum matchings are strongly maximal, and strongly maximal
matchings are maximal. Our next lemma shows why strongly maximal matchings are
important in our setting.

Lemma 2 Let G be a graph of stability at most two and let c be a proper coloring of
G. Then c is a b-coloring if and only if the set

M = {uv : u, v ∈ V, u �= v and c(u) = c(v)}

is a strongly maximal matching in G. Moreover, the number of colors c uses is |V (G)|
− |M |.
Proof First, observe that M is a (possibly empty) matching of G because G has
stability at most two. Now, suppose that G contains an augmenting path P of length
1 or 3 for M . If P consists of only one edge uv, then in G, the vertices u and v are
non-adjacent, and each makes up a singleton color class. Thus c is not a b-coloring.
If P has three edges, say x − u − v − y, then for each of the endvertices of its middle
edge uv there is a singleton color class with no vertex adjacent to it in G. In fact,
{u, v}, {x} and {y} correspond to three different color classes in the coloring c, but
there is no vertex in {u, v} adjacent to both vertices x and y. So the color class {u, v}
witnesses the fact that c is not a b-coloring.

Next, suppose that c is not a b-coloring. Note that, as G has stability at most two,
every vertex of G is adjacent (in G) to at least one vertex of any given color class
of size 2. So, the witness for c not being a b-coloring is one of the following two:
either it is a singleton color class whose vertex is non-adjacent to another singleton
color class, or it is a color class {u, v} of size two, such that u is non-adjacent to some
singleton color class, and v is non-adjacent to a different singleton color class. Clearly,
the first situation corresponds to an augmenting path of M on one edge, and the second
situation corresponds to an augmenting path of M on three edges. ��

Observe that coloring c from Lemma 2 is a maximum (minimum) b-coloring of G
if and only if M is a minimum (maximum) strongly maximal matching of G.

3 b-Continuity and b-Monotonicity of Graphs with Stability at Most Two

In order to prove the b-continuity of graphs with stability at most two, we need the
following result.

Lemma 3 Let M be a strongly maximal matching of a graph G and let P be a
minimum length augmenting path in G with respect to M. Then, the matching M ′ =
(M \ E(P))∪ (E(P)\ M) is a strongly maximal matching of G, and |M ′| = |M |+1.

Proof Let P = (x1, x2, . . . , xk). By basic results frommatching theory, the only thing
we need to prove is that M ′ is again strongly maximal. Since the maximality of M ′
is clear, suppose for contradiction that there is an augmenting path of length 3, say
Q = (u, v, w, x). Necessarily vw is an edge of M ′ \M , and thus w.l.o.g. there is some

123

Algorithmica (2015) 73:289–305 293

i ∈ {1, 2, . . . , k − 1} with v = xi and w = xi+1. Moreover, u, x /∈ V (M). Thus both
paths (x1, x2, . . . , xi , u) and (x, xi+1, xi+2, . . . , xk) are augmenting paths for M and
at least one of these paths is shorter than P . This is a contradiction to the choice of P .
��

By Lemma 2, any b-coloring using k > χ(G) colors of a graph G of stability at
most two corresponds to a strongly maximal matching M that is not maximum. By
Berge’s lemma [1], there is an augmenting path for M . Using Lemma 3 we obtain
a strongly maximal matching M ′ of cardinality |M | + 1, which, again by Lemma 2,
corresponds to a b-coloring with k−1 colors. Repeatedly applying this argument gives
the following result.

Theorem 4 Graphs of stability at most two are b-continuous.

Given a maximum b-coloring of a graph G of stability at most two, we can thus
find b-colorings for all values between χ(G) and χb(G). Moreover, we can do this
in polynomial time, provided we can find a minimum length augmenting path for a
given matching in polynomial time. This is the aim of the following lemma that can
be derived by a slight modification of Edmonds’ blossom algorithm [5].

Lemma 5 Let M be a matching in a graph G. Then, a minimum length augmenting
path P in G with respect to M can be computed in polynomial time.

Lemma 5 together with the proof of Theorem 4 implies that given a graph G of
stability at most two, and a b-coloring of G using k > χ(G) colors, we can compute
in polynomial time a b-coloring for G with k − 1 colors. Notice that the converse
is not necessarily true, i.e., if we have a b-coloring of G using k < χb(G) colors,
we do not know how to compute in polynomial time a b-coloring for G with k + 1
colors. Indeed, we will prove in the next section that the problem of computing the
b-chromatic number of a graph with stability at most two is NP-complete, even when
restricted to the smaller class of co-bipartite graphs.

We now turn to the b-monotonicity of graphs of stability at most two.

Theorem 6 Graphs of stability at most two are b-monotonic.

Proof The class of graphs of stability at most two is closed under taking induced
subgraphs. Thus we only have to prove that χb is monotonously decreasing under the
deletion of a vertex. In view of Lemma 2, it is sufficient to show that given a graph
G of stability 2 and some vertex v ∈ V (G) the following holds: If there is a strongly
maximal matching of G − v of size k, then there is a strongly maximal matching of
G of size at most k + 1. This implies χb(G) ≥ χb(G − v).

LetM be a stronglymaximalmatching ofG − v.We now considerM as amatching
of G. If M is a strongly maximal matching of G, we are done. So we assume that M
is not strongly maximal, and thus there is an augmenting path P of length at most 3.
We may choose P of minimum length among all augmenting paths of M in G. Note
that P meets v, say P starts in v.

We assume first that P is of length 1, that is, v has an unmatched neighbor in G,
say u. We claim the matching M ′ = M ∪ {uv} is strongly maximal, in which case we

123

294 Algorithmica (2015) 73:289–305

are done. Indeed, otherwise there is an augmenting path of length 3 for M ′, and uv is
the central edge of this path. So, there is a neighbor of u, say w, that is not matched by
M ′. In particular, v �= w. Thus uw is disjoint from M , contradicting the maximality
of M in G − v. This proves our claim.

Now assume that P is of length 3, say P = (v, u, w, x). Let M ′ = (M \ {uw}) ∪
{vu, wx}. Suppose that M ′ is not strongly maximal in G. Then there is an augmenting
path of length 3, with central edge either vu or wx . In either case, x or v has a
neighbor in G that is unmatched by M ′ and thus also by M , a contradiction either to
the maximality of M in G − v or to the minimality of P . This completes the proof. ��

4 NP-Hardness Result for Co-bipartite Graphs

As mentioned in Sect. 1, Havet et al. [8] proved that the problem of determining if a
tight co-bipartite graph G has χb(G) = m(G) is polynomial-time solvable. However,
the computational complexity of χb in the class of co-bipartite graphs is left open.
In the next theorem, we prove that b-coloring general co-bipartite graphs is a hard
problem.

Theorem 7 Given a co-bipartite graph G and a natural number k, it is NP-complete
to decide whether G admits a b-coloring with at least k colors.

Proof By Lemma 2, it suffices to prove that it is NP-complete to decide whether a
bipartite graph G admits a strongly maximal matching containing at most k edges,
when G and k are given input.

Our reduction is from the minimum maximal matching problem which is to decide
whether a given graph admits a maximal matching of at most k edges, for given k.
This problem is NP-complete even if the instances are restricted to bipartite graphs,
as shown by Yannakakis and Gavril [15].

Given a bipartite graph G with m edges, we define a new graph HG as follows. For
each edge uv ∈ E(G) we introduce a set of new vertices

Xuv =
{
x1uv, x

2
uv, x

3
uv, x

4
uv, x

1
vu, x

2
vu, x

3
vu, x

4
vu

}

and edges

Fuv = {ux1uv, x
1
uvx

2
uv, x

2
uvx

3
uv, x

3
uvx

4
uv, x

1
uvx

1
vu, x

1
vux

2
vu, x

2
vux

3
vu, x

3
vux

4
vu, vx

1
vu}.

Note that Xuv = Xvu and Fuv = Fvu . Then HG is defined by

V (HG) = V (G) ∪
⋃

uv∈E(G)

Xuv,

E(HG) =
⋃

uv∈E(G)

Fuv.

123

Algorithmica (2015) 73:289–305 295

Clearly HG can be computed in polynomial time. Moreover, HG is bipartite since G
is. For each edge uv ∈ E(G), we define the following auxiliary sets of edges in HG :

F∈
uv =

{
ux1uv, x

2
uvx

3
uv, x

2
vux

3
vu, vx

1
vu

}
and F /∈

uv =
{
x1uvx

1
vu, x

2
uvx

3
uv, x

2
vux

3
vu

}

We claim the following:

Claim 8 There exists a minimum strongly maximal matching M of HG such that

x3uvx
4
uv /∈ M for each edge uv ∈ E(G).

Moreover, M can be obtained from any minimum strongly maximal matching of HG

in polynomial time.

In order to prove this claim, we proceed by contradiction. Assume that everyminimum
strongly maximal matching of HG contains at least an edge x3uvx

4
uv for some edge

uv ∈ E(G), and let M be a minimum strongly maximal matching of HG having a
minimum number of edges of the form x3uvx

4
uv . Note that the choice of M implies that

for every edge uv ∈ E(G) we have that

(i) x3uvx
4
uv ∈ M if and only if x1uvx

2
uv ∈ M . If x1uvx

2
uv ∈ M then x3uvx

4
uv ∈ M ,

otherwise, M is not maximal. If x3uvx
4
uv ∈ M then x1uvx

2
uv ∈ M , otherwise, we

could replace x3uvx
4
uv by x

2
uvx

3
uv in M (the resulting matching is strongly maximal

as M is so), contradicting the choice of M .
(i i) If the edges x3uvx

4
uv and x1uvx

2
uv are in M , then we have that vertices u and

x1vu are each matched by M . Otherwise, if u is unmatched, we can replace
x1uvx

2
uv, x

3
uvx

4
uv ∈ M with the edges x2uvx

3
uv, ux

1
uv . This again yields a strongly

maximal matching (since u has no neighbors unmatched by M), contradicting
the choice of M . We can use the same argument in the case x1vu is unmatched.

This is also some of the steps in order to transform any minimum strongly maximal
matching into the desired one.

Now, let uv be and edge in the graph G such that x3uvx
4
uv ∈ M . By (i) and (i i), we

can deduce that |M ∩ Fuv| = 4. Consider the matching

M̃ := (M \ Fuv) ∪ F /∈
uv

We claim that M̃ is strongly maximal. As M̃ is smaller than M , we thus obtain the
desired contradiction.

So assume M̃ is not stronglymaximal. Then, as u ismatched, there is an augmenting
path P of length 1 or 3 starting at v.

Now, observe that all neighbors of v are of the form x1vw (for some w ∈ V (G)),
and thus, as neither x1vwx

2
vw nor x1vwx

2
vwx

3
vwx

4
vw is an augmenting path for the strongly

maximal matching M , all neighbors of v are matched by M .
So, P has length 3, and it is easy to see that P has to end in some (unmatched)

vertex w ∈ V (G) \ {u, v} (by the maximality of M , every vertex x3wz is matched by

123

296 Algorithmica (2015) 73:289–305

M , and by the choice of M , every vertex x2wz is matched by M). By (i) and (i i), we
know that Fvw ∩ M = F /∈

vw. Consider the matching

(M̃ \ F /∈
vw) ∪ F∈

vw.

This matching is clearly strongly maximal, and has fewer edges of the form x3uvx
4
uv ,

contradicting the choice of M . (And this is the remaining step in order to transform
any minimum strongly maximal matching into the desired one.) This ends the proof
of Claim 8.

Therefore, by Claim 8, we have that there is a minimum strongly maximal M ′ in
HG that verifies either Fuv ∩M ′ = F∈

uv or Fuv ∩M ′ = F /∈
uv for each edge uv ∈ E(G).

Next we show that ifM is aminimummaximalmatching ofG andM ′ is aminimum
strongly maximal matching of HG , |M | = |M ′| − 3m. As explained above, this
completes the proof.

Let M be a minimum maximal matching of G. Using the auxiliary sets F∈
uv and

F /∈
uv , we define a strongly maximal matching M ′ of HG by

M ′ =
⋃

uv∈M
F∈
uv ∪

⋃
uv /∈M

F /∈
uv.

Note that |M ′| = |M | + 3m.
Now, let M ′ be a minimum strongly maximal matching of HG that verifies either

Fuv ∩ M ′ = F∈
uv or Fuv ∩ M ′ = F /∈

uv for each edge uv ∈ E(G). We define a maximal
matching M of G by setting

M = {uv : uv ∈ E(G), Fuv ∩ M ′ = F∈
uv}.

Clearly |M | = |M ′| − 3m, which completes the proof. ��

5 b-Coloring Co-trees and Tree-Cographs

5.1 Co-trees

Theorem 9 In the class of co-trees, χb can be computed in polynomial time.

Proof According to Lemma 2, the problem is equivalent to find a minimum strongly
maximal matching (msmm) in a tree. We will do it for nontrivial trees by dynamic
programming. In order to do so, we will define five functions Fi (r, s), i = 1, . . . , 5,
for a nontrivial tree Trs rooted at a leaf r with neighbor s. As we will apply them to
the subtrees of a tree, we will assume that r can have neighbors outside Trs .

• F1(r, s): cardinality of a msmm of Trs such that r is unmatched, and ∞ if it does
not exist.

• F2(r, s): cardinality of a msmm of Trs that uses the edge rs and such that s may
or may not have an unmatched neighbor (this case will apply when r has no
unmatched neighbor outside Trs), and ∞ if it does not exist.

123

Algorithmica (2015) 73:289–305 297

• F3(r, s): cardinality of a msmm of Trs that uses the edge rs and such that s cannot
have an unmatched neighbor (this casewill applywhen r has already an unmatched
neighbor outside Trs , so an unmatched neighbor of s will complete an augmenting
path of length 3 in the whole tree), and ∞ if it does not exist.

• F4(r, s): cardinality of a msmm of Trs such that the vertex s is matched with some
vertex different from r and the vertex r is considered as “already matched” (this
case will apply when r is already matched with a vertex outside Trs), and ∞ if it
does not exist.

• F5(r, s): cardinality of a msmm of Trs such that the vertex s remains unmatched
and the vertex r is considered as “already matched”, and ∞ if it does not exist.

With these definitions, for the base case in which V (Trs) = {r, s}, we have
• F1(r, s) = ∞ (if r is unmatched and s has no further neighbors, the matching will
never be maximal)

• F2(r, s) = 1 (precisely, the edge rs)
• F3(r, s) = 1 (precisely, the edge rs)
• F4(r, s) = ∞ (it is not feasible because s has no further neighbors)
• F5(r, s) = 0

For the case in which s has children v1, . . . , vk , we have

• F1(r, s) = mini=1,...,k{F3(s, vi) + ∑
j=1,...,k; j �=i min{F4(s, v j), F5(s, v j)}}.

In order to obtain a maximal matching, we need to match s with some of its
children, say vi . Since r will be unmatched, vi should not have an unmatched
neighbor, in order to prevent an augmenting path of length 3. When considering
the trees Tsv j for j �= i , the vertex s will have the status of “already matched”.
Furthermore, since we are already assuming that s has an unmatched neighbor, we
do not need to care about the vertices v j being matched or not.

• F2(r, s) = 1 + ∑
i=1,...,k min{F4(s, vi), F5(s, vi)}.

We will use the edge rs, and then when considering the trees Tsvi for i = 1, . . . , k,
the vertex s will have the status of “already matched”. Furthermore, since s may
or may not have an unmatched neighbor, we can take the minimum over F4 and
F5 for each of the trees Tsvi .

• F3(r, s) = 1 + ∑
i=1,...,k F4(s, vi).

This case is similar to the previous one, but now the vertex s cannot have unmatched
neighbors, so we will just consider F4 for each of the trees Tsvi .

• F4(r, s) = min{mini=1,...,k{F2(s, vi) + ∑
j=1,...,k; j �=i F4(s, v j)},mini=1,...,k

{F3(s, vi) + ∑
j=1,...,k; j �=i min{F4(s, v j), F5(s, v j)}}}

As in the first case, we need to match s with some of its children, say vi . But now,
since r is assumed to be matched, s may or may not have an unmatched neighbor,
depending on the matching status of the vertices v j with j �= i . So we will take
the minimum among allowing vi to have an unmatched neighbor and forcing v j ,
j �= i , to bematched, or forbidding vi to have an unmatched neighbor and allowing
v j , j �= i , to be either matched or not.

• F5(r, s) = ∑
i=1,...,k F1(s, vi)

This last case is quite clear.

In this way, in order to obtain the cardinality of a minimum strongly maximal
matching of a nontrivial tree T , we can root it at a leaf r whose neighbor is s and

123

298 Algorithmica (2015) 73:289–305

compute min{F1(r, s), F2(r, s)}. By keeping some extra information, we can also
obtain in polynomial time the matching itself. ��

5.2 Tree-Cographs

A graph is a tree-cograph if it can be constructed from trees by disjoint union and
complement operations. Tree-cographs have been introduced by Tinhofer [14] as a
generalization of trees and cographs.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩V2 = ∅. The union
of G1 and G2 is the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2), and the join of G1 and G2
is the graph G1∨G2 = (V1∪V2, E1∪ E2∪V1×V2). Note that G1 ∨ G2 = G1∪G2.

Tree-cographs can be recursively defined as follows: a graph G is a tree-cograph if
and only if

(i) G is a tree or a co-tree, or
(ii) G is the union of two tree-cographs G1 and G2, or
(iii) G is the join of two tree-cographs G1 and G2.

Notice that if (i) in the above definition is replaced by “G is a single vertex” then, the
obtained graph is a cograph.

The notion of dominance sequence has been introduced in [3] in order to com-
pute the b-chromatic number of P4-sparse graphs and, in particular, cographs. For-
mally, given a graph G, the dominance sequence domG ∈ Z

N≥χ(G), is defined
such that domG [t] is the maximum number of distinct color classes admitting dom-
inant vertices in any coloring of G with t colors, for every t ≥ χ(G). Note that
it suffices to consider this sequence until t = |V (G)|, since domG[t] = 0 for
t > |V (G)|. Therefore, in the sequel we shall consider only the dominance vector
(domG[χ(G)], . . . , domG[|V (G)|]). Notice that a graph G admits a b-coloring with
t colors if and only if domG[t] = t . Moreover, it is clear that domG[χ(G)] = χ(G).

The following results given in [3] are very important in order to compute the b-
chromatic number of graphs that canbedecomposed recursively inmodules via disjoint
union or join operations.

Theorem 10 ([3]) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. If G = G1 ∪ G2 and t ≥ χ(G), then

domG[t] = min{t, domG1 [t] + domG2 [t]}.

Theorem 11 ([3]) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. Let G = G1 ∨ G2 and χ(G) ≤ t ≤ |V (G)|. Let a = max{χ(G1), t −
|V (G2)|} and b = min{|V (G1)|, t − χ(G2)}. Then a ≤ b and

domG[t] = max
a≤ j≤b

{domG1 [j] + domG2 [t − j]}.

In order to compute the dominance vector of a tree-cograph and its corresponding
b-chromatic number, by Theorems 10 and 11, it is sufficient to compute the dominance
vector for both trees and co-trees.

123

Algorithmica (2015) 73:289–305 299

5.2.1 Dominance Vector for Trees

Irving and Manlove [11] have shown that the b-chromatic number of any tree T is
equal to m(T)− 1 or m(T), depending on the existence of a unique vertex in T called
a pivot, defined as follows.

A vertex v of T is called dense if d(v) ≥ m(T)−1. Call T pivoted if T has exactly
m(T) dense vertices, and contains a distinguished vertex v, called a pivot of T , such
that: (1) v is not dense, (2) each dense vertex is adjacent either to v or to a dense vertex
adjacent to v, and (3) every dense vertex adjacent to v and to another dense vertex has
degree m(T) − 1.

Irving andManlove [11] showed that a pivot is uniquewhen it exists and that pivoted
trees can be recognized in linear time. Moreover, they obtain the following result.

Theorem 12 ([11]) Let T be a tree. If T is pivoted then χb(T) = m(T)−1, otherwise
χb(T) = m(T). In both cases, a b-coloring of T with χb(T) colors can be obtained
in linear time.

It is known that chordal graphs are b-continuous [6,12] and thus trees are b-
continuous as well. Therefore, we may derive the following result concerning the
dominance vector for trees.

Lemma 13 Let T be a nontrivial tree with maximum degree �. Then, domT [i] = i ,
for 2 ≤ i ≤ χb(T). Moreover, domT [i] = 0 for any i > � + 1.

Moreover, it is not difficult to obtain a b-coloring of a tree T with i colors from one
with i + 1 colors in polynomial time, for 2 ≤ i < χb(T).

Lemma 14 Let T be a pivoted tree. Then, domT [m(T)] = m(T) − 1.

Proof By Theorem 12, if T is a pivoted tree, then χb(T) = m(T) − 1, so
domT [m(T)] ≤ m(T) − 1. Consider now the following coloring of T with m(T)

colors. Give color 1 to the pivot v of T . Since v is not dense, there are at least two
dense vertices at distance 2 of v; give color 1 to one of them, say w. Now color the
dense vertices using them(T) different colors and color their neighbors in such a way
that the only dense vertex that is not dominant is the common neighbor to v and w. It
is easy to extend this coloring to a proper coloring of T with m(T) colors. ��

We now show how to compute the values domT [i] and a coloring of T with i colors
and domT [i] dominant vertices in linear time, for m(T) < i ≤ � + 1. For this, we
need the following definition. Let T be a tree of maximum degree � and let i be an
integer such that m(T) < i ≤ � + 1. We define mi (T) as the number of vertices in T
of degree at least i − 1.

It is not difficult to see that for a tree T , domT [i] ≤ mi (T) < i , for values of i with
m(T) < i ≤ � + 1.

Lemma 15 Let T be a tree of maximum degree� and let i be an integer with m(T) <

i ≤ � + 1. Then, domT [i] = mi (T), and a coloring of T with i colors and mi (T)

dominant vertices can be computed in linear time.

123

300 Algorithmica (2015) 73:289–305

Proof For convenience, set k = mi (T). As i ≤ � + 1, we have k > 0. Let P be a
path disjoint from T that contains the i − k + 3 ≥ 4 vertices x, y, v1, v2, . . . , vi−k, z
in this order. We construct a tree T ′ disjoint from T by taking P and pending i − 3
leaves from each vertex v j , with 1 ≤ j ≤ i − k. Obtain T ′′ from T and T ′ by adding
an edge between x and some leaf h of T .

By construction, mi (T ′′) = i , and thus also m(T ′′) = i . Further, T ′ contains the
dense vertices v1, v2, . . . , vi−k of T ′′, and T contains k dense vertices of T ′′. So, as
both x and y have degree 2 in T ′′ (and thus either both or none of them are dense), we
see that T ′′ is not pivoted. Hence, Theorem 12 yields that χb(T ′′) = m(T ′′) = i , and
a b-coloring of T ′′ with i colors can be computed in linear time.

Now, the dominant vertices in T ′′ are exactly the k vertices of degree at least i − 1
in T and the i −k vertices v1, . . . , vi−k in T ′. Therefore, by removing the tree T ′ from
T ′′ we obtain the desired coloring of T with i colors and exactly k dominant vertices.
Moreover, notice that the distance in T ′′ between a dense vertex in T and a dense
vertex in T ′ is at least equal to 4. Hence, by using Irving’s and Manlove’s algorithm
[11] for b-coloring T ′′ with i colors, we can forget the tree T ′ and thus, the coloring
of T with i colors and mi (T) dominant vertices can be done in O(|V (T)|) time. ��

5.2.2 Dominance Vector for Co-trees

LetG be a graph andM be amatching of it. Let S1(G, M) be the number of unmatched
vertices that have at least an unmatched neighbor and S2(G, M) be the number of edges
of M that are the center of an augmenting path of length 3 for M . Now, let F(G, k) be
the minimum of S1(G, M) + S2(G, M) over all the matchings M of G with |M | = k.

Now, let G be a graph with stability at most two and consider a coloring of it. Let
M be the matching of G corresponding to that coloring. The number of color classes
without a dominant vertex is exactly S1(G, M) + S2(G, M). So, for χ(G) ≤ i ≤
|V (G)|, domG[i] = i − F(G, |V (G)| − i). We will show how to compute F(T, k)
for a tree T and a nonnegative integer k in polynomial time.

Theorem 16 If G is a co-tree, then domG can be computed in polynomial time.

Proof As we noticed above, if G is nontrivial, then the problem is equivalent to
compute F(G, k), for χ(G) ≤ k ≤ |V (G)|. We will do it by dynamic programming.
In order to do so, and in a similar way as in Theorem 9, we will define seven functions
Fi (r, s, k), i = 1, . . . , 7, for a nontrivial tree Trs rooted at a leaf r with neighbor s
and a nonnegative integer k. As we will apply them to the subtrees of a tree, we will
assume that r can have neighbors outside Trs . Nevertheless, we will count for S2 just
the edges of M ∩ E(Trs) and for S1 the vertices of V (Trs), with the exception of r
when it is unmatched but has already an unmatched neighbor outside Trs , in order to
avoid double counting.

For i = 1, . . . , 7, Fi (r, s, k)will be the minimum of S1(Trs, M)+ S2(Trs, M) over
all the matchings M with |M | = k such that:

• F1(r, s, k): r is unmatched and s is matched by M with some vertex different from
r .

• F2(r, s, k): M uses the edge rs and r has no unmatched neighbor outside Trs .

123

Algorithmica (2015) 73:289–305 301

• F3(r, s, k): M uses the edge rs and r has an unmatched neighbor outside Trs .
• F4(r, s, k): the vertex s is matched by M with some vertex different from r and
the vertex r is already matched with a vertex outside Trs .

• F5(r, s, k): the vertex s remains unmatched and the vertex r is already matched
with a vertex outside Trs .

• F6(r, s, k): r is unmatched, s remains unmatched, and r has nounmatched neighbor
outside Trs .

• F7(r, s, k): r is unmatched, s remains unmatched, and r has an unmatched neighbor
outside Trs (we will not count r for S1 as we assume it is already counted).

In any case, the value will be ∞ if no such M does exist.
With these definitions, for the base case in which V (Trs) = {r, s}, we have

• F1(r, s, k) = ∞ (s has no further neighbors)
• For i = 2, 3, Fi (r, s, 1) = 0 (we define M = {rs}), Fi (r, s, k) = ∞ for k �= 1.
• F4(r, s, k) = ∞ (it is not feasible because s has no further neighbors)
• F5(r, s, 0) = 0, F5(r, s, k) = ∞ for k �= 0.
• F6(r, s, 0) = 2, F6(r, s, k) = ∞ for k �= 0.
• F7(r, s, 0) = 1, F7(r, s, k) = ∞ for k �= 0.

For the case in which s has children v1, . . . , v�, we have

• F1(r, s, 0) = ∞, F1(r, s, k) = mink1+···+k�=k mini=1,...,� {F3(s, vi , ki)
+ ∑

j=1,...,�; j �=i min{F4(s, v j , k j), F5(s, v j , k j)}} for k > 0.
We need to match s with some of its children, say vi . Since r will be unmatched, s
will have an unmatched neighbor outside Tsvi , and we do not need to distinguish
about the vertices v j being matched or not in Tsv j , for j �= i . When considering
the trees Tsv j for j �= i , the vertex s will have the status of “already matched”.

• F2(r, s, 0) = ∞, F2(r, s, k) = mink1+···+k�=k−1
∑

i=1,...,� min{F4(s, vi , ki),
F5(s, vi , ki)} for k > 0.
We will use the edge rs, and then when considering the trees Tsvi for i = 1, . . . , �,
the vertex s will have the status of “already matched” and we will use k − 1 edges
in total (thus for k = 0 it is not feasible). Furthermore, since r has no unmatched
neighbor, we can take the minimum over F4 and F5 for each of the trees Tsvi , and
in none of the cases the edge rs will be the center of an augmenting path of length
3.

• F3(r, s, 0) = ∞, F3(r, s, k) = mink1+···+k�=k−1 min{∑i=1,...,� F4(s, vi , ki), 1
+ ∑

i=1,...,� min{F4(s, vi , ki), F5(s, vi , ki)}} for k > 0.
This case is similar to the previous one, but now, since r has an unmatched neighbor,
we distinguish between the case in which we consider F4 for each of the trees Tsvi
so that the edge rs will not be the center of an augmenting path of length 3, and the
case in which we take the minimum over F4 and F5 for each of the trees Tsvi and
we allow the edge rs being the center of an augmenting path of length 3. In that
case we will assume indeed that the edge rs becomes the center of an augmenting
path of length 3, because otherwise the minimum will be attained by the previous
case.

• F4(r, s, 0) = ∞, F4(r, s, k) = mink1+···+k�=k min{mini=1,...,�{F2(s, vi , ki)
+∑

j=1,...,�; j �=i F4(s, v j , k j)},mini=1,...,�{F3(s, vi , ki)+∑
j=1,...,�; j �=i min{F4(s,

v j , k j), F5(s, v j , k j)}}} for k > 0.

123

302 Algorithmica (2015) 73:289–305

As in the first case, we need to match s with some of its children, say vi . But now,
since r is assumed to be matched, s may or may not have an unmatched neighbor,
depending on the matching status of the vertices v j with j �= i . So we will take
the minimum among allowing vi to have an unmatched neighbor and forcing v j ,
j �= i , to bematched, or forbidding vi to have an unmatched neighbor and allowing
v j , j �= i , to be either matched or not.

• F5(r, s, k) = mink1+···+k�=k min{∑i=1,...,� F1(s, vi , ki),mini=1,...,�{F6(s, vi , ki)
+ ∑

j=1,...,�; j �=i F1(s, v j , k j)}, 1 + ∑
i=1,...,� min{F1(s, vi , ki), F7(s, vi , ki)}}

We will take the minimum over three cases: either all the vi will be matched, or
exactly one of them will be unmatched, or at least two of them will be unmatched.
In this last case we count s as an unmatched vertex with unmatched neighbor but
we do not force explicitly two of the vi to be unmatched, because otherwise the
minimum will be attained by one of the previous cases.

• F6(r, s, k) = 2 + mink1+···+k�=k
∑

i=1,...,� min{F1(s, vi , ki), F7(s, vi , ki)}
We are counting r and s as unmatched vertices with an unmatched neighbor.

• F7(r, s, k) = 1 + mink1+···+k�=k
∑

i=1,...,� min{F1(s, vi , ki), F7(s, vi , ki)}
We are counting just s as an unmatched vertex with unmatched neighbor, since r
is assumed to be already counted.

Notice that as the values of the functions Fi are bounded by the number of vertices
of the corresponding tree, and k is also bounded by that number, taking the minimum
over k1 + · · · + k� = k of some combination of these Fi is equivalent to solve a
polynomially bounded number of knapsack problems where both the weights and the
utilities are polynomially bounded as well, so this can be done by dynamic program-
ming in polynomial time [4]. We can rewrite all the expressions for F1, . . . , F7 as the
minimum over a polynomial number of knapsack problems based on the precomputed
functions for the corresponding subtrees of the tree.

In this way, in order to obtain F(T, k) for a nontrivial tree T , we can root it at a
leaf r whose neighbor is s and compute min{F1(r, s, k), F2(r, s, k), F6(r, s, k)}. By
keeping some extra information, we can also obtain in polynomial time the matching
itself. ��

5.2.3 b-Bontinuity and b-Monotonicity of Tree-Cographs

The following result was proved for union and join of graphs.

Lemma 17 ([3]) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. If G1 and G2 are b-continuous, then G1 ∪ G2 and G1 ∨ G2 are
b-continuous.

As a corollary of the lemma, Theorem 4, and the b-continuity of chordal graphs
[6,12], we have the following result.

Theorem 18 Tree-cographs are b-continuous.

Concerning the b-monotonicity, the following results are known for general graphs
and for union and join of graphs.

123

Algorithmica (2015) 73:289–305 303

Lemma 19 ([3]) Let G be a graph. The maximum value of domG[t] is attained in
t = χb(G).

Lemma 20 ([3]) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅, and let G = G1 ∪ G2. Assume that for every t ≥ χ(Gi) and every
induced subgraph H of Gi we have domH [t] ≤ domGi [t], for i = 1, 2. Then, for
every t ≥ χ(G) and every induced subgraph H of G, domH [t] ≤ domG[t] holds.
Lemma 21 ([3]) Let G1 = (V1, E1) and G2 = (V2, E2) be two b-continuous graphs
such that V1∩V2 = ∅, and let G = G1∨G2. Assume that for every t ≥ χ(Gi) and for
every induced subgraph H of Gi we have domH [t] ≤ domGi [t], for i = 1, 2. Then,
for every t ≥ χ(G) and for every induced subgraph H of G, domH [t] ≤ domG [t]
holds.

In order to prove the b-monotonicity of tree-cographs, we need the following two
lemmas.

Lemma 22 Let T be a tree and H an induced subgraph of T . Then for every t ≥ 2,
domH [t] ≤ domT [t].
Proof It is clear that it holds for t ≤ χb(T). If T is a pivoted tree, then eitherm(H) <

m(T) or the connected component of H containing the dense vertices is a pivoted
tree as well. In any case, domH [m(T)] ≤ domT [m(T)]. For t > m(T), let Tj ,
j = 1, . . . , k, be the connected components of H . It is clear that

∑
j=1,...,k mt (Tj) ≤

mt (T), so by Theorem 10, domH [t] ≤ domT [t]. ��
Lemma 23 Let G be a graph with stability at most two and H an induced subgraph
of G. Then for every t ≥ χ(G), domH [t] ≤ domG [t].
Proof The class of graphs of stability at most two is closed under taking induced
subgraphs. Thus we only have to prove that domG [t] for a fixed t is monotonously
decreasing under the deletion of a vertex. Let H = G − v for some vertex v of G.
It is clear that domH [t] ≤ domG [t] for χ(G) ≤ t ≤ χb(G) and for t > |V (H)| =
|V (G)| − 1. For |V (H)| ≥ t > χb(G), as we observed before, since G and H
have stability at most two, domG[t] = t − F(G, |V (G)| − t), and domH [t] = t −
F(H , |V (H)| − t), where F(X, k) stands for the minimum sum of the number of
unmatched vertices that have at least an unmatched neighbor and the number of edges
ofM that are the center of an augmenting path of length 3 forM , over all thematchings
M of a graph X with |M | = k. Then domG [t] ≥ domH [t] if and only if F(G, |V (G)|−
t) = F(G, |V (H)| + 1 − t) ≤ F(H , |V (H)| − t).

LetM be amatching of H that realizes thisminimum, and considerM as amatching
of G. We need to find a matching M ′ of G with |M ′| = |M | + 1, which is always
posible, since t > χ(G) and then |V (G)| − t is strictly smaller than the size of a
maximum matching of G.

We will consider now three cases. If v has an unmatched neighbor w, then let
M ′ = M ∪{vw}. In this way, S1(G, M ′) ≤ S1(H , M) and no edge of M becomes the
center of an augmenting path of length 3 for M ′ in G. Moreover, if vw is the center
of an augmenting path of length 3 for M ′ in G, then w was for M an unmatched

123

304 Algorithmica (2015) 73:289–305

vertex of H having an unmatched neighbor. In this case, S2(G, M ′) = S2(H , M) +
1 but S1(G, M ′) ≤ S1(H , M) − 1. In any case, F(G, |V (G)| − t) ≤ S1(G, M ′)
+ S2(G, M ′) ≤ S1(H , M) + S2(H , M) = F(H , |V (H)| − t).

If v has no unmatched neighbor but it is the end of an augmenting path of length 3
for M in G, say vxyw, let M ′ = M \ {xy} ∪ {vx, yw}. There are no new unmatched
vertices, so S1(G, M ′) ≤ S1(H , M) and no edge of M becomes the center of an
augmenting path of length 3 for M ′ in G. Neither does vx , since v had no unmatched
neighbor. If yw is the center of an augmenting path of length 3 for M ′ in G, then
w was for M an unmatched vertex of H having an unmatched neighbor. In this case
S2(G, M ′) = S2(H , M) + 1 but S1(G, M ′) ≤ S1(H , M) − 1, so we are done.

Finally, if v does not have an unmatched neighbor and it is not the end of an
augmenting path of length 3 forM inG, i.e., S1(G, M) = S1(H , M) and S2(G, M) =
S2(H , M), let P be a minimum length augmenting path in G with respect to M , and
let M ′ = (M \ E(P)) ∪ (E(P) \ M). There are no new unmatched vertices, so
S1(G, M ′) ≤ S1(H , M) and no edge of M becomes the center of an augmenting path
of length 3 for M ′ in G. If P is of length 1, then S2(G, M ′) ≤ S2(H , M) + 1 but
S1(G, M ′) ≤ S1(H , M)−2, so we are done. If P is of length 3, we are eliminating an
augmenting path of length 3 and no new edge becomes the center of an augmenting
path of length 3, because otherwise there were couples of adjacent unmatched vertices
and we are supposing P is of minimum length. Thus S1(G, M ′) = S1(H , M) = 0 and
S2(G, M ′) ≤ S2(H , M) − 1, so we are done. If there were no augmenting paths of
length 1 or 3, M is a strongly maximal matching ofG and then |V (G)|−|V (H)|+ t =
t + 1 ≤ χb(G), a contradiction because we were supposing t > χb(G). ��

So, we can conclude the following.

Theorem 24 Tree-cographs are b-monotonic.

Proof As tree-cographs are hereditary, it is enough to prove that given a tree-cograph
G, χb(G) ≥ χb(H), for every induced subgraph H of G. By the decomposition
structure of tree-cographs [14] and Theorem 18, Lemmas 20, 21, 22, and 23, an
induction argument shows that for every tree-cograph G, every t ≥ χ(G), and every
induced subgraph H ofG, domH [t] ≤ domG [t] holds. LetG be a tree-cograph, and let
H be an induced subgraph of G. If χb(H) < χ(G), then χb(H) < χb(G). Otherwise,
χb(H) = domH [χb(H)] ≤ domG[χb(H)], and by Lemma 19 domG[χb(H)] ≤
domG[χb(G)] = χb(G). Hence χb(G) ≥ χb(H). ��
Acknowledgments We would like to thank the anonymous referees for their careful reading and sug-
gestions that helped us to improve the paper. This work was partially supported by UBACyT Grant
20020100100980, CONICET PIP 112-200901-00178 and 11220120100450CO, and ANPCyT PICT 2012–
1324 (Argentina) and MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France).

References

1. Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. USA 43, 842–844 (1957)
2. Bodlaender, H.L.: Achromatic number is NP-complete for cographs and interval graphs. Inf. Process.

Lett. 31, 135–138 (1989)

123

Algorithmica (2015) 73:289–305 305

3. Bonomo, F., Durán, G., Maffray, F., Marenco, J., Valencia-Pabon, M.: On the b-coloring of cographs
and P4-sparse graphs. Graphs Comb. 25(2), 153–167 (2009)

4. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266–277 (1957)
5. Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)
6. Faik, T.: La b-continuité des b-colorations: complexité, propriétés structurelles et algorithmes. Ph.D.

thesis, L.R.I., Université Paris-Sud, Orsay, France (2005)
7. Harary, F., Hedetniemi, S.: The achromatic number of a graph. J. Comb. Theory 8, 154–161 (1970)
8. Havet, F., Linhares-Sales, C., Sampaio, L.: b-coloring of tight graphs. Discrete Appl. Math. 160(18),

2709–2715 (2012)
9. Hoàng, C.T., Kouider, M.: On the b-dominating coloring of graphs. Discrete Appl. Math. 152, 176–186

(2005)
10. Hoàng, C.T., Linhares Sales, C., Maffray, F.: On minimally b-imperfect graphs. Discrete Appl. Math.

157(17), 3519–3530 (2009)
11. Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discrete Appl. Math. 91, 127–141

(1999)
12. Kára, J., Kratochvíl, J., Voigt, M.: b-Continuity. Technical Report M 14/04, Technical University

Ilmenau, Faculty of Mathematics and Natural Sciences (2004)
13. Kratochvíl, J., Tuza, Zs, Voigt, M.: On the b-chromatic number of a graph. Lect. Notes Comput. Sci.

2573, 310–320 (2002)
14. Tinhofer, G.: Strong tree-cographs are Birkoff graphs. Discrete Appl. Math. 22(3), 275–288 (1989)
15. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372

(1980)

123

	b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree-Cographs
	Abstract
	1 Introduction
	2 b-Colorings and Matchings
	3 b-Continuity and b-Monotonicity of Graphs with Stability at Most Two
	4 NP-Hardness Result for Co-bipartite Graphs
	5 b-Coloring Co-trees and Tree-Cographs
	5.1 Co-trees
	5.2 Tree-Cographs
	5.2.1 Dominance Vector for Trees
	5.2.2 Dominance Vector for Co-trees
	5.2.3 b-Bontinuity and b-Monotonicity of Tree-Cographs

	Acknowledgments
	References

