
Solving MaxSAT and #SAT on structured

CNF formulas

Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle

Department of Informatics, University of Bergen, Norway

Abstract

In this paper we propose a structural parameter of CNF formulas and
use it to identify instances of weighted MaxSAT and #SAT that can be
solved in polynomial time. Given a CNF formula we say that a set of clauses
is precisely satisfiable if there is some complete assignment satisfying these
clauses only. Let the ps-value of the formula be the number of precisely
satisfiable sets of clauses. Applying the notion of branch decompositions to
CNF formulas and using ps-value as cut function, we define the ps-width
of a formula. For a formula given with a decomposition of polynomial
ps-width we show dynamic programming algorithms solving weighted
MaxSAT and #SAT in polynomial time. Combining with results of
’Belmonte and Vatshelle, Graph classes with structured neighborhoods and
algorithmic applications, Theor. Comput. Sci. 511: 54-65 (2013)’ we
get polynomial-time algorithms solving weighted MaxSAT and #SAT for
some classes of structured CNF formulas. For example, we get O(m2(m +
n)s) algorithms for formulas F of m clauses and n variables and size s,
if F has a linear ordering of the variables and clauses such that for any
variable x occurring in clause C, if x appears before C then any variable
between them also occurs in C, and if C appears before x then x occurs
also in any clause between them. Note that the class of incidence graphs
of such formulas do not have bounded clique-width.

1 Introduction

Given a CNF formula, propositional model counting (#SAT) is the problem
of computing the number of satisfying assignments, and maximum satisfiability
(MaxSAT) is the problem of determining the maximum number of clauses that
can be satisfied by some assignment. Both problems are significantly harder
than simply deciding if a satisfying assignment exists. #SAT is #P-hard [9]
even when restricted to Horn 2-CNF formulas, and to monotone 2-CNF formulas
[19]. MaxSAT is NP-hard even when restricted to Horn 2-CNF formulas [13],
and to 2-CNF formulas where each variable appears at most 3 times [17]. Both
problems become tractable under certain structural restrictions obtained by

1

ar
X

iv
:1

40
2.

64
85

v1
 [

cs
.D

S]
 2

6
Fe

b
20

14

bounding width parameters of graphs associated with formulas, see for example
[7, 8, 20, 22]. The work we present here is inspired by the recent results of
Paulusma et al [15] and Slivovsky and Szeider [21] showing that #SAT is
solvable in polynomial time when the incidence graph I(F) of the input formula
F has bounded modular treewidth, and more strongly, bounded symmetric
clique-width.

We extend these results in several ways. We give algorithms for both #SAT
and MaxSAT, and also weighted MaxSAT, finding the maximum weight of
satisfiable clauses, given a set of weighted clauses. We introduce the parameter
ps-width, and express the runtime of our algorithms as a function of ps-width.

Theorem 3. Given a formula F over n variables and m clauses and of size
s, and a decomposition of F of ps-width k, we solve #SAT, and weighted
MaxSAT in time O(k3s(m+ n)).

Thus, given a decomposition having a ps-width k that is polynomially-bounded
in the number of variables n and clauses m of the formula, we get polynomial-
time algorithms. These are dynamic programming algorithms similar to the one
given for #SAT in [21], but we believe that the ps-width parameter is a better
measure of its ’inherent runtime bottleneck’. The essential combinatorial result
enabling this improvement is Lemma 5 of this paper. The algorithm of [21]
solves #SAT in time (n+m)O(w) for w being the symmetric clique-width of the
decomposition, and is thus a polynomial-time algorithm if given a decomposition
with constantly bounded w. The result of Theorem 3 encompasses this, since
we show via the concept of MIM-width [23], that any formula with constantly
bounded symmetric clique-width also has polynomially bounded ps-width.

We show that a relatively rich class of formulas, including classes of unbounded
clique-width, have polynomially bounded ps-width. This is shown using the
concept of MIM-width of graphs, introduced in the thesis of Vatshelle [23]. See
Figure 1. In particular, this holds for classes of formulas having incidence graphs
that can be represented as intersection graphs of certain objects, like interval
graphs [1]. We prove this also for bigraph bipartizations of these graphs, which
are obtained by imposing a bipartition on the vertex set and keeping only edges
between the partition classes. Some such bigraph bipartizations have been
studied previously, in particular the interval bigraphs. The interval bigraphs
contain all bipartite permutation graphs, and these latter graphs have been
shown to have unbounded clique-width [3].

By combining an alternative definition of interval bigraphs [11] with a fast
recognition algorithm [14, 16] we arrive at the following. Say that a CNF formula
F has an interval ordering if there exists a linear ordering of variables and clauses
such that for any variable x occurring in clause C, if x appears before C then
any variable between them also occurs in C, and if C appears before x then x
occurs also in any clause between them.

Theorem 10. Given a CNF formula F over n variables and m clauses and of
size s, we can in time O((m+ n)s) decide if F has an interval ordering (yes iff
I(F) is an interval bigraph), and if yes we solve #SAT and weighted MaxSAT
with a runtime of O(m2(m+ n)s).

2

The algorithms of Theorem 10 may be of interest for practical applications,
as there are no big hidden constants in the runtimes.

Our paper is organized as follows. In Section 2 we give formal definitions. We
will be using a type of decomposition that originates in the theory of graphs and
matroids where it is known as branch decomposition, see [10, 18]. The standard
approach is to apply this type of decomposition to the incidence graph of a
formula, and evaluate its width using as cut function a graph parameter, as done
in [21]. The cut function we will use is not a graph parameter, but rather the
ps-value of a formula, being the number of distinct subsets of clauses that are
satisfied by some complete assignment. We thus prefer to apply the decomposition
directly to the formula and not to its incidence graph, although the translation
between the two will be straightforward. We define cuts of formulas and ps-width
of a formula. Note that a formula can have ps-value exponential and ps-width
polynomial. In Section 3 we present dynamic programming algorithms that given
a formula and a decomposition solves #SAT and weighted MaxSAT, proving
Theorem 3. In Section 4 we investigate classes of formulas having decompositions
of low ps-width, basically proving the correctness of the hierarchy presented in
Figure 1. In Section 5 we consider formulas having an interval ordering and
prove Theorem 10. We end in Section 5 with some open problems.

2 Framework

A literal is a propositional variable or a negated variable, x or ¬x, a clause is a
set of literals, and a formula is a multiset of clauses. For a formula F , cla(F)
denotes the clauses in F . For a clause C, lit(C) denotes the set of literals in
C and var(C) denotes the variables of the literals in lit(C). For a set S of
variables and clauses, var(S) denotes the variables of S and cla(S) denotes the
clauses. For a formula F , var(F) denotes the union

⋃
C∈cla(F) var(C). For a

set X of variables, an assignment of X is a function τ : X → {0, 1}. For a literal
`, we define τ(`) to be 1− τ(var(`)) if ` is a negated variable (` = ¬x for some
variable x) and to be τ(var) otherwise (` = x for some variable x). A clause
C is said to be satisfied by an assignment τ if there exists at least one literal
` ∈ lit(C) so that τ(`) = 1. All clauses an assignment τ do not satisfy are
said to be unsatisfied by τ . We notice that this means an empty clause will be
unsatisfied by all assignments. A formula is satisfied by an assignment τ if τ
satisfies all clauses in cla(F).

The problem #SAT, given a formula F , asks how many distinct assignments
of var(F) satisfy F . The optimization problem weighted MaxSAT, given a
formula F and weight function w : cla(F) → N, asks what assignment τ of
var(F) maximizes

∑
C w(C) for all C ∈ cla(F) satisfied by τ . The problem

MaxSAT is weighted MaxSAT where all clauses have weight one. When given
a CNF formula F , we use s to denote the size of F . More precisely, the size of F
is s = |cla(F)|+ ∑

C∈cla(F) |lit(C)|. For weighted MaxSAT, we assume the

3

bipartite permutation

circular arc bigraph

k−trapezoid bigraph

modular treewidth 2k

clique−width k

symmetric clique−width 2k interval bigraph

ps−width m

ps−width m^k

ps−width m^2

MIM−width k

Figure 1: A hierarchy of structural parameters and classes of bipartite graphs,
where k is a constant and F a CNF formula having m clauses. An arc from P to
Q means ’any formula (or incidence graph of a formula) that has a decomposition
of type P , also has a decomposition of type Q’. The lack of an arc means that
no such relation holds, i.e. this is a Hasse diagram.

sum of all the weights are at most 2O(claF), and thus we can do summation on
the weights in time linear in claF .

For a set A, with elements from a universe U we denote by A the elements
in U \A, as the universe is usually given by the context.

2.1 Cut of a formula

In this paper, we will solve MaxSAT and #SAT by the use of dynamic
programming. We will be using a divide and conquer technique where we solve
the problem on smaller subformulas of the original formula F and then combine
the solutions to each of these smaller formulas to form a solution to the entire
formula F . Note however, that the solutions found for a subformula will depend
on the interaction between the subformula and the remainder of the formula.
We use the following notation for subformulas.

For a clause C and set X of variables, by C|X we denote the clause {` ∈
C : var(`) ∈ X}. We say C|X is the clause C induced by X. For a formula F
and subsets C ⊆ cla(F) and X ⊆ var(F), we say the subformula FC,X of F
induced by C and X is the formula consisting of the clauses {Ci|X : Ci ∈ C}.

4

That is, FC,X is the formula we get by removing all clauses not in C followed by
removing each literal that consists of a variable not in X. As with a clause, for
an assignment τ over a set X of variables, we say the assignment τ induced by
X ′ ⊆ X is the assignment τ |X′ where the domain is restricted to X ′.

For a formula F and sets C ⊆ cla(F), X ⊆ var(F), and S = C ∪X, we call
S a cut of F and note that it breaks F into four subformulas FC,X , FC,X , FC,X ,
and FC,X . See Figure 2. One important fact we may observe from this definition
is that a clause C in F is satisfied by an assignment τ of var(F), if and only if
C (induced by X or X) is satisfied by τ in at least one of the formulas of any
cut of F .

2.2 Precisely satisfiable sets and ps-value of a formula

For a formula F and assignment τ of all the variables in var(F), we denote by
sat(F, τ) the set C ⊆ cla(F) so that each clause in C is satisfied by τ , and each
clause not in C is unsatisfied by τ . If for a set C ⊆ cla(F) we have sat(F, τ) = C
for some τ over var(F), we say C is precisely satisfiable in F . We denote by
PS(F) the family of all precisely satisfiable sets in F . That is,

PS(F) = {sat(F, τ) : τ is an assignment of var(F)}.

The cardinality of this set, PS(F), is referred to as the ps-value of F .

2.3 The ps-width of a formula

We define a branch decomposition of a formula F to be a pair (T, δ) where
T is a rooted binary tree and δ is a bijective function from the leaves of T
to the clauses and variables of F . If all the non-leaf nodes (also referred to
as internal nodes) of T induce a path, we say that (T, δ) is a linear branch
decomposition. For a non-leaf node v of T , we denote by δ(v) the set {δ(l) :
l is a leaf in the subtree rooted in v}. Based on this, we say that the decompo-
sition (T, δ) of formula F induces certain cuts of F , namely the cuts defined by
δ(v) for each node v in T .

For a formula F and branch decomposition (T, δ), for each node v in T , by Fv
we denote the formula induced by the clauses in cla(F) \ δ(v) and the variables
in δ(v), and by Fv we denote the formula on the complement sets; i.e. the clauses
in δ(v) and the variables in var(F) \ δ(v). In other words, if δ(v) = C ∪X with
C ⊆ cla(F) and X ⊆ var(F) then Fv = FC,X and Fv = FC,X . We define the
ps-value of the cut δ(v) to be

ps(δ(v)) = max{|PS(Fv)|, |PS(Fv)|}

We define the ps-width of a branch decomposition to be

psw(T, δ) = max{ps(δ(v)) : v is a node of T}

We define the ps-width of a formula F to be

psw(F) = min{psw(T, δ) : (T, δ) is a branch decompositions of F}

5

x1

v

x2 c1 c3

x3 c4 x5 c2

x4

x1 x2

c1 = {x1, x2}
c3 = {x2,¬x4, x5} x3

c4 = {x2, x3, x5}

x5

c2 = {x1,¬x2, x3}

x4

C

C
X

X

FC,X FC,X

FC,X = Fv

FC,X = Fv

Figure 2: On top is a branch decomposition of a formula F with var(F) =
{x1, x2, x3, x4, x5} and the 4 clauses cla(F) = {c1, c2, c3, c4} as given in the
boxes. The node v of the tree defines the cut δ(v) = C]X where C = {c1, c3}
and X = {x1, x2}. On the bottom is an illustration of the 4 subformulas defined
by this cut. For example, FC,X = {{x1,¬x2}, {x2}} and FC,X = {∅, {¬x4, x5}}.
We have Fv = FC,X and Fv = FC,X with perfectly satisfiable sets of clauses
PS(Fv) = {{c2}, {c4}, {c2, c4}} and PS(Fv) = {∅, {c3}} and the ps-value of this
cut is ps(δ(v)) = max{|PS(Fv)|, |PS(Fv)|} = 3.

Note that the ps-value of a cut is a symmetric function. That is, the ps-value
of cut S equals the ps-value of the cut S. See Figure 2 for an example.

3 Dynamic programming for MaxSAT and #SAT

Given a branch decomposition (T, δ) of a CNF formula F over n variables and
m clauses and of size s, we will give algorithms that solve MaxSAT and #SAT
on F in time O(psw(T, δ)3s(m+ n)).

In a pre-processing step we will need the following which, for each node v in
T computes the sets PS(Fv) and PS(Fv).

Theorem 1. Given a CNF formula F of n variables and m clauses with a
branch decomposition (T, δ) of ps-width k, we can in time O(k2 log(k)m(m+n))
compute the sets PS(Fv) and PS(Fv) for each v in T .

6

Proof. We notice that for a node v in T with children c1 and c2, we can express
PS(Fv) as

PS(Fv) = {(C1 ∪ C2) ∩ cla(Fv) : C1 ∈ PS(Fc1), C2 ∈ PS(Fc2)} .

Similarly, for sibling s and parent p of v in T , the set PS(Fv) can be expressed as

PS(Fv) = {(Cp ∪ Cs) ∩ cla(Fv) : Cp ∈ PS(Fp), Cs ∈ PS(Fs)} .

By transforming these recursive expressions into a dynamic programming
algorithm, as done in Procedure 1 and Procedure 2 below, we are able to
calculate all the desired sets as long as we can compute the sets for the base
cases PS(Fl) when l is a leaf of T , and PS(Fr) for the root r of T . However, these
formulas contain at most one variable, and thus we can easily construct their
set of specific satisfied clauses in linear amount of time for each of the formulas.
For the rest of the formulas, we construct the formulas using Procedure 1 and
Procedure 2. As there are at most twice as many nodes in T as there are clauses
and variables in F , the procedures will run at most O(|cla(F)|+ |var(F)|) times.
In each run of the algorithms, we iterate through at most k2 pairs of precisely
satisfiable sets, and do a constant number of set operations that might take
O(|cla(F)|) time each. Then we sort the list of at most k2 sets of clauses. When
we sort, we can expect the runtime of comparing two elements to spend time
linear in |cla(F)|, so the total runtime for sorting L and deleting duplicates
takes at most O(k2 log(k)|cla(F)|) time. This results in a total runtime of
O(k2 log(k)|cla(F)|(|cla(F)|+ |var(F)|)) for all the nodes of T combined.

Procedure 1: Generating PS(Fv)

input: PS(Fc1) and PS(Fc2) for children c1 and c2 of v
in branch decomposition

output: PS(Fv)

L← empty list of precisely satisfiable clause-sets
for each (C1, C2) ∈ PS(Fc1)× PS(Fc2) do

add (C1 ∪ C2) \ cla(δ(v)) to L
sort L lexicographically by what clauses each element contains
remove duplicates in L by looking only at consecutive elements
return L

We first give the algorithm for MaxSAT and then briefly describe the changes
necessary for solving weighted MaxSAT and #SAT.

Our algorithm relies on the following binary relation, ≤, on assignments τ and
τ ′ related to a cut S = C ∪X with C ⊆ cla(F), X ⊆ var(F). For C′ ∈ PS(FC,X)

we define τ ′ ≤C′

S τ if it holds that |sat(F, τ ′) \ C′| ≤ |sat(F, τ) \ C′|. Note that
for each cut S = C ∪ X and each C′ ∈ PS(FC,X) this gives a total preorder
(transitive, reflexive and total) on assignments. The largest elements of this
total preorder will be important for our algorithm, as they satisfy the maximum
number of clauses under the given restrictions.

7

Procedure 2: Generating PS(Fv)

input: PS(Fs) and PS(Fp) for sibling s and parent p of v
in branch decomposition

output: PS(Fv)

L← empty list of precisely satisfiable clause-sets
for each (Cs, Cp) ∈ PS(Fs)× PS(Fp) do

add (Cs ∪ Cp) \ cla(δ(v)) to L
sort L lexicographically by what clauses each element contains
remove duplicates in L by looking only at consecutive elements
return L

Given (T, δ) of a formula F our dynamic programming algorithm for MaxSAT
will generate, for each node v in T , a table Tabv indexed by pairs of PS(Fv)×
PS(Fv). For precisely satisfiable sets Cv ∈ PS(Fv) and Cv ∈ PS(Fv) the contents
of the table at this index Tabv(Cv, Cv) should be an assignment τ : var(δ(v))→
{0, 1} satisfying the following constraint:

Tabv(Cv, Cv) = τ such that sat(Fv, τ) = Cv and τ ′ ≤Cv

δ(v) τ for any

τ ′ : var(δ(v))→ {0, 1} having sat(Fv, τ
′) = Cv

(1)

Let us give some intuition for this constraint. Our algorithm uses the technique
of ’expectation from the outside’ introduced in [4, 5]. The partial assignment τ
to variables in var(δ(v)) stored at Tabv(Cv, Cv) will be combined with partial
assignments to variables in var(F)\var(δ(v)) satisfying Cv. These latter partial
assignments constitute ’the expectation from the outside’. Constraint (1) implies
that τ , being a largest element of the total preorder, will be a best combination
with this expectation from the outside since it satisfies the maximum number of
remaining clauses.

By bottom-up dynamic programming along the tree T we compute the tables
of each node of T . For a leaf l in T , generating Tabl can be done easily in linear
time since the formula Fv contains at most one variable. For an internal node
v of T , with children c1, c2, we compute Tabv by the algorithm described in
Procedure 3. There are 3 tables involved in this update, one at each child and
one at the parent. A pair of entries, one from each child table, may lead to an
update of an entry in the parent table. Each table entry is indexed by a pair,
thus there are 6 indices involved in a single potential update. A clever trick
first introduced in [5] allows us to loop over triples of indices and for each triple
compute the remaining 3 indices forming the 6-tuple involved in the update,
thereby reducing the runtime.

8

Procedure 3: Computing Tabv for inner node v with children c1, c2

input: Tabc1 , Tabc2
output: Tabv

1. initialize Tabv : PS(Fv)× PS(Fv)→ {unassigned} // dummy entries
2. for each (Cc1 , Cc2 , Cv) ∈ PS(Fc1)× PS(Fc2)× PS(Fv) do
3. Cc1 ← (Cc2 ∪ Cv) ∩ δ(c1)
4. Cc2 ← (Cc1 ∪ Cv) ∩ δ(c2)
5. Cv ← (Cc1 ∪ Cc2) \ δ(v)
6. τ ← Tabc1(Cc1 , Cc1)] Tabc2(Cc2 , Cc2)
7. τ ′ ← Tabv(Cv, Cv)

8. if τ ′ = unassigned or τ ≥Cv

δ(v) τ
′ then Tabv(Cv, Cv)← τ

9. return Tabv

Lemma 2. For a CNF formula F of size s and an inner node v, of a branch
decomposition (T, δ) of ps-width k, Procedure 3 computes Tabv satisfying Con-
straint (1) in time O(k3s).

Proof. We assume Tabc1 and Tabc2 satisfy Constraint (1). Procedure 3 loops
over all triples (Cc1 , Cc2 , Cv) ∈ PS(Fc1)× PS(Fc2)× PS(Fv). From the definition
of ps-width of (T, δ) there are at most k3 such triples. Each operation inside
an iteration of the loop take O(s) time and there is a constant number of such
operations. Thus the runtime is O(k3s).

To show that the output Tabv of Procedure 3 satisfies Constraint (1), we
will prove that for any C ∈ PS(Fv) and C ′ ∈ PS(Fv) the value of Tabv(C,C

′)
satisfies Constraint (1). That is, we will assure that the content of Tabv(C,C

′)
is an assignment τ so that sat(Fv, τ) = C and for all other assignments τ ′ over
var(δ(v)) so that sat(Fv, τ

′) = C, we have τ ′ ≤C′

δ(v) τ .

Let us assume for contradiction, that Tabv(C,C
′) contains an assignment τ

but there exists an assignment τ ′ over var(δ(v)) so that sat(Fv, τ
′) = C, and we

do not have τ ′ ≤C′

δ(v) τ . As τ is put into Tabv(C,C
′) only if it is an assignment

over var(δ(v)) and sat(Fv, τ) = C. So, what we need to show to prove that
Tabv is correct is that in fact τ ′ ≤C′

δ(v) τ :

First, we notice that τ ′ consist of assignments τ ′1 = τ ′|var(δ(c1)) and τ ′2 =
τ ′|var(δ(c2)) where τ ′1 is over the variables in var(δ(c1)) and τ ′2 is over var(δ(c2)).
Let C1 = sat(Fc1 , τ

′
1) and C2 = sat(Fc2 , τ

′
2) and let C ′

1 = (C2 ∪C ′) ∩ δ(c1) and
C ′

2 = (C1 ∪ C ′) ∩ δ(c2). By how Tabc1 and Tabc2 is defined, we know for the

assignment τ1 in Tabc1(C1, C
′
1) and τ2 in Tabc2(C2, C

′
2), we have τ ′1 ≤

C′
1

δ(c1)
τ1 and

τ ′2 ≤
C′

2

δ(c2)
τ2. From our definition of the total preorder ≤ for assignments, we can

deduce that τ ′1] τ ′2 ≤C
′

δ(v) τ1] τ2;

|sat(Fv, τ
′
1] τ ′2) \ C ′|

= |sat(Fc1 , τ
′
1) \ C ′

1| − |C1 ∩ C ′
2|+ |sat(Fc2 , τ

′
2) \ C ′

2| − |C2 ∩ C ′
1|

≤ |sat(Fc1 , τ1) \ C ′
1| − |C1 ∩ C ′

2|+ |sat(Fc2 , τ2) \ C ′
2| − |C2 ∩ C ′

1|
= |sat(Fv, τ1] τ2) \ C ′| .

9

However, since τ1]τ2 at the iteration of the triple (C1, C2, C
′) in fact is considered

by the algorithm to be set as Tabv(C,C ′), it must be the case that τ1]τ2 ≤C
′

δ(v) τ .

As ≤C′

δ(v) clearly is a transitive relation, we conclude that τ ′ ≤C′

δ(v) τ .

Theorem 3. Given a formula F over n variables and m clauses and of size
s, and a branch decomposition (T, δ) of F of ps-width k, we solve MaxSAT,
#SAT, and weighted MaxSAT in time O(k3s(m+ n)).

Proof. To solve MaxSAT, we first compute Tabr for the root node r of T . This
requires that we first compute PS(Fv) and PS(Fv) for all nodes v of T , and then,
in a bottom up manner, compute Tabv for each of the O(m + n) nodes in T .
The former part we can do in O(k3s(m+ n)) time by Theorem 1, and the latter
part we do in the same amount of time by Lemma 2.

At the root r of T we have δ(r) = var(F) ∪ cla(F). Thus Fr = ∅ and
Fr contains only empty clauses, so that PS(Fr)× PS(Fr) contains only (∅, ∅).
By Constraint (1) and the definition of the ≤ total preorder on assignments,
the assignment τ stored in Tabr(∅, ∅) is an assignment of var(F) maximizing
|sat(F, τ)|, the number of clauses satisfied, and hence is a solution to MaxSAT.

For a weight function w : cla(F) → N, by redefining τ1 ≤BA τ2 to mean
w(sat(F, τ1) \ B) ≤ w(sat(F, τ2) \ B) both for the definition of Tab and for
Procedure 3, we are able to solve the more general problem weighted MaxSAT
in the same way.

For the problem #SAT, we care only about assignments satisfying all the
clauses of F , and we want to decide the number of distinct assignments doing
so. This requires a few alterations. Firstly, alter the definition of the contents of
Tabv(C,C ′) in Constraint (1) to be the number of assignments τ over var(δ(v))
where sat(Fv, τ) = C and cla(δ(v))\C ′ ⊆ sat(F, τ). Secondly, when computing
Tabl for the leaves l of T , we set each of the entries of Tabl to either zero, one,
or two, according to the definition. Thirdly, we alter the algorithm to compute
Tabv (Procedure 3) for inner nodes. We initialize Tabv(C,C

′) to be zero at the
start of the algorithm, and substitute lines 6, 7 and 8 of Procedure 3 by the
following line which increases the table value by the product of the table values
at the children

Tabv(Cv, Cv)← Tabv(Cv, Cv) + Tabc1(Cc1 , Cc1) · Tabc2(Cc2 , Cc2)

This will satisfy our new constraint of Tabv for internal nodes v of T . The value
of Tabr(∅, ∅) at the root r of T will be exactly the number of distinct assignments
satisfying all clauses of F .

The bottleneck giving the cubic factor k3 in the runtime of Theorem 3 is
the number triples in PS(Fv)× PS(Fc1)× PS(Fc2) for any node v with children
c1 and c2. When (T, δ) is a linear branch decomposition, it is always the case
that either c1 or c2 is a leaf of T . In this case either |PS(Fc1)| or |PS(Fc2)| is a
constant. Therefore, for linear branch decompositions PS(Fv)×PS(Fc1)×PS(Fc2)
will contain no more than O(k2) triples. Thus we can reduce the runtime of the
algorithm by a factor of k.

10

Theorem 4. Given a formula F over n variables and m clauses and of size s,
and a linear branch decomposition (T, δ) of F of ps-width k, we solve #SAT,
MaxSAT, and weighted MaxSAT in time O(k2s(m+ n)).

4 CNF formulas of polynomial ps-width

In this section we investigate classes of CNF formulas having decompositions with
ps-width polynomially bounded in formula size s. In particular, we show that
this holds whenever the incidence graph of the formula has constant MIM-width
(maximum induced matching-width). We also show that a large class of bipartite
graphs, using what we call bigraph bipartizations, have constant MIM-width.

Let us start by defining bigraph bipartizations. For a graph G and subset of
vertices A ⊆ V (G) the bipartite graph G[A,A] is the subgraph of G containing
all edges of G with exactly one endpoint in A. We call G[A,A] a bigraph
bipartization of G, note that G has a bigraph bipartization for each subset of
vertices. For a graph class X define the class of X bigraphs as the bipartite
graphs H for which there exists G ∈ X such that H is isomorphic to a bigraph
bipartization of G. For example, H is an interval bigraph if there is some interval
graph G and some A ⊆ V (G) with H isomorphic to G[A,A].

To establish the connection to MIM-width we need to look at induced
matchings in the incidence graph of a formula. The incidence graph of a formula
F is the bipartite graph I(F) having a vertex for each clause and variable, with
variable x adjacent to any clause C in which it occurs. An induced matching in
a graph is a subset M of edges with the property that any edge of the graph
is incident to at most one edge in M . In other words, for any 3 vertices a, b, c,
if ab is an edge in M and bc is an edge then there does not exist an edge cd in
M . The number of edges in M is called the size of the induced matching. The
following result provides an upper bound on the ps-value of a formula in terms
of the maximum size of an induced matching of its incidence graph.

Lemma 5. Let F be a CNF formula and let k be the maximum size of an
induced matching in I(F). We then have |PS(F)| ≤ |cla(F)|k.

Proof. Let C ∈ PS(F) and Cf = cla(F) \ C. Thus, there exists a complete
assignment τ such that the clauses not satisfied by τ are Cf = cla(F)\sat(F, τ).
Since every variable in var(F) appears in some clause of F this means that
τ |var(Cf) is the unique assignment of the variables in var(Cf) which do not

satisfy any clause of Cf . Let C′

f ⊆ Cf be an inclusion minimal set such that

var(Cf) = var(C′

f), hence τ |var(Cf) is also the unique assignment of the variables

in var(Cf) which do not satisfy any clause of C′

f . An upper bound on the number

of different such minimal C′

f , over all C ∈ PS(F), will give an upper bound

on |PS(F)|. For every C ∈ C′

f there is a variable vC appearing in C and no

other clause of C′

f , otherwise C′

f would not be minimal. Note that we have an
induced matching M of I(F) containing all such edges vC , C. By assumption,

11

the induced matching M can have at most k edges and hence |C′

f | ≤ k. There

are at most |cla(F)|k sets of at most k clauses and the lemma follows.

In order to lift this result on the ps-value of F , i.e |PS(F)|, to the ps-width of
F , we use MIM-width of the incidence graph I(F), which is defined using branch
decompositions of graphs. A branch decomposition of the formula F , as defined
in Section 2, can also be seen as a branch decomposition of the incidence graph
I(F). Nevertheless, for completeness, we formally define branch decompositions
of graphs and MIM-width.

A branch decomposition of a graph G is a pair (T, δ) where T is a rooted
binary tree and δ a bijection between the leaf set of T and the vertex set of G.
For a node w of T let the subset of V (G) in bijection δ with the leaves of the
subtree of T rooted at w be denoted by Vw. We say the decomposition defines the
cut (Vw, Vw). The MIM-value of a cut (Vw, Vw) is the size of a maximum induced
matching of G[Vw, Vw]. The MIM-width of (T, δ) is the maximum MIM-value
over all cuts (Vw, Vw) defined by a node w of T . The MIM-width of graph G,
denoted mimw(G), is the minimum MIM-width over all branch decompositions
(T, δ) of G. As before a linear branch decomposition is a branch decomposition
where inner nodes of the underlying tree induces a path.

We now give an upper bound on the ps-value of a formula in terms of the
MIM-width of any graph G such that the incidence graph of the formula is a
bigraph bipartization of G.

Theorem 6. Let F be a CNF formula of m clauses, G a graph, and (T, δG) a
(linear) branch decomposition of G of MIM-width k. If for a subset A ⊆ V (G)
the graph G[A,A] is isomorphic to I(F), then we can in linear time produce a
(linear) branch decomposition (T, δF) of F having ps-width at most mk.

Proof. Since each variable and clause in F has a corresponding node in I(F),
and each node in I(F) has a corresponding node in G, by defining δF to be the
function mapping each leaf l of T to the variable or clause in F corresponding
to the node δG(l), (T, δT) is going to be a branch decomposition of F . For
any cut (A,A) induced by a node of (T, δF), let C ⊆ cla(F) be the clauses
corresponding to vertices in A and X ⊆ var(F) the variables corresponding
to vertices in A. The cut S = C ∪X of F defines the two formulas FC,X and

FC,X , and it holds that I(FC,X) and I(FC,X) are induced subgraphs of G[A,A]

and hence by Lemma 5, we have |PS(FC,X)| ≤ |cla(F)|mim(A), and likewise we

have |PS(FC,X)| ≤ |cla(F)|mim(A). Since the ps-width of the decomposition is
the maximum ps-value of each cut, the theorem follows.

Note that by taking G = I(F) and A = cla(F) and letting (T, δG) be a
branch decomposition of G of minimum MIM-width, we get the following weaker
result.

Corollary 7. For any CNF formula F over m clauses, the ps-width of F is no
larger than mmimw(I(F)).

12

In his thesis, Vatshelle [23] shows that MIM-width of any graph G is at
most the clique-width of G. Furthermore, the clique-width has been shown by
Courcelle [6] to be at most twice the symmetric clique-width. Thus, we can
conclude that MIM-width is bounded on any graph class with a bound on the
symmetric clique-width, in accordance with Figure 1.

Many classes of graphs have intersection models, meaning that they can be
represented as intersection graphs of certain objects, i.e. each vertex is associated
with an object and two vertices are adjacent iff their objects intersect. The
objects used to define intersection graphs usually consist of geometrical objects
such as lines, circles or polygons. Many well known classes of intersection graphs
have constant MIM-width, as in the following which lists only a subset of the
classes proven to have such bounds in [1, 23].

Theorem 8 ([1, 23]). Let G be a graph. If G is a:
interval graph then mimw(G) ≤ 1.
circular arc graph then mimw(G) ≤ 2.
k-trapezoid graph then mimw(G) ≤ k.

Moreover there exist linear decompositions satisfying the bound.

Let us briefly mention the definition of these graph classes. A graph is an
interval graph if it has an intersection model consisting of intervals of the real
line. A graph is a circular arc graph if it has an intersection model consisting of
arcs of a circle. To build a k-trapezoid we start with k parallel line segments
(s1, e1), (s2, e2), ..., (sk, ek) and add two non-intersecting paths s and e by joining
si to si+1 and ei to ei+1 respectively by straight lines for each i ∈ {1, ..., k − 1}.
The polygon defined by s and e and the two line segments (s1, e1), (sk, ek) forms
a k-trapezoid. A graph is a k-trapezoid graph if it has an intersection model
consisting of k-trapezoids. See [2] for information about graph classes and their
containment relations. Combining Theorems 6 and 8 we get the following.

Corollary 9. Let F be a CNF formula containing m clauses. If I(F) is a:
interval bigraph then psw(F) ≤ m.
circular arc bigraph then psw(F) ≤ m2.
k-trapezoid bigraph then psw(F) ≤ mk.

Moreover there exist linear decompositions satisfying the bound.

5 Interval bigraphs and formulas having interval
orders

We will in this section show one class of formulas where we can find linear branch
decompositions having ps-width O(|cla(F)|). Let us recall the definition of
interval ordering. A CNF formula F has an interval ordering if there exists a
linear ordering of variables and clauses such that for any variable x occurring
in clause C, if x appears before C then any variable between them also occurs
in C, and if C appears before x then x occurs also in any clause between them.

13

By a result of Hell and Huang [11] it follows that a formula F has an interval
ordering if and only if I(F) is a interval bigraph.

Theorem 10. Given a CNF formula F over n variables and m clauses and of
size s, we can in time O((m+ n)s) decide if F has an interval ordering (yes iff
I(F) is an interval bigraph), and if yes we solve #SAT and weighted MaxSAT
with a runtime of O(m2(m+ n)s).

Proof. Using the characterization of [11] and the algorithm of [16] we can in
time O((m+ n)s) decide if F has an interval ordering and if yes, then we find
it. From this interval ordering we build an interval graph G such that I(F) is
a bigraph bipartization of G, and construct a linear branch decomposition of
G having MIM-width 1 [1]. From such a linear branch decomposition we get
from Theorem 6 that we can construct another linear branch decomposition of
F having ps-width O(m). We then run the algorithm of Theorem 4.

6 Conclusion

In this paper we have proposed a structural parameter of CNF formulas, called
ps-width or perfectly-satisfiable-width. We showed that weighted MaxSAT and
#SAT can be solved in polynomial time on formulas given with a decomposition
of polynomially bounded ps-width. Using the concept of interval bigraphs we also
showed a polynomial time algorithm that actually finds such a decomposition,
for formulas having an interval ordering.

Could one devise such an algorithm also for the larger class of circular arc
bigraphs, or maybe even for the even larger class of k-trapezoid bigraphs? In
other words, is the problem of recognizing if a bipartite input graph is a circular
arc bigraph, or a k-trapezoid bigraph, polynomial-time solvable?

It could be interesting to give an algorithm solving MaxSAT and/or #SAT
directly on the interval ordering of a formula, rather than using the more general
notion of ps-width as in this paper. Maybe such an algorithm could be of
practical use?

Also of practical interest would be to design a heuristic algorithm which
given a formula finds a decomposition of relatively low ps-width, as has been
done for boolean-width in [12].

Finally, we hope the essential combinatorial result enabling the improvements
in this paper, Lemma 5, may have other uses as well.

References

[1] Rémy Belmonte and Martin Vatshelle. Graph classes with structured
neighborhoods and algorithmic applications. Theor. Comput. Sci., 511:54–
65, 2013.

14

[2] A. Brandstädt, V. Bang Le, and J. P. Spinrad. Graph Classes: A Survey,
volume 3 of Monographs on Discrete Mathematics and Applications. SIAM
Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[3] Andreas Brandstädt and Vadim V. Lozin. On the linear structure and
clique-width of bipartite permutation graphs. Ars Comb., 67, 2003.

[4] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. H-join decom-
posable graphs and algorithms with runtime single exponential in rankwidth.
Discrete Applied Mathematics, 158(7):809–819, 2010.

[5] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width
of graphs. Theoretical Computer Science, 412(39):5187–5204, 2011.

[6] Bruno Courcelle. Clique-width of countable graphs: a compactness property.
Discrete Mathematics, 276(1-3):127–148, 2004.

[7] Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth
assignments of formulas of bounded tree-width or clique-width. Discrete
Applied Mathematics, 156(4):511–529, 2008.

[8] Robert Ganian, Petr Hlinený, and Jan Obdrzálek. Better algorithms for
satisfiability problems for formulas of bounded rank-width. Fundam. Inform.,
123(1):59–76, 2013.

[9] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[10] James F. Geelen, Bert Gerards, and Geoff Whittle. Branch-width and
well-quasi-ordering in matroids and graphs. J. COMBIN. THEORY SER.
B, 84(2):270–290, 2002.

[11] Pavol Hell and Jing Huang. Interval bigraphs and circular arc graphs.
Journal of Graph Theory, 46(4):313–327, 2004.

[12] Eivind Magnus Hvidevold, Sadia Sharmin, Jan Arne Telle, and Martin
Vatshelle. Finding good decompositions for dynamic programming on dense
graphs. In Dániel Marx and Peter Rossmanith, editors, IPEC, volume 7112
of Lecture Notes in Computer Science, pages 219–231. Springer, 2011.

[13] Brigitte Jaumard and Bruno Simeone. On the complexity of the maximum
satisfiability problem for horn formulas. Inf. Process. Lett., 26(1):1–4, 1987.

[14] Haiko Müller. Recognizing interval digraphs and interval bigraphs in poly-
nomial time. Discrete Applied Mathematics, 78(1-3):189–205, 1997.

[15] Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting
for CNF formulas of bounded modular treewidth. In Natacha Portier and
Thomas Wilke, editors, STACS, volume 20 of LIPIcs, pages 55–66. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

15

[16] Arash Rafiey. Recognizing interval bigraphs by forbidden patterns. CoRR,
abs/1211.2662, 2012.

[17] Venkatesh Raman, Bala Ravikumar, and S. Srinivasa Rao. A simplified
NP-complete MAXSAT problem. Inf. Process. Lett., 65(1):1–6, 1998.

[18] Neil Robertson and Paul D. Seymour. Graph minors X. obstructions to
tree-decomposition. J. COMBIN. THEORY SER. B, 52(2):153–190, 1991.

[19] Dan Roth. A connectionist framework for reasoning: Reasoning with
examples. In William J. Clancey and Daniel S. Weld, editors, AAAI/IAAI,
Vol. 2, pages 1256–1261. AAAI Press / The MIT Press, 1996.

[20] Marko Samer and Stefan Szeider. Algorithms for propositional model
counting. J. Discrete Algorithms, 8(1):50–64, 2010.

[21] Friedrich Slivovsky and Stefan Szeider. Model counting for formulas of
bounded clique-width. In Leizhen Cai, Siu-Wing Cheng, and Tak Wah Lam,
editors, ISAAC, volume 8283 of Lecture Notes in Computer Science, pages
677–687. Springer, 2013.

[22] Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In
Enrico Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of
Lecture Notes in Computer Science, pages 188–202. Springer, 2003.

[23] Martin Vatshelle. New width parameters of graphs. PhD thesis, The
University of Bergen, 2012.

16

	1 Introduction
	2 Framework
	2.1 Cut of a formula
	2.2 Precisely satisfiable sets and ps-value of a formula
	2.3 The ps-width of a formula

	3 Dynamic programming for MaxSAT and #SAT
	4 CNF formulas of polynomial ps-width
	5 Interval bigraphs and formulas having interval orders
	6 Conclusion

