Skip to main content

An Incremental Updating Based Fast Phenotype Structure Learning Algorithm

  • Conference paper
  • 3395 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Abstract

Unsupervised phenotype structure learning is important in microarray data analysis. The goal is to (1) find groups of samples corresponding to different phenotypes (e.g. disease or normal), and (2) find a subset of genes that can distinguish different groups. Due to the large number of genes and a mass of noise in microarray data, the existing methods are often of some limitations in terms of efficicency and effectiveness. In this paper, we develop an incremental updating based phenotype structure learning algorithm, namely FPLA. With a randomly selected initial state, the algorithm iteratively tries three possible adjustments, i.e. gene addition, gene deletion and sample move, to improve the quality of the current result. Accordingly, four incremental updating based optimization strategies are devised to eliminate the redundancy computations in each iteration. Further, by utilizing a harmonic quality function, it improves the result accuracy by penalizing the “outlier” effect. The experiments conducted on several real microarray datasets show that FPLA outperforms the two representative competing algorithms on both effectiveness and efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhao, Y.H., Wang, G.R., Li, Y., Wang, Z.H.: Finding Novel Diagnostic Gene Patterns Based on Interesting Non-Redundant Contrast Sequence Rules. In: ICDM, pp. 972–981 (2011)

    Google Scholar 

  2. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Tang, C., Zhang, A.D., Pei, J.: Mining Phenotypes and Informative Genes From Gene Expression Data. In: SIGKDD 2003, Washington, DC, USA, pp. 655–660 (2000)

    Google Scholar 

  4. Golub, T.R., Slonim, D.K., et al.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  5. Shipp, M.A., Ross, K.N., Tamayo, P., et al.: Diffuse Large B-Cell Lymphoma Outcome Prediction by Gene-Expression Profiling and Supervised Machine Learning. Nat. Med. 8(1), 68–74 (2002)

    Article  Google Scholar 

  6. Hedenfalk, I., Duggam, D., et al.: Gene-Expression Profiles in Hereditary Breast Cancer. N. Eng. J. Med. 344(8), 539–548 (2001)

    Article  Google Scholar 

  7. Rand, W.M.: Objective Criteria for Evaluation of Clustering Methods. L. Am. Stat. Assoc., 846–850 (1971)

    Google Scholar 

  8. Rhodes, D.R., Miller, J.C., Haab, B.B., Furge, K.A.: CIT: Identification Of Differentially Expressed Clusters of Genes From Microarray Data. Bioinformatics 18, 205–206 (2001)

    Article  Google Scholar 

  9. Herrero, J., Valencia, A., Dopazo, J.: A Hierarchical Unsupervised Growing Neural Network for Clustering Gene Expression Patterns. Bioinformatics 17(1), 126–136 (2001)

    Article  Google Scholar 

  10. Schloegel, K., Karypis, G.: CRPC Parallel Computing Handbook, Chapter Graph Partitioning for High Performance Scientific Simulations. Morgan Kaufmann (2002)

    Google Scholar 

  11. Toronen, P., Kolehmainen, M., Wong, G., et al.: Analysis of Gene Expression Data Using Self-Organizing Maps. FEBS Lett. 45(1), 142–146 (1999)

    Article  Google Scholar 

  12. Ding, C., He, X.: Principal Components and K-Means Clustering. In: Proc. of the 4th SIAM International Conference on Data Mining, pp. 23–32 (2004)

    Google Scholar 

  13. Yang, J., Wang, W., et al.: Δ-Cluster: Capturing Subspace Correalation in Alarge Data Set. In: Proceedings of 18th International Conference on Data Engineering (ICDE 2002), pp. 517–528 (2002)

    Google Scholar 

  14. Thomas, J.G., Olson, J.M., Tapscott, S.J., Zhao, L.P.: An Efficient and Robust Statistical Modeling Approach to Discover Differentially Expressed Genes Using Genomic Expression Profiles. Genome Research 11(7), 1227–1236 (2001)

    Article  Google Scholar 

  15. Fang, G., Kuang, R., Pandey, G., et al.: Subspace Differential Coexpression Analysis: Problem Definition and A General Approach. In: Pacific Symposium on Biocomputing, pp. 145–156 (2010)

    Google Scholar 

  16. Zintzaras, E., Kowald, A.: Forest Classification Trees and Forest Support Vector Machines Algorithms: Demonstration Using Microarray Data. Comp. in Bio. and Med. (CBM) 40(5), 519–524 (2010)

    Google Scholar 

  17. Hastie, T., Tibshirani, R., Boststein, D., Brown, P.: Supervised Harvesting of Expression Trees. Genome Biol. 2(1), 0003.1–0003.12 (2001)

    Google Scholar 

  18. Horng, J.T., Wu, L.C., et al.: An Expert System to Classify Microarray Gene Expression Data Using Gene Selection by Decision Tree. Expert Syst. Appl. (ESWA) 36(5), 072-9081 (2009)

    Google Scholar 

  19. Yu, W., Wong, H.S., Wang, H.Q.: Graph-Based Consensus Clustering for Class Discovery From Gene Expression Data. Bioinformatics 23(21), 2888–2896 (2007)

    Article  Google Scholar 

  20. Zhao, Y.H., et al.: Maximal Subspace Coregulated Gene Clustering. IEEE Trans. on Knowledge and Data Engineering 20(1), 83–98 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cheng, H., Zhao, YH., Yin, Y., Zhang, LJ. (2014). An Incremental Updating Based Fast Phenotype Structure Learning Algorithm. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics