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Abstract Enterprise social software tools are increasingly being used to support
the communication and collaboration between employees, as well as to facilitate
the collaborative organisation of information and knowledge within companies. Not
only do these tools help to develop and maintain an efficient social organisation,
they also produce massive amounts of fine-grained data on collaborations, commu-
nication and other forms of social relationships within an enterprise. In this chapter,
we argue that the availability of these data provides unique opportunities to moni-
tor and analyse social structures and their impact on the success and performance
of individuals, teams, communities and organisations. We further review methods
from the planning, design and optimisation of telecommunication networks and dis-
cuss challenges arising when wanting to apply them to optimise the structure of
enterprise social networks.

1 Introduction

We are currently witnessing a rapidly increasing adoption of technical systems in
numerous aspects of everyday life. In particular, the widespread use of information
and communication technologies in which interactions and collaborations between
humans are an integral part has led to the rise of so-called socio-technical systems.
A defining characteristic of these systems is that they consists of interwoven social
and technical layers, which both are crucial for their functioning. Many examples
for such socio-technical systems, like, e.g., social media platforms, collaborative
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web applications have recently gained popularity. The popularity and success of
these platforms has resulted in the adoption of similar technologies in an enterprise
context. Specifically, enterprise social software tools are increasingly being used
to support the collaboration between employees, as well as to facilitate the col-
laborative organisation of information and knowledge. Notable examples include
groupware systems, collaborative information spaces like Wikis or Blogs, instant
messaging, project and knowledge management platforms and - increasingly - so-
cial networking services specialised for an enterprise context. While these systems
serve different purposes, they have in common that they generate massive amounts
of fine-grained data on collaborations, communication and other forms of social
relationships between employees. On the one hand, the availability of such data in-
troduces severe privacy issues and thus raises a number of ethical challenges that
urgently need to be addressed. On the other hand, such data provide interesting op-
portunities to gain insights into the structure and dynamics of the social organisation
of an enterprise. Not only can important individuals be identified that otherwise may
go unnoticed, a monitoring of evolving social structures by means of quantitative
measures may also help to identify problems and take adequate countermeasures.
A study of quantitative performance indicators - which are often available in an en-
terprise context - can furthermore provide unique insights into the effect of social
structures on the success and performance of individuals, groups and projects.

In this chapter, we argue that the monitoring and optimisation of enterprise social
networks provide interesting perspectives for a social informatics research agenda.
Intuitively, one could argue that an optimisation of social networks is not easily pos-
sible, since they emerge in a self-organised way and thus cannot be influenced or
designed. While this is true in many social systems, knowledge from the planning,
design and optimisation of telecommunication networks can nevertheless be used
to analyse the efficiency and resilience of social networks. Furthermore we argue
that - through a targeted structuring of teams, the introduction and configuration of
communication and collaboration tools as well as the design of corporate policies
- the evolution of social networks in an enterprise can - at least to a certain extent
- be influenced and shaped. Knowledge from network design may thus be utilised
in emerging social organisations to improve resilience and to optimise their effi-
ciency. Similarly, decisions in the design of socio-technical systems can influence
the structure of social organisations into which they are embedded.

This chapter is structured as follows: In Section 2 we provide an overview of
measures used in the analysis of complex networks, and interpret their meaning in
the context of enterprise social networks. In Section 3, we show how one can use
these measures to monitor the structure and evolution of social networks extracted
from socio-technical systems. Section 4 introduces basic notions used in the optimi-
sation of communication networks and discusses how these approaches can be used
in the context of social networks. We further highlight research challenges arising in
the modelling, analysis and optimisation of enterprise social networks. Highlight-
ing links between research in the fields of network planning and design and social
informatics - which are currently not well integrated - we conclude in section 5.
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2 Quantitative Analysis of Complex Networks

The increasing availability of data that allows to reconstruct networks of interac-
tions between elements in complex systems has led to a massive surge of interest
in the quantitative analysis of complex networks. During the last few decades, a
comprehensive set of measures has been introduced, which allow to quantify char-
acteristics of complex networks. Referring to available reference books for more
details [10, 17], in the following, we provide a brief overview of these measures
and interpret their meaning in the context of enterprise social networks. We particu-
larly categorise measures into node-centric measures, which are targeted at captur-
ing characteristics of individual nodes, as well as network-centric measures, which
capture systemic properties of complex networks. In the following, we refer to a
network G = (V, E), which consists of a set V of nodes as wellasaset E CV x V of
links that interconnect nodes. In the context of enterprise social networks, we com-
monly assume that nodes represent employees or co-workers within an enterprise,
while links between them are thought to represent some form of social interac-
tion, like, e.g., an exchange of information, a conversation across E-Mail, instant
messaging or voice communication services, or the collaboration in the context of
a particular project. The ability to automatically reconstruct enterprise social net-
works require data on these interactions to be recorded, which typically implies that
they are mediated via some type of technical system. However, the increasing adop-
tion of modern wearable computing and sensing technologies highlights scenarios
where networks can also be constructed from direct interpersonal communication
between employees as well as their mobility traces [11].

For the remainder of this section, unless stated otherwise, we assume that net-
works are undirected, i.e. a link (v,w) between two nodes v and w implies that
the reverse link (w,v) exists, in which case both links can be conveniently repre-
sented by a single undirected link. Even though the number, frequency or intensity
of recorded social interactions can often be used to establish a notion of link weights,
for the sake of simplicity, we further assume that networks are unweighted, i.e. the
weight or strength of all links is the same. A simple example for such an undirected,
unweighted network - representing social interactions between members of a soft-
ware development team - is shown in Figure 1.

2.1 Node-centric Metrics: Centrality and Topological Embedding

A basic task in the analysis of complex networks is to quantify the importance - or
centrality - of individual nodes, as well as how they are embedded in the overall
topology. In the following, we thus give a brief overview of different measures that
have been proposed for this purpose, and how they can be interpreted in the context
of enterprise social networks. For their interpretation, it is important to consider the
semantics of links and the resulting meaning of the network topology in the given
context.
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Node degree. A particularly simple measure which is often used to capture the
importance of a node is its degree, which is defined as the number of direct neigh-
bours to which it is connected. A natural tendency of (social) networks occurring in
many contexts is that they exhibit heavy tailed distributions of node degrees, imply-
ing that there are a few nodes whose degrees are magnitudes larger than the degrees
of the majority of nodes in the network. In the context of enterprise social networks
where links represent collaborations, an exchange of information or communica-
tion, the degree of nodes can be used as the most basic proxy for the popularity or
importance of the persons they represent. While heavy-tail degree distributions arise
naturally in social networks, they can be used to evaluate the centralisation of the
social organisation of collaborating teams. Furthermore it has been argued that the
cognitive capabilities of humans pose a limit to the number of stable inter-personal
social relations [2]. Thus, structures in which most of the links are concentrated
on only a few nodes, can indicate situations in which central employees are being
overburdened by communication, This can possibly have negative consequences for
the efficiency of a social organisation. Furthermore, random networks with heavy-
tail degree distributions have a tendency to be vulnerable against the loss of high-
degree nodes, meaning that the network can be disconnected even though only a
small fraction of its most connected nodes are removed [1]. As such, the degree of
centralisation of an enterprise social network in terms of node degrees can be seen
as a simple proxy for the resilience of a social organisation against the loss of its
most connected members.

Path-based centrality measures. A different set of measures for the impor-
tance of nodes in a network are those which are based on the topology of shortest
paths between nodes in a network. One important example is the betweenness cen-

Fig. 1 An example network G = (V,E) consisting of a set of nodes V and links ECV x V.
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trality of a node v, which is defined as the number (or fraction) of shortest paths
between any pair of nodes that pass through node v [4]. Similarly, the closeness
centrality of a node v is defined based on the average distance of a node v from any
other node in the network. To obtain a measure of centrality in which higher values
indicate more central nodes, the inverse of the average distance is typically used,
meaning that a node with closeness centrality 1 is directly connected to any other
node, while its closeness centrality tends to zero, as the average distance to other
nodes tends to infinity. Instead of the average distance to all other nodes, one can al-
ternatively study the maximum distance of a node v to any other node in the network,
which is called its eccentricity. The betweenness and closeness centrality of nodes
in an example network, as well as their eccentricity is depicted in Figure 2(a)-2(c).

While nodes with high degree have a tendency to be important also in terms of
path-based centrality measures, this correlation does not hold necessarily. Nodes
with high degree can still be in the periphery of a network in terms of their average
or maximum distance to all other nodes, meaning that they have small eccentric-
ity and closeness centrality. Conversely, nodes with small degree can nevertheless
reside at the core of a network through which many paths pass, meaning that they
have high betweenness centrality. Path-based centrality measures thus capture a dif-
ferent dimension of topological importance and can thus play an important role in
the monitoring, analysis and optimisation of enterprise social networks. In particu-
lar, individuals with high betweenness centrality may go rather unnoticed as they are
not necessarily in contact with many colleagues. Nevertheless, their loss will have
considerable impact on the flow of information, as it will change a seizable fraction
of shortest paths between other nodes in the network. Furthermore, individuals with
high betweenness centrality often play the role of mediators, which interconnect
different parts of an organisation and bridge information between different com-
munities. At the same time, a highly skewed distribution of betweenness centrality
can be interpreted as a sign of high centralisation, which potentially poses a risk
for efficiency and resilience of social organisations. While betweenness centrality
captures shortest paths passing through a node, closeness centrality and eccentric-
ity focus on the length of paths starting or ending in a node. As such, they cap-
ture how individuals are able to receive and propagate information travelling across
shortest paths: Individuals with high closeness centrality can be seen as good in-
formation spreaders, since they can propagate information throughout the network
most quickly. Nodes with small closeness centrality on the other hand are on in the
periphery of a social organisation, thus receiving information - on average - later
than others. Similarly, for nodes with high eccentricity there exist other nodes in the
network that can only be reached via long paths. Individuals that play a central role
in a social organisations should thus - in general - exhibit high closeness centrality
and small eccentricity.

Clustering coefficient. Apart from different dimensions of importance intro-
duced above, another important characteristic of nodes is how they are embedded
into the topology of a network. One interesting aspect is, for instance, whether the
neighbours of node v are also connected to each other, or - in other words - whether
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triads (v,x),(v,y) around a node v are closed. To quantify this property, the cluster-
ing coefficient of a node v is defined as the fraction of pairs of neighbours x and y
of v for which a link (x,y) exists. The clustering coefficient of nodes in a sample
communication network is visualised in Figure 2(e). In the context of enterprise so-
cial networks, several different interpretations for the presence of nodes with high
clustering coefficient are possible: First of all, naturally evolving social networks
are known to have a - compared to random networks - high average clustering co-
efficient. At the same time, they exhibit a small diameter that is due to so-called
weak ties which bridge the local cluster structures around nodes. Social networks
with such a combination of high clustering coefficient and small diameter are usu-
ally called small worlds. Different from general networks with low diameter, small
worlds typically have the property that they are navigable for humans, i.e. individu-
als are able to locally route information along short paths without global knowledge
about the network topology. One property that enables individuals to quickly iden-
tify neighbours which lie on short paths to a given target is funneling, i.e. the fact
most short paths pass only through a small set of neighbours which have connec-
tions outside local cluster structures. As such, the clustering coefficient of enterprise
social networks can be used to quantify aspects that influence their navigability, an
important property for the routing of information. Being aware which colleagues
represent weak ties to other communities (and which thus transcend local clustering
structures) is likely to be important, e.g. in order to quickly identify which col-
leagues have a particular expertise or work on similar projects, even if they are not
directly connected to an individual. Furthermore, a high clustering coefficient of
a node can be used as a proxy for the impact of removing this individual from a
team: For a node v with high clustering coefficient, most of v’s neighbours can still
communicate or collaborate with each other even if v is removed from the network.
Similarly, a high clustering coefficient can help to mitigate the overload of a cen-
tral node v, since communication between two neighbours u and w can alternatively
bypass v via a direct link (u,w).

Coreness. Another aspect of the embedding of individual nodes into the topol-
ogy of a network is captured by their coreness. The k-core of a network is defined
as the largest subgraph of a network, in which each node has a degree of at least
k. Based on this decomposition in different k-cores, the coreness of a node is the
maximum k-core to which it belongs. The coreness of nodes in the example net-
work is shown in Figure 2(f). In particular, the k-core of a network is the largest
connected component which is left when repeatedly removing all nodes with de-
gree smaller than k. As such, the k-core decomposition of a network, as well as the
coreness of nodes, plays an important role in the analysis of resilience of social net-
work structures against cascading processes. The presence of k-cores with high k
in an enterprise social network can be related to its ability to withstand turnover of
employees, as well as potential cascades or network effects potentially triggered by
individuals leaving a company.



Social Network Analysis in the Enterprise: Challenges and Opportunities 7

@ /T g
0 ® 7 002 PET

3

(e) Clustering coefficient (f) Coreness

Fig.2 Overview of node-centric metrics in an example network. The score of each node is depicted
by its colour (red: low, yellow: medium, blue: high).

2.2 Network-centric Metrics: Resilience and Efficiency

Apart from measures that address the importance and topological embedding of in-
dividual nodes, an important further contribution of network theory is the provision
of aggregate, network-centric measures that can be used to capture systemic prop-
erties of complex networks. In the following, we briefly introduce a set of network-
centric measures that can be related to two particular systemic properties of complex
networks: their resilience against failing nodes or links as well as their efficiency in
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terms of information propagation. We then interpret them in the context of enterprise
social networks.

Network size, compactness and average degree. The simplest possible ag-
gregate quantities of a complex network are the number of its nodes and edges.
Based on these quantities, the compactness of a network can be defined as the ratio
between the number of edges and the number of edges that could possibly exist in
a network with the same number of nodes. The average degree is defined as the
average of the degrees of all nodes. For networks with scale-free, heavy-tail degree
distributions, the average degree is - in general - not a good representation for the
typical degree of connectivity in the system. In such networks the degree of most
nodes is in fact much smaller than the average, while a few nodes have degrees
orders of magnitude larger than the average degree. In social networks where the
average degree is a good representation of the typical degree of connectivity, it al-
lows to analyse which of the individuals have more or less connections than the
typical node. The compactness of a network - or of different of its subgraphs - is
an interesting measure to evaluate one aspect of the group cohesiveness of a social
organisation. While social networks with high compactness exhibit a high level of
cohesiveness, they are likely to run into scalability issues as the network grows. In
general, large-scale social networks which support efficient information exchange
are expected to be sparse, meaning that their compactness is relatively small.

Diameter and average distance. As argued in Section 2.1, a further impor-
tant characteristic of a network topology is its diameter, which is defined as the
longest shortest path between any two nodes in the network. Similarly, the aver-
age distance gives the average length of shortest paths between any pair of nodes.
Both quantities play an important role in the analysis of enterprise social networks,
since they quantify how efficient individuals can communicate across shortest paths.
A large diameter indicates the presence of at least one pair of individuals that are
connected only via a long path. Even worse, a large average distance indicates that
the characteristic length of shortest paths between individuals is large. Enterprise
social networks supporting efficient information flow between employees are thus
expected to exhibit short average distance and diameter.

Measures of connectivity. Capturing the resilience of a network, its node (or
edge) connectivity is defined as the amount of nodes (or links) that have to be re-
moved before it falls apart in different components. Both notions of connectivity
are illustrated in the network shown in Figure 3, which has a node connectivity of
one and a link connectivity of two (assuming that both subgraphs have higher node
and link connectivity). Since each node is connected to a network by at least one
link, the link connectivity of a network is always at least as high as its node connec-
tivity. A different approach to quantify the connectivity of a complex network is in
terms of its algebraic connectivity, a measure which is defined as the second small-
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est eigenvalue in the spectrum of eigenvalues of a networks’ Laplacian matrix '. The
algebraic connectivity can be seen as a generalisation of a network’s connectedness,
where connectedness captures whether all nodes in the network belong to a single
connected component. An algebraic connectivity of zero indicates that the network
is disconnected, while connected networks exhibit non-zero values. For connected
networks, the actual value of algebraic connectivity has been shown to reflect how
“well-connected” the network is. In particular, a large algebraic connectivity indi-
cates a) high node and link connectivity, and b) small diameter, while small values
indicate the opposite [3, 16, 18]. In the context of enterprise social networks, node,
link and algebraic connectivity are important approaches to quantify both their re-
silience and efficiency. Node and link connectivity is crucial for resilient social or-
ganisations, since the failure of low connectivity nodes or links can severely impact
the network structure, for example, by a separation of communities. The node and
link connectivity of networks can be used to identify such critical nodes and links.
Furthermore, networks with node and link connectivity exhibit small cuts in the
topology, which - apart from being a threat to resilience - can be interpreted as bot-
tlenecks that inhibit the diffusion of information. Combining both node and link
connectivity and diameter, algebraic connectivity can be used as a measure which
jointly captures the efficiency of information flow in a social organisation as well
as its resilience: First of all, a large value of algebraic connectivity indicates that
all individuals can communicate with each other via short paths. However, it also
shows that there are no bottlenecks in the sense that a large fraction of paths neces-
sarily pass through a small set of nodes or links. Algebraic connectivity can thus be
interpreted as a measure for the cohesiveness of a social organisation.

2-edge-connected ()

Subgraph 1 Subgraph 2

1-vertex-connected

Fig. 3 Illustration of the difference between edge-connectivity and vertex-connectivity.

! The Laplacian matrix L of an undirected network is commonly defined as L = D — A, where A
is the usual binary adjacency matrix of the network and D is a a diagonal matrix where diagonal
elements contain the degree sequence of the network.
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3 Mining Socio-Technical Systems: Application of
Network-theoretic Measures

The measures introduced in Section 2.2, as well as their interpretations provided
above, highlight interesting opportunities for the monitoring and analysis of enter-
prise social networks. In practice, data which are suitable to construct and analyse
such social networks can come from a variety of social software used in an enter-
prise context, including social networking tools, collaboration platforms, messaging
systems or project management tools. In this section we exemplify this approach
using a data set of time-stamped collaborations obtained from a web-based project
management tool used by distributed software development teams. In particular -
utilising data on Open Source Software communities which have previously been
used in the studies [6, 15, 19,20] - we exemplify some of the metrics introduced in
Section 2.2 and provide a complementary, in-depth analysis of the social organisa-
tion of two projects that are the GENTOO project and the ECLIPSE project.

3.1 Monitoring Open Source Software Communities

A particularly important and widely used class of enterprise social software that al-
lows to construct social networks are project management tools which support the
collaboration, communication or task-allocation in distributed teams. In the context
of distributed software development teams, issue tracking tools are an important ex-
ample which allow to report, prioritise and filter reports about software defects, as
well as coordinate the efforts to solve them. Such tools are widely used not only
within an enterprise scenario, but also in Open Source Software (OSS) projects.
Since these tools are publicly available to users and contributors of the project, it is
possible to extract rich data on the evolving social organisation of these projects. In
the following, we thus utilise these data as a proxy to study evolving social structures
of humans collaborating on a project. We particularly focus on OSS projects which
use BUGZILLA, a popular issue-tracking tool which is widely used in the develop-
ment of both open source and commercial software projects. While the same data
set has been used in [19] to study 14 OSS communities, here we provide detailed
results for two major OSS communities: The first is GENTOO a project developing a
LiNUX-based operating system. The second project is ECLIPSE, which develops and
maintains one of the most popular integrated software development environments.
Our approach is based on a construction of evolving social networks based
on time-stamped interactions between team members that are recorded in the
BUGZILLA installation of a project. All recorded interactions within BUGZILLA
evolve around bug reports, which typically contain a collection of information about
a particular software defect. Here, we make use of so-called Assign and CC interac-
tions, which have a special semantics in the context of issue tracking: A CC interac-
tion between a team member A and B implies that A forwards information about a
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(a) 2007 (b) 2009

Fig. 4 Two collaboration networks of the GENTOO community, constructed from interactions
recorded over a period of 14 days in mid 2007 and mid 2009.

bug report to team member B. An Assign interaction between A and B means that A
assigns the task of resolving a bug (e.g., by providing a software fix or workaround)
to another team member B. In the following we take a maximally simple perspec-
tive and say that any interaction between A and B implies that A is aware of B, thus
allowing us to construct a network of collaborating team members. In particular, we
consciously sacrifice the additional semantics of different interaction types, as well
as their potential implications for the role of individuals, for the sake of simplic-
ity. Since all interaction events recorded in BUGZILLA have precise time stamps,
we can further construct time slices [t,t + 0] of social networks by only taking into
account interactions happening between time stamps 7 and ¢ + 0. Using a window
size 6 of 14 days and an increment t — ¢’ of one day, we perform a sliding win-
dow analysis, eventually obtaining a sequence of evolving collaboration networks
covering the periods [r,7 + 8], [t',#' 4+ 8] and so forth. Figure 4 shows two example
networks constructed from 14 day time slices of the GENTOO project. Nodes in this
network represent team members who have been active in the project’s BUGZILLA
installation within a period of two weeks.

Having constructed sequences of collaboration networks for a project allows to
apply network-centric measures, thus capturing characteristics of the project’s social
organisation. Figure 5 shows the evolution of six metrics introduced in Section 2.2
for the project GENTOO. Figures 5(a) and 5(b) show the number of nodes and links
in the largest connected component of the collaboration networks spanning a period
of two weeks. One observes significant changes in the number of nodes and edges,
highlighting two remarkable phases of growth between December 2003 and Febru-
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Fig. 5 Evolution of network measures capturing social organisation in the GENTOO project.
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ary 2006, as well as between June 2010 and April 2012, when our data collection
stopped. In addition, a phase during which the number of nodes decreased can be
observed between January 2006 and June 2008, followed by a phase of stagnation
between June 2008 and June 2010. The number of links representing interactions
between team members qualitatively follows the dynamics in the number of active
nodes. The number of nodes and links highlights a non-stationary level of team ac-
tivity and can thus help to interpret the dynamics of other characteristics that are
typically affected by the network size. As argued in Section 2.2, the compactness of
a network is a simple size-independent measures which can be interpreted as a par-
ticularly simple proxy for the cohesiveness of a social organisation. In the GENTOO
community, we observe a first phase of decreasing compactness between Decem-
ber 2003 and February 2006, which coincides with the first phase of growth. After a
phase of stagnation and moderate increase between February 2006 and March 2008,
the compactness of the social network doubled around March 2008, indicating an
increase in cohesion. The average clustering coefficient shown in Figure 5(d) shows
a similar dynamics. A first phase lasting until February 2006 shows a remarkable de-
crease of the average clustering coefficient. During a second phase between Febru-
ary 2006 and March 2008, the average clustering coefficient is remarkably small.
The increasing compactness starting in June 2008 was accompanied by an increas-
ing embedding of nodes in densely connected clusters. In Figure 5(d), the phase
between February 2006 and March 2008 is particularly noteworthy. One can get a
clearer picture of the processes shaping the social organisation during this phase by
considering additional network-centric metrics. Figure 5(e) shows the evolution of
degree centralisation, a measure defined based on the distribution of node degrees.
A value of one represents a maximally centralised situation in which all nodes are
only connected to a single central node, while a value of zero represents a situation
where all degrees of nodes are equal. The degree centralisation shows a remark-
able dynamics, exhibiting a highly centralised phased between mid 2005 and March
2008, with centralisation quickly dropping around March 2008. An interview with
past and current members of the GENTOO issue tracking team performed in [15]
revealed that - between mid 2005 and March 2008 - most of the work associated
with the processing of bug reports was done by a single team member. Following a
dispute with other team members, and being overburdened with tasks, this central
member left the project unexpectedly in March 2008. Following this event, the com-
munity actively took efforts to reorganise the bug handling process, which is likely
to be the reason behind the increasing compactness and clustering coefficient. The
evolution of algebraic connectivity depicted in Figure 5(f) shows a high variability,
with a slightly increasing trend between the end of 2005 and the beginning of 2008.
Interestingly, the reorganisation of the community following the loss of the central
contributor was accompanied by an observable decrease of algebraic connectivity
until mid 2010, after which it increased significantly.

Two collaboration networks illustrating the difference in social organisation dur-
ing the presence of the central contributor between 2005 and 2008, compared to
the time after she left are shown in Figure 4(a) and 4(b). It is tempting to relate the
obvious changes in the social organisation discussed above with changes in the per-
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formance of the bug handling process during the same period. A study of bug han-
dling performance in the GENTOO community has recently been presented in [15].
It shows that the performance in terms of number of reported/resolved bugs, as well
as in terms of the time taken between the submission of a bug report and the first
response of a community member, show an interesting dynamics that is likely to be
correlated with the evolution of social organisation. In particular, here it was shown
the performance of the GENTOO bug handling community generally increased until
early 2008. A rapid increase in the response time as well as in the number of open
bug reports can be observed at the time when the central contributor left, followed
by a phase of stagnation until early 2011 after which performance increased again.

Applying the same measures as above and highlighting differences in the dynam-
ics of social organisation, we now turn our attention to the project ECLIPSE. Figure
6 shows the evolution of six network-centric measures over a period of almost ten
years. A first remarkable observation is a pronounced periodicity in the number of
nodes and edges, as well as in compactness and the average clustering coefficient.
Both the number of nodes and edges in the collaboration network experience a steep
increase of up to 500 % roughly once a year. While we cannot make definite state-
ments about the underlying reasons, it is likely that this periodicity is related to the
project’s release cycle, which aims at one release per year. This increase in activity
is associated with increases in both the compactness (Figure 6(c)) as well as the
clustering coefficient (Figure 6(d)). A further remarkable fact is that - while slight
periodic peaks can be observed - compared to the GENTOO project - degree central-
isation remains at a rather moderate level also in phases of high activity. One may
interpret this as a sign of a healthy social organisation, in the sense that an increase
of activity is associated with an increase of cohesion, rather than an unproportionate
burdening of a few team members.

3.2 Analysing Resilience in Online Social Networks

Online social networks are socio-technical systems in which users interact through
an online medium, overcoming some of the limitations of verbal face-to-face com-
munication. To improve user experience, the technological component of an on-
line social network is subject to be changed and redesigned, introducing modifi-
cations in the fundamental way in which individuals communicate. The impact of
such changes in a social system is not trivial, as user reactions are coupled to each
other. A technological change, such as a new user interface, can trigger some users
to leave the social network, which can decrease the quality of the experience of its
friends. This mechanism leads to cascades that can potentially lead large amounts
of users away from the social network.

Users leaving a social network can be modelled through a decision process, in
which a user receives a benefit and a cost associated with being active in the net-
work. In terms of social interaction, the benefit perceived by a user comes from its
contacts, either in the form of information, or as attention. The benefit of a user
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increases with the amount of active friends, and decrease every time a friend be-
comes inactive. Costs do not necessarily need to be economic, they can also include
the time spent in a social network, or the opportunities lost by not using other plat-
forms. This cost can be increased due to changes in the user interface, or due to
service limitations, threatening the cohesion of the network as a society. This model
allowed us to analyse the cascades of users leaving the network [5], which stop
in subsets of the network that corresponds to the k-cores explained in Section 2.1.
Thus, the k-core decomposition of a social network allows us to measure its social
resilience, i.e. how does the network withstand external shocks and stresses.

We empirically analysed the social resilience of a variety of online social net-
works, through their k-core decomposition. Such empirical analysis, including large
sites like Facebook, MySpace, and Friendster, showed that the topology of these
networks can vary a lot in terms of resilience, calling for methods that can increase
this desired property. For example, friendship links can be recommended in a way
such that links that increase coreness are encouraged, or changes can be introduced
gradually to limit cascades of departing users.

These results show that a quantitative analysis of data on enterprise social net-
works can provide interesting insights into the evolving social organisation of teams,
projects or communities. In the case of the GENTOO project, our results show that
a monitoring of degree centralisation and average clustering coefficient may have
been used as an early indicator for a detrimental evolution of social structures. Fur-
thermore, it is at least conceivable that a targeted optimisation of the network’s
resilience against the loss of its most central node may have prevented downstream
problems with the performance of the bug handling process. In the following chap-
ter, we thus review approaches from the planning and design of telecommunication
networks, and discuss their possible application to enterprise social networks.

4 Network Planning and Design: Application to Enterprise
Social Networks

Analogously to enterprise social networks, the overload or loss of nodes can severely
impact telecommunication networks. Therefore, telecommunication providers mon-
itor their networks to allow for an early identification of emerging problems and to
take appropriate measures to mitigate their impact on performance. The most im-
portant goals of these interventions are to optimise resilience of the network against
failing nodes or links, but also to balance load across links and nodes in order to
avoid congestion and overload of single nodes which may significantly decrease the
performance and efficiency of the entire network — similar to the GENTOO project.
Typical interventions include the addition of nodes or links to increase resilience,
the rewiring of links or an adaptation of link capacities to optimise traffic flows,
or the addition of special functionality nodes to manage or monitor regions of a
network. In more general terms, network planning and design refers to the process
of designing the topology of telecommunication networks in a way that optimises
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some notion of value, while keeping costs as small as possible. In the following,
we will sketch how network optimisation is achieved in general in the context of
telecommunication networks. We then we apply it exemplarily to a collaboration
network extracted from the GENTOO Open Source community and summarise re-
search challenges arising when wanting to optimise and influence social network
structures.

4.1 Network Optimisation

In general, the optimisation of network topologies consists of the following three
steps: In a first step, an optimisation objective has to be defined based on a notion
of value defined for particular network topologies. Depending on the context and
the associated objective this value can be defined based on different, not necessarily
correlated, typically network-centric measures. To give an example, if resilience is
to be optimised, one may utilise the average coreness of nodes or the (algebraic)
connectivity of the network, while one may chose the average shortest path length,
if the latency of communication as to be optimised. In the context of enterprise
social networks, the value could, e.g., be defined based on measures capturing com-
munication efficiency, resilience or aspects which influence work atmosphere, thus
seeking to balance different aspects by means of a multi-objective optimisation. In
general, in the following we assume that the value of a network can be defined as a
function of the network topology, which uses the topological structure, node proper-
ties, and link weights to quantify the value of the network in a particular context. As
second step, an adequate degree of abstraction has to be found to model the telecom-
munication network for the optimisation process. There is a wide range of different
abstraction levels reaching from simple adjacency and distance matrices over partial
or complete lists of all possible routing paths up to object oriented representations
of each single link and node. The chosen model is one of the essential influence fac-
tors for the thirds and final step: the actual optimisation. Probably most optimisation
methods known in science and engineering can and have already been applied to net-
work optimisation, including, e.g., (mixed integer) linear programming approaches,
different heuristics such as simple greedy mechanisms, simulated annealing, evo-
lutionary algorithms, and - if computationally feasible - the exhaustive evaluation
of the entire search space of optimisation options. Each of these methods has ad-
vantages and disadvantages, in particular concerning the optimality of the results,
the computational complexity of the optimisation, and the capability to handle large
network topologies. But they have in common that they aim at maximising the value
of the network while balancing it with the associated costs.
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4.2 Application to an OSS Collaboration Network

In section 3, we have seen that a monitoring of network-centric measures capturing
resilience (like, e.g., degree centralisation) or aspects that influence communication
efficiency (like, e.g., algebraic connectivity) can provide valuable insights into the
changing social organisation of software development teams. Furthermore, we have
argued above that these aspects are important criteria which are typically accounted
for in the design and planning of telecommunication networks. In the following, we
briefly describe methods used in network optimisation and discuss their potential
applications in the context of enterprise social networks. We further use one snap-
shot of the collaboration network extracted from the GENTOO community during a
period of four weeks in May 2002 to illustrate their application in social networks.

Routing Optimisation. To save operational costs the network infrastructure
and resources need to be highly utilised without overloading single entities. To cope
with the daily dynamics of traffic, resources need to be added in peak hours. This
can be achieved by flexible resource allocation and dynamic routing. Although many
mechanisms have been investigated to use network resources efficiently, routes in
the Internet are still static in many cases. Especially in case of link or node failure,
alternative routes that have to carry the traffic of the broken connections are likely
overloaded. The aim of routing optimisation is to balance the load on the links of
a network [8]. To add resilience, routing is further optimised such that the load is
balanced in case of link or node failure. In companies load balancing is important to
unburden central employees. It is also reasonable to route, or assign tasks in such a
way that information flow is resilient against node or link outages. That means that
the workload is still balanced among employees if worker fails. Assuming that each
node produces the same amount of tasks, the load on the communication channels
can be estimated. To balance the load on the communication channels we consider
the 2-core of the communication network, since there exist no alternative links for
stub nodes. Stub nodes are nodes that are connected only with one link to the large
component to the graph. Figure 7(a) shows the link load in the OSS network if rout-
ing is not optimised. The edge colour depicts the utilisation of a link. If routing is not
optimised, the links from 22 to 86 and from 22 to 105 are highly loaded, probably
resulting in an overload of the involved individuals. Furthermore, if individual 105
fails all tasks forwarded by node 22 would have to be completed by node 86, which
significantly burdens the central contributor. To optimise routing, load is taken from
the overloaded links and shifted to alternative routes. In this example load is shifted
to node 62. In enterprise social networks, shifting load could be realised by delegat-
ing tasks to a different set of workers. Thus, the load is balanced among the paths
in the network. If node 105 fails, the tasks originating from node 22 or one of its
neighbours, are still shared by node 62 and 86. The load on the links with optimised
routing is depicted in Figure 7(b).

Controller Placement. In communication networks controllers are needed for
authentication, authorisation and connection establishment, but also for dynamic
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(a) Unoptimised routing (b) Optimised routing

Fig. 7 Illustration of different routing layouts in the GENTOO collaboration network. The color
and the strength of the edges depicts the load on the link (red: high, yellow: medium, blue: low).

network control adding network functions and rerouting. To monitor network flows
efficiently and to be able to access and control all routers in the network efficiently,
it is important to place the controllers strategically. In telecommunication networks
this process is called controller placement [7]. “Controller placement” can be ap-
plied to companies in the sense that workers are chosen as controllers to efficiently
spread information or to promote workers which will take a lead in assigning tasks
and delegating responsibilities. This type of “promotion” is actually an important
mechanism in the bug handling communities of Open Source Software communi-
ties, since it is typically only a small set of privileged individuals which is allowed
to assign tasks to other community members or developers. If the GENTOO network
is considered, and it is assumed that community has the capacity to promote three
workers, the question is which workers to choose. Figure 8(a) shows the collabo-
ration network of the GENTOO project. Three controllers - highlighted by a larger
node size - are placed in the network in a way that optimises the maximum latency
from each node to the nearest controller. Here, nodes 3, 64 and 86 are selected.
Node 86 is the central contributor in the GENTOO community and has direct access
to a large part of the community. Nodes 3 and 64 are less important, but neverthe-
less central, nodes covering different parts of the community. Figure 8(c) shows the
nodes that are assigned to each of the three controllers. The number of worker as-
signed to nodes 3 and 64 is small compared with the much larger amount of workers
assigned to node 86. That means node 86 would be responsible for many members
in the community, which puts a high load on this central contributor. To unburden
this central contributor, responsibilities can be delegated to different members, in a
way, that each leader is responsible for an equal amount of members in the commu-
nity. In Figure 8(d) the controller placement is optimised for lowest load imbalance.
Three controllers are placed and associated to a subgraph, such that the load is bal-
anced equally among the leaders. Now, each of the controllers is responsible for 35
or 36 nodes, hence the number of workers assigned to each leader is much more
balanced. The drawback is, that the path length and thus the latency on the com-
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munication channels between the leaders and their assigned workers can be higher.
This can be seen in Figure 8(b) that shows the latency to nodes for the case of an
assignment that optimises load imbalance.

Network planning. Another possibility for the optimisation of communica-
tion networks is network planning, i.e. changing the topology of a communica-
tion network. While in telecommunication networks, adding nodes can easily be
accomplished by setting up hardware, in the context of enterprise social networks
this would mean the addition of individuals (i.e. by hiring or transferring between
groups). While this is not generally impossible, in the following we focus on tar-
geted interventions by means of adding links, which can be achieved in a social
organisation in much easier way, e.g. by asking people to collaborate or influencing
enterprise social software in a way that it suggests contacts or communication. The
addition of links in a social network can bring several improvements, however at the
cost of additional expenditures. By adding a link between two persons, i.e., making
them direct friends in the network, the path lengths between the existing friends of
both persons might decrease leading to a shorter average path length in the network.
Another benefit is that additional links can reduce the risk of a disconnection of a

®@

(b) Lowest load imbalance

(c) Assigned members (lowest max. latency) (d) Assigned members (lowest load imbalance)

Fig. 8 Illustration of best controller placements according to different metrics.
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person or subnetwork from the rest of the network. A potential increase of the aver-
age coreness of nodes can be used as one possible measure to quantify the resulting
increase in resilience.
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Fig. 9 Visualisation of the improvement reached by adding additional links to the network.

Figures 9 exemplarily visualises the improvement reached by adding additional
links to the GENTOO collaboration network. In Figure 9(a) all possible options of
adding a single link to the network have been compared regarding the decrease in
average path length (right y-axis) and the increase in average coreness (left y-axis).
The optimum links according to both objectives have been highlighted. Two main
findings can be observed: First, there is a high optimisation potential but the im-
provement reached by adding a link highly depends on the chosen link. Second, the
best links to add regarding the optimisation of average path lengths (which can be
seen as a proxy for communication efficiency) do not correspond to the best ones re-
garding the average coreness (which can be interpreted as a measure for resilience).
In Figure 9(b) another visualisation is shown that substantiates the latter finding.
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For all options to add a single link, on the x-axis the average coreness resulting
from adding this link is shown, while on the y-axis the resulting average path length
is shown. Each symbol in the plot corresponds to one or several links that lead to
the same values on x- and y-axis. The highlighted symbols show the Pareto-optimal
results regarding both metrics. Looking at Pareto-optimal results is a formal way to
identify trade-offs in multi-criteria optimisation.

Finally, to look at the possible improvements when adding several links, a sim-
ple experiment has been conducted regarding the average coreness in the network.
Subsequently, more and more links were added to the network. In each step of the
iteration, all options to add a single link were tried and the option leading to the
best improvement was chosen. Figure 9(c) shows for up to 100 added links the
reached improvement in terms of average coreness. The linear relationship between
resilience and cost highlights a trade-off to be decided by the network provider — or
the company when looking at enterprise social networks.

4.3 Optimising Enterprise Social Networks: Research Challenges

Realising resilience in enterprise social networks and applying mechanisms from
the design and planning of telecommunication networks poses a set of research
challenges. These challenges arise from the scale of enterprise social networks, the
applicability of the mechanisms, but also from the temporal dynamics of the net-
work topology. In particular, it is not yet well researched how to model enterprise
social networks and how to apply the well-known network communication method-
ology in the domain of enterprise social networks. In this section, several research
questions are discussed, whether and how social network analysis may be benefi-
cial to identify and react to problems in the enterprise in advance. Further, we will
address the optimisation of an enterprise social network to improve resilience, ef-
fectiveness, and job satisfaction. However, beyond the technical aspects, the derived
models and applied mechanisms also lead to ethical issues, which we discuss in a
separate paragraph.

Modelling Social Systems. Social network structures in enterprises can be
modeled in many ways and an appropriate representation has to be chosen depend-
ing on the relations and interactions within the company. For example, links can be
created which resemble boss-of -relations (i.e. hierarchical structure) within a com-
pany or communicates-with-relations (i.e. actual communication structures) within
the enterprise. Each network will have a specific structure depending on, e.g. en-
terprise hierarchy or communication flows, some of them are better suited for one
company than for another. Thus, the question arises how to model the social network
structure which is useful to identify problems or to optimise the network.

In every company there are persons which are more or less important. How
should these personal attributes be modelled and how can their the workload and
productivity be quantified? How can team work be integrated into the model? A
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company does not only need workers who are very targeted and finish one task af-
ter another. A company also needs workers that spend time socialising, finding new
contacts, and connecting people. Such workers are essential for an efficient working
atmosphere. How can their contribution be quantified? Which mixture of personal-
ities is best for the company? Central nodes, for instance, are important to connect
persons from different departments and to spread information, but might also suffer
from high workload and stress. How can important nodes be identified? How can
overloaded workers be detected and unburdened?

If an important person leaves the company, is ill for several weeks, or is moved
to a different department, it can have bad consequences for the company like less
effectiveness or productivity. What approach can detect and quantify such pending
problems? If an enterprise has capacities to employ new workforces, the question is
how new nodes are integrated, i.e. to which persons they are linked in the network?
Are there other means to change the structure of the enterprise social network? Fa-
cilities (e.g. staff rooms) or events (e.g. company outings) support the dialogue of
employees which are not directly working together. Thus, new links are created in
the social network which foster serendipity and creativity especially when people of
different disciplines get together. How can these means be modelled? How can the
effect of such means be quantified?

Optimisation Capability. When optimising enterprise social networks with
resilience mechanisms new challenges arise from the size of enterprise social net-
works, the temporal dynamics of the network topologies, but also from the means
of modifying the network. Existing communication network heuristics for optimal
solutions are typically limited to static networks, which - as has been shown in a re-
cent line of research on temporal networks [9, 12,13] - can differ significantly from
actual communication flows that are due to the temporal ordering of interactions.
Moreover, the difference in the structure between communication networks and en-
terprise social networks makes it difficult to apply common heuristics. Approaches
such as routing optimisation, resilience analysis, or network planning are especially
efficient in networks where the average node degree and connectedness of the net-
work is already quite high. Furthermore, if personal interests and preferences of the
employees are dominant and cannot or must not be influenced, the network struc-
ture is fixed. Other mechanisms, such as different message routing, can still improve
the resilience of the social network. Instead of just processing plenty of requests, a
new working directive could instruct central nodes to forward requests to different
communities. Thus, load is taken of the central node and collaboration is enabled be-
tween the communities. Finally, compared to telecommunication networks, in social
networks it is often more difficult to change or add links or nodes. Here again new
challenges arise. Which real-world human resource actions resemble which com-
munication network optimisation? What (side) effects occur when applying such
actions in an enterprise? Does the gain of such actions exceed their costs? How do
employees’ personal attributes change when such actions are enforced?

Ethical Issues. Finally ethical issues have to be considered. It is important to
understand that the analysis does not deal with abstract nodes but with humans.
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Thus, it remains an open issue if a person can be judged by the structure of its so-
cial network projection. Moreover, in order to assess personal properties like work
capacity or interaction capacity, working behaviour will have to be measured and
captured in statistics. However, complex human personalities cannot be fully as-
sessed by such statistics and a supervised working environment will induce changes
in attitude and behaviour of workers.

If the social network graph is based on the communications within an online en-
terprise social network tool (e.g. email communication or Intranet platforms) where
network structure and interactions can be easily obtained, different communication
or collaboration channels, like face-to-face communication, cannot be captured. The
question arises to which extend people are then discriminated who do not exten-
sively use such a tool? Also [14] stated that “in contrast to conventional office soft-
ware, micro-blogging implies social interaction and self-disclosure. This applies to
social software in general. As a result, bringing applications like micro-blogging
into the workspace goes beyond traditional technology acceptance theory.”

When analysing an enterprise social network, workers might be identified whose
working capacity is insufficient. Then, the optimisation of the network can lead to
dismissal or demotion of workers. Moreover, forced human resource actions like
moving persons to another department might have complex impacts on the employ-
ees’ motivation. Also other resilience means might encounter employees’ resistance.
For example, the expected establishing of connections between different workers
might not be accepted as it overrides the workers’ own preferences for selecting
social peers. Thus, it remains an open question which actions can - and should - be
enforced by the company without running into ethical issues.

5 Conclusion

The resilience and efficiency of communication networks is a major topic in the net-
work research communities both studying social and telecommunication networks.
With the rise of collaboration platforms in enterprises social network structures on
top of technical systems emerge which reflect the social organisation of an enter-
prise. Therefore it is tempting to utilise known results and insights from the opti-
misation of telecommunication networks. This maybe helpful for enterprises to im-
prove their human resource management by pre-emptively taking load of busy and
central workers and improve the social network structure to increase information
diffusion and to accomplish a healthy work environment. The main contributions
of this chapter are a) to summarise network-theoretic measures and interpret their
meaning in the context of enterprise social networks, b) to illustrate how enterprise
social networks can be monitored by showing an example from OSS communities,
and c) to demonstrate approaches from the optimisation of telecommunication net-
works and to apply them to a real-world collaboration network.

Our results highlight new technical, scientific and ethical challenges which arise
when wanting to monitor and optimise enterprise social networks. Combining ex-
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pertise from the modeling and analysis of complex networks, the design and opti-
misation of telecommunication networks, as well as from the social sciences, the
emerging interdisciplinary field of socio-informatics has the potential to address
these challenges.
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