Skip to main content

Neuromechanical Mantis Model Replicates Animal Postures via Biological Neural Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Abstract

A neuromechanical model of a mantis was developed to explore the neural basis of some elements of hunting behavior, which is very flexible and context-dependent, for robotic control. In order to capture the complexity and flexibility of insect behavior, we have leveraged our previous work [1] and constructed a dynamical model of a mantis with a control system built from dynamical neuron models, which simulate the flow of ions through cell membranes. We believe that this level of detail will provide more insight into what makes the animal successful than a finite state machine (FSM) or a recurrent neural network (RNN). Each of the model’s walking legs has six degrees of freedom. Each joint is actuated by an antagonistic pair of muscles, controlled by a custom designed variable-stiffness joint controller based on insect neurobiology. The resulting low-level control system serves as the groundwork for a more complete behavioral model of the animal.

This work was supported by NASA Space Technology Research Fellowship NNX12AN24H. Further support was provided by AFOSR grant FA9550-10-1-0054, as well as NSF Grant IOS-1120305.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A Neuromechanical Simulation of Insect Walking and Transition to Turning of the Cockroach Blaberus discoidalis. Biological Cybernetics (2013)

    Google Scholar 

  2. Ritzmann, R.E., Quinn, R.D., Watson, J.T., Zill, S.N.: Insect walking and biorobotics: A relationship with mutual benefits. Bioscience 50(1), 23–33 (2000)

    Article  Google Scholar 

  3. Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics 107(4), 397–419 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cleal, K.S., Prete, F.R.: The Predatory Strike of Free Ranging Praying Mantises, Sphodromantis lineola (Burmeister). II: Strikes in the Horizontal Plane. Brain Behavior and Evolution (48), 191–204 (1996)

    Google Scholar 

  5. Knops, S.A., Tóth, T.I., Guschlbauer, C., Gruhn, M., Daun-Gruhn, S.: A neuro-mechanical model for the neural basis of curve walking in the stick insect. Journal of Neurophysiology, 679–691 (November 2012)

    Google Scholar 

  6. Daun-Gruhn, S., Tóth, T.I.: An inter-segmental network model and its use in elucidating gait-switches in the stick insect. Journal of Computational Neuroscience (December 2010)

    Google Scholar 

  7. Prete, F.R., Hurd, L.E., Branstrator, D., Johnson, A.: Responses to computer-generated visual stimuli by the male praying mantis, Sphodromantis lineola (Burmeister). Animal Behaviour 63(3), 503–510 (2002)

    Article  Google Scholar 

  8. Grimaldi, D., Engel, M.S.: Evolution of the Insects. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  9. Rossel, S.: Foveal Fixation and Tracking in the Praying Mantis. Journal of Comparative Physiology A Neuroethology Sensory Neural And Behavioral Physiology 139, 307–331 (1980)

    Article  Google Scholar 

  10. Nye, S.W., Ritzmann, R.E.: Motion analysis of leg joints associated with escape turns of the cockroach, Periplaneta americana. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 171(2), 183–194 (1992)

    Google Scholar 

  11. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. Journal of Neuroscience Methods 187(2), 280–288 (2010)

    Article  Google Scholar 

  12. Carbonell, C.S.: The Thoracic Muscles of the Cockroach Periplaneta americana (L.), vol. 107. Smithsonian Institution, Washington, D.C (1947)

    Google Scholar 

  13. Pearson, K.G., Iles, J.F.: Innervation of coxal depressor muscles in the cockroach, Periplaneta americana. The Journal of Experimental Biology 54(1), 215–232 (1971)

    Google Scholar 

  14. Watson, J.T., Ritzmann, R.E.: Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running. Journal of comparative physiology. A, Sensory, Neural, and Behavioral Physiology 182(1), 23–33 (1998)

    Article  Google Scholar 

  15. Büschges, A., Gruhn, M.: Mechanosensory Feedback in Walking: From Joint Control to Locomotor Patterns. Advances In Insect Physiology 34(07), 193–230 (2007)

    Article  Google Scholar 

  16. Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Structure & Development 33(3), 273–286 (2004)

    Article  Google Scholar 

  17. Dorf, R.C., Bishop, R.H.: Modern Control Systems. Pearson Education, Inc., Upper Saddle River (2008)

    Google Scholar 

  18. Field, L.H., Matheson, T.: Chordotonal Organs of Insects. Advances In Insect Physiology 27, 1–230 (1998)

    Article  Google Scholar 

  19. Zakotnik, J., Matheson, T., Dürr, V.: Co-contraction and passive forces facilitate load compensation of aimed limb movements. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 26(19), 4995–5007 (2006)

    Article  Google Scholar 

  20. Bender, J.A., Simpson, E.M., Ritzmann, R.E.: Computer-assisted 3D kinematic analysis of all leg joints in walking insects. PloS one 5(10) (2010)

    Google Scholar 

  21. Nelson, G.M., Quinn, R.D.: Posture control of a cockroach-like robot. IEEE Control Systems 19(2), 9–14 (1999)

    Article  MATH  Google Scholar 

  22. Yamawaki, Y., Uno, K., Ikeda, R., Toh, Y.: Coordinated movements of the head and body during orienting behaviour in the praying mantis Tenodera aridifolia. Journal of Insect Physiology 57(7), 1010–1016 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Szczecinski, N.S., Martin, J.P., Ritzmann, R.E., Quinn, R.D. (2014). Neuromechanical Mantis Model Replicates Animal Postures via Biological Neural Models. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics