Skip to main content

The Influence of Behavioral Complexity on Robot Perception

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

Abstract

Since robots’ capabilities increase, they will soon be present in our daily lives and will be required to interact with humans in a natural way. Furthermore, robots will need to be removed from controlled environments and tested in public places where untrained people will be able to freely interact with them. Such needs raise a number of issues: what kind of behaviors are considered important in promoting interaction and how these behaviors affect people’s perception regarding the robot in terms of anthropomorphism, likeability, animacy and perceived intelligence. In this paper, we propose a motivational and emotional system that drives the robot’s behavior and test it against six interaction scenarios of varying complexity. In addition, we evaluate our system in two different environments: a controlled (laboratory) environment and a public space. Results suggest that the perception of the robot significantly changes depending on the complexity of the interaction but does not change depending on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sung, J., Christensen, H.I., Grinter, R.E.: Robots in the wild: understanding long-term use. In: 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 45–52. IEEE (2009)

    Google Scholar 

  2. Fernaeus, Y., Håkansson, M., Jacobsson, M., Ljungblad, S.: How do you play with a robotic toy animal?: a long-term study of pleo. In: Proceedings of the 9th International Conference on Interaction Design and Children, pp. 39–48. ACM (2010)

    Google Scholar 

  3. François, D., Powell, S., Dautenhahn, K.: A long-term study of children with autism playing with a robotic pet: Taking inspirations from non-directive play therapy to encourage children’s proactivity and initiative-taking. Interaction Studies 10(3), 324–373 (2009)

    Article  Google Scholar 

  4. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Haehnel, D., Rosenberg, C., Roy, N., et al.: Probabilistic algorithms and the interactive museum tour-guide robot minerva. The International Journal of Robotics Research 19(11), 972–999 (2000)

    Article  Google Scholar 

  5. Nourbakhsh, I., Kunz, C., Willeke, T.: The mobot museum robot installations: A five year experiment. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2003, vol. 4, pp. 3636–3641. IEEE (2003)

    Google Scholar 

  6. Kanda, T., Hirano, T., Eaton, D., Ishiguro, H.: Interactive robots as social partners and peer tutors for children: A field trial. Human-computer interaction 19(1), 61–84 (2004)

    Article  Google Scholar 

  7. Breazeal, C.L.: Designing sociable robots. MIT Press (2004)

    Google Scholar 

  8. Kanda, T., Shiomi, M., Miyashita, Z., Ishiguro, H., Hagita, N.: A communication robot in a shopping mall. IEEE Transactions on Robotics 26(5), 897–913 (2010)

    Article  Google Scholar 

  9. Satake, S., Kanda, T., Glas, D.F., Imai, M., Ishiguro, H., Hagita, N.: How to approach humans?-strategies for social robots to initiate interaction. In: 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 109–116. IEEE (2009)

    Google Scholar 

  10. Wada, K., Shibata, T.: Living with seal robots in a care house-evaluations of social and physiological influences. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4940–4945. IEEE (2006)

    Google Scholar 

  11. Sabanovic, S., Michalowski, M.P., Simmons, R.: Robots in the wild: Observing human-robot social interaction outside the lab. In: 2006. 9th IEEE International Workshop on Advanced Motion Control, pp. 596–601. IEEE (2006)

    Google Scholar 

  12. Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics 1(1), 71–81 (2009)

    Article  Google Scholar 

  13. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The icub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 50–56. ACM (2008)

    Google Scholar 

  14. Verschure, P.F.: Distributed adaptive control: A theory of the mind, brain, body nexus. Biologically Inspired Cognitive Architectures (2012)

    Google Scholar 

  15. Vouloutsi, V., Lallée, S., Verschure, P.F.M.J.: Modulating behaviors using allostatic control. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 287–298. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Geiger, G., Alber, N., Jordà, S., Alonso, M.: The reactable: A collaborative musical instrument for playing and understanding music. Her&Mus. Heritage & Museography (4), 36–43 (2010)

    Google Scholar 

  17. Breazeal, C.: Toward sociable robots. Robotics and Autonomous Systems 42(3), 167–175 (2003)

    Article  MATH  Google Scholar 

  18. Verschure, P.F., Kröse, B.J., Pfeifer, R.: Distributed adaptive control: The self-organization of structured behavior. Robotics and Autonomous Systems 9(3), 181–196 (1992)

    Article  Google Scholar 

  19. Cannon, W.B.: The wisdom of the body. The American Journal of the Medical Sciences 184(6), 864 (1932)

    Article  Google Scholar 

  20. Seward, J.P.: Drive, incentive, and reinforcement. Psychological Review 63(3), 195 (1956)

    Article  Google Scholar 

  21. Sanchez-Fibla, M., Bernardet, U., Wasserman, E., Pelc, T., Mintz, M., Jackson, J.C., Lansink, C., Pennartz, C., Verschure, P.F.: Allostatic control for robot behavior regulation: a comparative rodent-robot study. Advances in Complex Systems 13(03), 377–403 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. McFarland, D.: Experimental investigation of motivational state. Motivational Control Systems Analysis, 251–282 (1974)

    Google Scholar 

  23. Maslow, A.H.: A theory of human motivation. Published in (1943)

    Google Scholar 

  24. Eng, K., Klein, D., Babler, A., Bernardet, U., Blanchard, M., Costa, M., Delbrück, T., Douglas, R.J., Hepp, K., Manzolli, J., et al.: Design for a brain revisited: the neuromorphic design and functionality of the interactive space ‘Ada’. Reviews in the Neurosciences 14(1-2), 145–180 (2003)

    Article  Google Scholar 

  25. Arbib, M.A., Fellous, J.M.: Emotions: from brain to robot. Trends in Cognitive Sciences 8(12), 554–561 (2004)

    Article  Google Scholar 

  26. Lallée, S., Vouloutsi, V., Wierenga, S., Pattacini, U., Verschure, P.: EFAA: a companion emerges from integrating a layered cognitive architecture. In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, pp. 105–105. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vouloutsi, V., Grechuta, K., Lallée, S., Verschure, P.F.M.J. (2014). The Influence of Behavioral Complexity on Robot Perception. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics