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Abstract. Disjoint Access Parallelism (DAP) stipulates that operations
involving disjoint sets of memory words must be able to progress indepen-
dently, without interfering with each other. In this work we argue towards
revising the two decade old wisdom saying that DAP is a binary condi-
tion that splits concurrent programs into scalable and non-scalable. We
first present situations where DAP algorithms scale poorly, thus showing
that not even algorithms that achieve this property provide scalability
under all circumstances. Next, we show that algorithms which violate
DAP can sometimes achieve the same scalability and performance as
their DAP counterparts. We continue to show how by violating DAP
and without sacrificing scalability we are able to circumvent three the-
oretical results showing that DAP is incompatible with other desirable
properties of concurrent programs. Finally we introduce a new property
called generalized disjoint-access parallelism (GDAP) which estimates
how much of an algorithm is DAP. Algorithms having a large DAP part
scale similar to DAP algorithms while not being subject to the same
impossibility results.

1 Introduction

As multicores have become the norm, writing concurrent programs that are
correct and efficient has become more important than ever. In this context,
efficiency is no longer just a matter of making a program fast on a specific
number of processors, but also ensuring that when the number of processors is
increased, the performance of the program also increases proportionally.

In order to simplify the task of algorithm designers, several attempts to
characterize scalable programs have been made. Ideally, these properties would
be used in the design phase, when directly measuring scalability is impossible,
and still guarantee scalable programs.

One such property is Disjoint Access Parallelism (DAP) [15]. Introduced by
Israeli and Rappoport, it has been acclaimed to be both necessary and sufficient
for ensuring the scalability of concurrent algorithms. In a nutshell, this property
stipulates that operations accessing disjoint sets of memory words must be able
to progress independently, without interfering with each other.

Unfortunately, it has been shown to be impossible to achieve DAP along
with other desirable properties of concurrent algorithms. Ellen et al. [7] showed
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for instance that it is impossible to build a disjoint-access parallel universal
construction that is wait-free, even when considering a very weak definition of
disjoint-access parallelism. To illustrate further, Attiya et al. [4] proved that
it is impossible to build a disjoint-access parallel transactional memory having
read-only transactions that are invisible and always terminate successfully, while
Guerraoui and Kapalka [9] showed that it is impossible to design a transactional
memory that is both disjoint-access parallel and obstruction-free.

Conventional wisdom seems to consider that DAP programs scale under any
circumstances while violating this property is catastrophic for scalability. In this
work we contradict the two decade old assumption that DAP is necessary and
sufficient for obtaining scalable concurrent programs. We first show situations
where disjoint-access parallel programs scale poorly, mainly due to the high syn-
chronization cost of specific hardware. We then show how by modifying DAP
algorithms in order to violate this property we still obtain good scalability. Sur-
prisingly perhaps, in some cases we find the non-DAP algorithm to outperform
a similar DAP one. Although unintuitive, the fact that an algorithm that is not
DAP and performs slightly more work can scale better is most likely due to
decreasing contention on shared data in a manner similar to flat combining [11].

We use two data structures to evaluate the impact of violating DAP, one
lock-based and one lock-free. The lock-based data structure is a closed addressing
hashtable that uses lock striping to prevent concurrent threads from accessing
the same bucket of the hashtable. The lock-free one is the multi-word compare-
and-swap implementation of Harris et al. [10]. In order to observe the effects
of losing DAP under several scenarios, we conduct our measurements on two
distinct hardware platforms, one being a multi-socket Opteron while the other
is a single-socket Niagara.

Using our new findings we revisit three theoretical proofs showing that
disjoint-access parallelism is incompatible with other desirable properties of con-
current programs, such as stronger liveness. Then, by circumventing the proofs
we show that violating DAP does not hamper scalability or performance, thus
making it possible to achieve the other desirable properties without sacrificing
scalability.

So far, disjoint-access parallelism has been thought of as a binary property,
and although in some cases violating it has little to no effect, this is by no
means a general principle. To quantify how close the scalability of a non-DAP
algorithm is to that of a DAP one, we introduce a new notion called Generalized
Disjoint-Access Parallelism (GDAP). In short, GDAP quantifies how much of an
operation is DAP.

We experiment with violating the DAP property in two distinct ways. First,
by adding a global shared counter we allow restricted communication among
processes, for instance allowing one process to observe the presence of another.
Then, we allow processes to communicate using a shared queue that permits
processes to exchange any type of message. As counter increments feature a lower
latency compared to queue operations, the non-DAP part is higher in the latter
case, having a more pronounced impact on scalability. Similarly, the latency of
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hashtable operations is lower than that of the multi-word compare-and-swap,
leading to a smaller non-DAP part for the latter. When most of the operation is
DAP, even though not all of it, i.e. there is a small non-DAP part, the difference
in scalability compared to operations that are fully DAP is negligible and in some
cases the GDAP algorithm even achieves better performance and scalability.
When a large part of the operation is not DAP, scalability is indeed severely
hampered.

The rest of the paper is organized as follows. Section 2 reviews disjoint-access
parallelism in a standard model of shared memory. Section 3 describes the bench-
marks we use to show that DAP is neither sufficient (Sect. 4) nor necessary
(Sect. 5) for ensuring scalability. In Sect. 6 we review three previous impossibility
results relying on DAP and we show that violating this property, under similar
scenarios to those in the proofs, has little impact on scalability. We introduce
our new notion of generalized disjoint-access parallelism in Sect. 7 and review
related work in Sect. 8.

2 Disjoint Access Parallelism

We consider a standard model of a shared memory system [5]. Under this
model, we first recall the notion of disjoint-access parallelism of Israeli and Rap-
poport [15].

A finite set of asynchronous processes p1, . . . , pn are assumed to apply prim-
itives to a set of base objects O, located in the shared memory. A primitive that
does not change the state of a base object is called a trivial primitive. As we wish
to reason about the practical performance of disjoint-access parallel programs,
we consider base objects to be memory locations supporting operations such as
read, write, compare-and-swap, and fetch-and-increment.

A concurrent object is a data structure, shared among several processes,
implemented using algorithms that apply a set of primitives to underlying base
objects, and providing to its user a set of higher-level operations. An imple-
mentation of concurrent object A from a set of base objects I ⊂ O is a set of
algorithms, one for each operation of object A. The clients of object A cannot
distinguish between A and its implementation.

Two operations affecting distinct concurrent objects are said to be disjoint-
access. A transaction is then defined as a special type of operation that invokes
operations of more than one concurrent object. Two transactions are said to be
disjoint-access if they access disjoint sets of concurrent objects.

Disjoint-Access Parallelism is a condition on concurrent algorithms stating
that any two operations or transactions that access disjoint sets of concurrent
objects must not apply primitives to the same base object, but must be able
to proceed independently, without interfering with each other. This technique
ensures that no hot-spots are created by the implementation and is claimed to
ensure scalability by reducing the number of cache misses.

To illustrate, consider a Software Transactional Memory that uses the under-
lying primitives of the shared memory (read, write, C&S, etc.) to provide the
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user with read/write registers that can then be accessed through atomic trans-
actions. The registers provided by the STM are then the concurrent objects. In
this context, if pi and p′

i are two processes that execute concurrent transactions
Tj and T ′

j , DAP requires that if transactions Tj and T ′
j access disjoint sets of

registers, then they must not access the same base object, i.e. the same under-
lying memory location. This implies that the time required to execute each of
the two transactions would be the same, had they been executing in isolation.

An alternative definition of disjoint-access parallelism allows operations or
transactions accessing disjoint sets of concurrent objects to apply trivial prim-
itives to the same base object. Disjoint-access parallelism is only violated if at
least one of the primitives is non-trivial. We believe this definition to be more
useful in practice as hardware can typically execute read operations in parallel,
while writes are commonly ordered among themselves and with respect to the
reads. When arguing that DAP is not a good measure for scalability in practice,
we use the latter definition.

3 Benchmarks

We use two different hardware platforms and two separate applications in order
to obtain an ample image of the difference DAP makes in the scalability of
concurrent programs.

The first platform is a 48-core AMD Opteron equipped with four AMD
Opteron 6172 multi-chip modules that contain two 6-core dies each. We fur-
ther refer to it as the Opteron. The L1 contains a 64 KiB instruction cache as
well as a 64 KiB data cache, while the size of the L2 cache is 512 KiB. The L3
cache is shared per die and has a total size of 12 MiB. The cores are running at
2.1 GHz and have access to 128 GiB of main memory.

Our other test platform is a Sun Niagara 2, equipped with a single-die SUN
UltraSPARC T2 processor. We further refer to it as the Niagara. Based on the
chip multi-threading architecture, this processor contains 8 cores, each able to
run a total of 8 hardware threads, totaling 64 threads. The L1 cache is shared
among the 8 threads of every core and has a 16 KiB instruction cache and 8 KiB
data cache. The last level cache (LLC) is shared among all the cores and has a
size of 4 MiB. The cores are running at 1.2 GHz and have access to 32 GiB of
main memory.

Each data point in our graphs was obtained by averaging three separate runs.
For each run we warm up the JVM for 5 s before measuring the throughput
for 10 s, obtaining a variation small enough to be negligible. We continue to
describe the two applications we use to assess the degree at which disjoint-access
parallelism influences scalability in practice.

3.1 Lock-Based Hashtable

Our lock-based implementation is based on the striped hashtable of Herlihy and
Shavit [13], which in turn is based on the sequential closed-addressing hashtable.
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Hash conflicts are resolved by assigning elements that map to the same hash
value into buckets. Each bucket is protected by a distinct lock and can hold any
number of elements by storing them in a linked list.

Although a set implemented using a hashtable cannot be regarded as being
DAP due to hash collisions, when considering the hashtable data structure, oper-
ations involving the same bucket are no longer logically independent. This allows
operations affecting the same bucket to synchronize using the same lock while
still satisfying DAP. Operations affecting elements that map to different buckets
need to acquire different locks and can proceed independently. The hashtable is
the data structure of choice for illustrating DAP in the reference book of Herlihy
and Shavit [13].

We made two independent modifications to this data structure in order to
violate disjoint-access parallelism. We first added a global shared counter that
keeps track of the total number of elements in the hashtable. This counter is
incremented by every insert and decremented by every remove operation of the
hashtable using fetch-and-increment and respectively fetch-and-decrement. The
hashtable size operation is present in most frameworks for sequential program-
ming, such as that of the JDK. Although approximating the current size of the
hashtable can be done by using weak counters, a strong counter is needed in
order to provide a linearizable size operation. We thus explore the compromise
of losing disjoint-access parallelism in order to obtain an atomic size operation.

The second modification consisted in adding a concurrent queue, shared
among all the processes, and making each update to the hashtable also push
or pop an element from this queue. While the global counter consists of the
minimum violation of DAP, the higher latency of the queue allows us to observe
the effects of having a larger part of the operations violate DAP.

3.2 Multi-word Compare-and-Swap

The multi-word compare-and-swap represents a Java implementation of the algo-
rithm presented by Harris et al. [10]. The algorithm first builds a double-compare
single-swap (DCSS) operation out of the compare-and-swap available in hard-
ware and then builds an n-word compare-and-swap operation (NCAS) on top
of that. Both the DCSS and NCAS algorithms are based on descriptors, mak-
ing their design non-blocking. Using this mechanism, an operation makes its
parameters available so that other processes can provide help in case the initial
operation is delayed.

This algorithm is disjoint-access parallel since NCAS operations that affect
disjoint sets of memory locations are not required to synchronize among them-
selves and can proceed in parallel. We again made two independent modifications
in order to violate DAP. We first added a global shared counter for keeping track
of the number of NCAS operations executed. Although finding this number could
have been done by using local counters, we chose this solution in order to obtain
a slight violation of disjoint-access parallelism whose impact on scalability we
can measure. This solution also allows finding the precise number of NCAS oper-
ations executed before the current point in time. The second modification was



46 R. Guerraoui and M. Letia

DAP non−DAP

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

2.
5

S
pe

ed
up

Number of threads

(a) Hashtable

0 10 20 30 40

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

S
pe

ed
up

Number of threads

(b) NCAS

Fig. 1. Speedup obtained when executing 20 % update operations on a hashtable with
1024 elements and buckets of length 4 (a) and NCAS operations of length 8 in a system
with 1000 locations (b) on the Opteron.

to make every NCAS operation also perform a push or pop from a concurrent
queue, shared among all the processes. Due to the higher latencies incurred by
the queue, this modification allows us to test scenarios where operations violate
DAP in a larger degree.

4 DAP Does Not Imply Scalability

In this section we contradict the common misconception that disjoint-access
parallel algorithms necessarily scale. To this aim, we run both the lock-based
hashtable and the NCAS algorithms on the Opteron. On this machine the
disjoint-access parallel implementations of both algorithms scale poorly. For the
sake of comparison, we also plot on the same graphs the versions of these algo-
rithms where DAP is violated by adding a global shared counter.

In Fig. 1a we show the scalability of the original (DAP) version of our lock-
based hashtable. To put it into perspective, we compare to a version where we
break disjoint-access parallelism by having a global counter that stores the size
of the data structure. Our experiments use buckets of length 4 and 20 % update
operations. The DAP version of the hashtable achieves a speedup of only 2.2X
on 48 cores compared to the single core performance. The resulting scalability
is far from ideal and cannot justify aiming for disjoint-access parallelism when
designing a new concurrent algorithm.

In Fig. 1b we plot the speedup obtained when running our implementation of
the multi-word compare-and-swap on the Opteron. In this experiment each of the
NCAS operations attempts to change the value of 8 memory locations, while the
system contains 1000 locations in total. In the case of this algorithm, the DAP
version achieves a speedup of only 3.5X on 48 cores. To put it into perspective,
we also plot the non-DAP version of the NCAS where each operation incre-
ments a global shared counter. In this experiment the two algorithms perform
almost identically and for some thread counts the non-DAP version performs
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Fig. 2. Speedup obtained when executing 20 % update operations on a hashtable with
1024 elements and buckets of length 4 (a) and NCAS operations of length 8 in a system
with 1000 locations (b) on the Niagara.

slightly better. This effect, of having an algorithm that performs strictly more
work perform better, is probably caused by decreasing contention on the NCAS
locations by using the extra delay provided by the counter. In effect, violating
disjoint-access parallelism under this scenario does not bring any performance
penalty.

5 Scalability Does Not Imply DAP

In this section we contradict the common misconception that disjoint-access
parallelism is a requirement for obtaining scalable concurrent programs. We
present experiments using both the lock-based hashtable and the multiword
compare-and-swap showing that, for both applications, the non-DAP versions
of these algorithms are able to scale. There experiments were conducted on the
Niagara machine.

In Fig. 2a we plot the speedup obtained when running the hashtable bench-
mark with 20 % update operations on a table with 1024 elements and buckets
of length 4. Both the DAP and non-DAP version using a counter scale very
well, measuring a speedup of 32X on 64 hardware threads. Both versions scale
identically to the point that it is hard to distinguish between the two. The non-
DAP version using an additional queue scales less but is still able to reach a
25X speedup on 64 hardware threads. Therefore the small violation of DAP
obtained when using an additional counter does not hamper scalability at all,
while the larger non-DAP part represented by the queue operations, still allows
the algorithm to achieve a 25X speedup.

Figure 2b shows the speedup obtained when executing NCAS operations on
our Niagara machine. In these tests, each thread picks 8 locations at random,
reads their values using the read operation of the algorithm, and attempts to
swap them to a random set of new values. We use a total of 1000 locations for
this experiment.
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Both the DAP and the non-DAP version using a counter obtain a 40X
speedup and, as in the case of the hashtable, their performance is indistinguish-
able, both versions scaling equally well. The non-DAP version using a queue
scales significantly less but is still able to reach a 10X speedup on 64 hard-
ware threads. Compared to the hashtable augmented with the queue, this ver-
sion of the NCAS scales less due to the fact that all the operations use the
queue, whereas in the case of the hashtable, only the updates (20 %) were using
the queue. Therefore when running our benchmarks on the Niagara machine,
disjoint-access-parallelism does not bring any advantage compared to a version
of the same algorithm that slightly violates this property by introducing a shared
counter. When operations have a larger non-DAP part, such as in the case of
adding a shared queue, both the hashtable and the NCAS are able to scale,
although not as much as their DAP counterparts.

6 Revisiting Impossibilities

In this section we dissect three published theoretical results that we believe are
misleading [4,7,9]. They seem to indicate that we need to sacrifice liveness in
order to have scalability: in fact, we must only sacrifice liveness when aiming
for disjoint-access parallelism. We put these results to the test by evaluating
solutions that circumvent these impossibilities and we show that by weakening
DAP, scalability is not affected.

6.1 DAP Vs Obstruction-Freedom

The first result [9] proves that it is impossible to design a transactional mem-
ory providing transactions that are at the same time disjoint-access parallel and
obstruction-free. The latter condition requires that from any point in the exe-
cution of the system, if a transaction executes alone for a long enough period of
time, it eventually commits. This allows a transaction having a higher priority
to be able to preempt or abort lower priority ones at any time and then be sure
to commit.

The authors claim that disjoint-access parallelism prevents artificial “hot
spots” that may provoke “useless” cache invalidations, thus decreasing perfor-
mance. We provide experimental measurements showing that even in the case
of programs that violate disjoint-access parallelism and feature such artificial
“hot spots”, the number of cache invalidations does not increase significantly:
performance does not suffer.

Circumventing the critical scenario. The authors present the following scenario
for showcasing their impossibility result in a system consisting of four transac-
tional variables, x, y, w and z. Transaction T1 starts executing, reads value 0 for
both w and z and then attempts to write value 1 into both x and y. Then T1

is delayed just before it commits, and T2 starts executing, reads value 0 from x,
writes 1 to w and commits. We observe that T1 and T2 cannot both commit since
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Fig. 3. Throughput obtained when executing NCAS operations of different lengths in
a system with 10000 locations on the Niagara.

this would violate serializability. Therefore the latter must write a base object to
abort the former, which must then be read by a new transaction T3 that reads
y and updates z. Thus, even if T2 and T3 access disjoint sets of transactional
objects, the latter must read a base object showing that T1 has been aborted,
and that object must in turn have been written by T2.

One possible way to circumvent the impossibility is to add a counter CT to
every transaction T in the system. In the example above, consider the counter
CT1 associated with transaction T1. The counter initially has the value 0 and
transaction T2, before committing, aborts T1 by incrementing its counter to 1.
When T3 executes, it reads y and also counter CT1, finding that T1 was aborted.

We estimate a loose upper bound of the performance impact of such a mod-
ification by adding a global shared counter to our NCAS system instead of one
for each operation. Furthermore, all our NCAS operations increment this global
counter instead of only those participating in scenarios similar to those described
by the authors. Note that incrementing is at least as expensive as reading the
counter value. These two differences have the effect of increasing contention at
least as much, if not more than required to contradict the proof.

Performance. In Fig. 3 we show the throughput of running our NCAS imple-
mentation on a system with 10000 locations. The difference between the DAP
and the non-DAP version is that the latter increments a global shared counter
on every operation. We vary the length of the NCAS operation between 2 and
64. The results show that when using operations of length at least 8, the two
versions of the algorithm perform identically. As we observe shorter lengths of
the operations, the difference is small for a length of 4 and significant for length
2 but only when running 64 threads. The decrease in performance for the latter
case is due to the high contention on the counter caused by the low time required
for executing the NCAS. When the NCAS operation needs to write 4 or more
locations, contention on the counter decreases and it is no longer a performance
bottleneck.
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6.2 DAP Vs Invisible Reads and Eventual Commit

Attiya et al. [4] showed that it is impossible to build a transactional memory
that is disjoint-access parallel and has read-only transactions that are invisible
and always eventually commit. They again built on the assumption that disjoint-
access parallelism is necessary for achieving scalability. We show however that
violating disjoint-access parallelism in a manner that would circumvent their
proof has little or no effect on the scalability of the system.

A transactional memory is said to have invisible read-only transactions if
such transactions do not apply any updates to base objects; otherwise read-only
transactions are said to be visible. Invisible read-only transactions are desirable
since this reduces the number of updates to base objects in read-dominated
workloads, thus decreasing the number of cache invalidations.

Circumventing the critical scenario. The authors start by defining a flippable
execution, consisting of a single long read-only transaction with a complete
update transaction interleaved between every two steps of the read-only trans-
action, such that flipping the order of two consecutive updates is indistinguish-
able from the initial execution to all the processes. Then they show that in
such a flippable execution, the read-only transaction cannot commit. Finally,
the authors prove that every disjoint-access parallel transactional memory with
invisible read-only transactions has such a flippable execution and the conclu-
sion follows. The crux of the proof is building an execution where the read-only
transaction misses one of two update transactions. Having all transactions incre-
ment a shared counter upon committing would enable the read-only transaction
to find both update transactions and a flippable execution would no longer be
possible.

Performance. In Fig. 4 we show both the throughput and the cache miss rate
obtained when running the NCAS operations on the Opteron. We use again
operations of length 8 and we vary the size of system. The size of the L1 data
cache is 64 KB, hence systems of 1000 locations fit into the L1. The L2 cache is
512 KB, being able to accommodate a system containing 10000 locations. The
L3 cache has a total of 12 MB and is insufficient to accommodate the largest
system size.

One of the main arguments in favor of disjoint-access parallelism is that it
increases performance by reducing the number of cache misses in the system. Due
to this we perform more in-depth measurements of the cache behavior of the two
versions of the NCAS algorithm. We measure the LLC cache miss rate due to
its high penalties and because on the Opteron it proves to be a good measure
of inter-core communication. We use the perf tool [1], which we attach to our
benchmark after performing a 5 s warm-up. To prevent the virtual machine from
garbage collecting during our measurements, we use a large initial heap size that
is not expected to fill.

For small system sizes we see that both versions of the algorithm do not scale.
Due to high contention, operations have a high chance of conflicting, causing
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Fig. 4. Throughput and percentage of cache misses obtained when executing NCAS
operations of length 8 in a system of different sizes on the Opteron.

them to help each other. As the system size is increased, both algorithms increase
in performance but continue to scale poorly. The amount of cache misses is
largely the same, with the biggest difference being at 105 elements, where a
more significant difference in terms of the throughput is observed when reaching
48 cores.

6.3 DAP Vs Wait-Freedom

A universal construction [12] is a concurrent algorithm that takes as input a
sequential algorithm and then atomically applies it to a data structure. The
main difference between a transactional memory and a universal construction is
that the former can complete an operation by returning Abort, while the latter
does not return until it has successfully applied the operation. The universal
construction is then equivalent to a transactional memory that reattempts to
execute aborted transactions until it succeeds in committing them.

Ellen et al. [7] showed that a universal construction cannot be both disjoint-
access parallel and wait-free. Their proof relies on building an unordered linked
list with operations append and search. The former adds an element to the end
of the list by modifying its tail pointer, while the latter tries to find a specific
element by starting from the beginning of the list.

Circumventing the critical scenario. The proof proceeds by having one search
operation execute while other processes are continuously executing appends. If
the search is not close to the end of the list, it remains disjoint-access with respect
to concurrent append operations. However, if the rate at which new elements are
appended to the list is faster than the progress of the search operation, the
latter will never finish unless the element being searched for is found. It is then
sufficient for this element to be different than all the elements being added to
the list, and the conclusion follows.
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Fig. 5. Throughput obtained when executing different percentages of update opera-
tions on a hashtable with 1024 elements and buckets of length 1 on the Niagara.

One simple way of circumventing the assumptions in their proof is to allow
processes executing a search to read a base object that was written by a process
executing append, even though they access disjoint data items. This object could
then inform the search that a specific append has a higher timestamp and can
be safely be serialized after it.

Performance. In order to evaluate the effect of violating DAP in such a manner,
we modified our non-DAP version of the hashtable such that the search oper-
ations read the shared counter incremented by the insert and delete. In Fig. 5
we compare this new non-DAP version of the hashtable to the original DAP
version on the Niagara, while varying the update rate between 0 and 100 %.
The experiments show that for update rates of up to 20 %, the counter does not
affect performance at all. Then, when using 50 % updates, the effect is visible
for thread counts larger than 32, while with 100 % updates, the effect becomes
visible at 16 threads. As update rates of more than 20 % are less common in
practice, we conclude that for most workloads adding the extra counter does not
affect throughput and scalability.

7 DAP as a Non-binary Property

So far disjoint-access parallelism has been thought of as a binary property: DAP
programs scale, non-DAP programs do not scale. However, in this work we have
shown that disjoint-access parallelism is neither necessary (Sect. 5) nor sufficient
(Sect. 4) for obtaining scalable concurrent programs. To this end we have shown
that violating DAP by itself does not make an impact on scalability. Programs
that are “almost DAP” scale as well as their fully DAP counterparts.

In order to quantify how close an algorithm is to being disjoint-access parallel,
we extend the notion of DAP to define a property called generalized disjoint-
access parallelism (GDAP). This property encompasses the classical notion of
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disjoint-access parallelism but also algorithms that violate it to a certain degree.
GDAP is useful for characterizing situations where algorithm designers choose to
give up DAP in order to obtain some other desirable properties by capturing how
far the resulting algorithm is from its fully DAP counterpart. For instance, many
Software Transactional Memories (STMs) use a shared counter [6,17] in order
to achieve faster revalidation or contention management, this way increasing
performance.

Intuitively, if an operation OP applies primitives to L base objects, and 1/k
of these objects are part of a hotspot while the rest is DAP, the only theoretical
bound for scalability is when k instances of OP are being executed concurrently.
Hence the larger the k factor, the smaller the impact on scalability. In fact,
our experiments show that algorithms featuring a sufficiently large k factor still
provide the same scalability as fully DAP algorithms and in some cases can
outperform them.

Definition 1 (GDAP of order k). Let I be the set of implementations of
concurrent objects A. If for any two operations OPi and OPj such that:

– Ii is an implementation of object Ai ∈ A and Ij is an implementation of
object Aj ∈ A,

– Ai �= Aj,
– OPi is an operation of implementation Ii ∈ I and OPj is an operation of

implementation Ij ∈ I,
– Ii applies primitives to base objects Oi and Ij applies primitives to base objects

Oj,
– ∃O′

i ⊂ Oi with (Oi \ O′
i) ∩ Oj = ∅ and |O′

i| × k ≤ |Oi|
then I said to be GDAP of order k.

nD DAP

nD DAP

nD DAP

nD DAP

time

Fig. 6. Execution showing Generalized
Disjoint-Access Parallel operations.

Figure. 6 shows an execution of
four GDAP operations that are not
fully DAP. Every operation accesses
a common hotspot such that it has
a non-DAP part as well as a DAP
one. As the non-DAP part is short
(large k factor), the four operations
can still execute concurrently. This
represents the typical scenario result-
ing from adding a shared object to
a set of DAP operations in order to
obtain, for instance, a stronger liveness
property.

In Fig. 3 we observe that opera-
tions which are GDAP of a higher

order scale better than those of a lower order and can, in fact, perform identically
to their fully DAP counterparts. In both experiments we increase the length of
the NCAS operations while the non-DAP part remains constant. The result is
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Fig. 7. Throughput and percentage of cache misses obtained when executing 10 %
update operations on hashtables of different sizes and buckets of length 1 on the
Opteron.

that longer operations scale better. Switching from length 2 to length 4 provides
close to the same performance as the fully DAP version, while for length 8 and
greater, the two are practically indistinguishable.

Although in most cases the fully DAP variant of an algorithm scales slightly
better than a GDAP variant that is not fully DAP, in certain cases the latter can
in fact outperform the former. As shown in Fig. 7, the performance gain obtained
by adding an extra counter to our hashtable can be as high as 50% for certain
thread counts. In this scenario, the threads are executing 10% update operations
on a hashtable with buckets of length 1. We show results obtained using tables
of size varying from 1024 to 4096 elements. The graphs show that, although the
percentage of cache misses stays roughly the same between the DAP and GDAP
variants, on some workloads the latter achieves better throughput even though
it performs extra work.

8 Related Work

As concurrent algorithms become prevalent, knowing what properties to aim
for in their design is crucial. In this paper, we contradict classical wisdom by
showing that disjoint-access parallelism is neither necessary nor sufficient for
ensuring scalability. Instead, we propose a new property, generalized disjoint-
access parallelism that helps estimate how close a non-DAP algorithm is to
a DAP one. Using this property, algorithm designers can build algorithms that
scale similarly to DAP ones but are not subject to the same impossibility results.

The assumption that DAP is sufficient for scalability has been used both
when building algorithms that promise good scalability, and as an assumption in
proofs. Anderson and Moir [3] describe universal constructions that are expected
to scale well due to being disjoint-access parallel. Kuznetsov and Ravi [16] explore
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the lower bounds on the number of synchronization operations that a transac-
tional memory must perform in order to guarantee disjoint-access parallelism
and the progressiveness liveness condition.

Although DAP seems to be the most accepted theoretical condition for ensur-
ing scalability in practice, other works explore properties that are promising in
this direction. Whether or not they are either necessary or sufficient for obtaining
scalable concurrent programs remains uncertain.

Afek et al. [2] characterize an operation as having d-local step complexity if
the number of steps performed by the operation in a given execution interval
is bounded by a function of the number of primitives applied within distance d
in the conflict graph of the given interval. They define an algorithm as having
d-local contention if two operations access the same object only if their distance
in the conflict graph of their joint execution interval is at most d. Ellen et al. [8]
introduce the obstruction-free step complexity as the maximum number of steps
that an operation needs to perform if no other processes are taking steps.

Imbs and Raynal [14] introduce a property called help locality that restricts
which other operations can be helped by the current operation. They build upon
this property to design an atomic snapshot that scales well, under the assumption
that help locality is sufficient for ensuring scalability in practice. However, this
assumption has not yet been tested and, similar to disjoint-access parallelism,
may have less merit than it receives.

Roy et al. [18] show a tool that profiles concurrent programs giving informa-
tion about critical sections such as the average time threads spend waiting for
a lock and the amount of disjoint-access parallelism that can be exploited. Such
a tool can potentially be modified in order to provide the order of GDAP of a
concurrent program, helping algorithm designers understand if their scalability
issues can be solved by attempting a fully DAP solution.

This paper should be regarded as a step to better understanding scalabil-
ity. Theoretical conditions that ensure practical scalability are important but,
unfortunately, disjoint-access parallelism is not a silver bullet in this regard. As
further work, we plan to test other promising theoretical properties in hope to
find one that guarantees practical scalability.
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