Skip to main content

Raman Spectroscopy Using a Multiclass Extension of Fisher-Based Feature Selection Support Vector Machines (FFS-SVM) for Characterizing In-Vitro Apoptotic Cell Death Induced by Paclitaxel

  • Conference paper
  • First Online:
  • 1172 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8426))

Abstract

Raman microspectroscopy combined with advanced data mining methods are used to demonstrate proof-of-concept for the development of a non-invasive, real-time in vitro assay platform for the classification and characterization of anti-cancer agents. Breast cancer cells were investigated over a 48 h time course of treatment with Paclitaxel. Raman spectroscopic analysis is used with a multiclass One-versus-One Support Vector Machines classification algorithm to classify cell death over a 48 h period. The Fisher-based Feature Selection method provides discriminative features descriptive of the apoptotic process during time-course. Spectral datasets collected at each of the time-points during a separate 48 h 3-point time course study are used as the testing datasets. The features, or spectral peaks, output directly as wavenumbers are correlated to corresponding biochemical species for each time point yielding an analysis of the biochemical compositional changes. Conventional assay methods are employed to validate and confirm results of the Raman spectroscopic analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fenn, M.B., Xanthopoulos, P., Pyrgiotakis, G., Grobmyer, S.R., Pardalos, P.M., Hench, L.L.: Raman spectroscopy for clinical oncology. Adv. Opt. Technol. 2011, 1–20 (2011)

    Article  Google Scholar 

  2. Stone, N., Kendall, C.A.: Raman spectroscopy for early cancer detection, diagnosis and elucidation of disease-specific biochemical changes. In: Matousek, P., Morris, M.D. (eds.) Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, pp. 315–346. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Ellis, D.I., Cowcher, D.P., Ashton, L., O’Hagan, S., Goodacre, R.: Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138(14), 3871–3884 (2013)

    Article  Google Scholar 

  4. Bertotti, A., Trusolino, L.: From bench to bedside: does preclinical practice in translational oncology need some rebuilding? J. Natl Cancer Inst. 105(19), 1426–1427 (2013)

    Article  Google Scholar 

  5. Limame, R., Wouters, A., Pauwels, B., Fransen, E., Peeters, M., Lardon, F., de Wever, O., Pauwels, P.: Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS ONE 7(10), e46536 (2012)

    Article  Google Scholar 

  6. Antony, P.M.A., Trefois, C., Stojanovic, A., Baumuratov, A.S., Kozak, K.: Light microscopy applications in systems biology: opportunities and challenges. Cell Commun. Signal. 11(1), 1–19 (2013)

    Article  Google Scholar 

  7. Isherwood, B., Timpson, P., McGhee, E.J., Anderson, K.I., Canel, M., Serrels, A., Brunton, V.G., Carragher, N.O.: Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Pharmaceutics 3(2), 141–170 (2011)

    Article  Google Scholar 

  8. Michelini, E., Cevenini, L., Mezzanotte, L., Coppa, A., Roda, A.: Cell-based assays: fuelling drug discovery. Anal. Bioanal. Chem. 398(1), 227–238 (2010)

    Article  Google Scholar 

  9. Sumantran, V.N.: Cellular chemosensitivity assays: an overview. In: Cree, I.A. (ed.) Cancer Cell Culture, pp. 219–236. Humana Press, Totowa (2011)

    Chapter  Google Scholar 

  10. Mody, N., Tekade, R.K., Mehra, N.K., Chopdey, P., Jain, N.K.: Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech 15(2), 388–399 (2014)

    Article  Google Scholar 

  11. Zhang, Y., Chan, H.F., Leong, K.W.: Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65(1), 104–120 (2013)

    Article  Google Scholar 

  12. Venditto, V.J., Szoka Jr, F.C.: Cancer nanomedicines: so many papers and so few drugs! Adv. Drug Deliv. Rev. 65(1), 80–88 (2013)

    Article  Google Scholar 

  13. Fenn, M.B., Pappu, V.: Data mining for cancer biomarkers with Raman spectroscopy (chapter 8). In: Pardalos, P.M., Xanthopoulos, P., Zervakis, M. (eds.) Data Mining for Biomarker Discovery, pp. 143–168. Springer, New York (2012)

    Chapter  Google Scholar 

  14. Fermor, B.F., Masters, J.R., Wood, C.B., Miller, J., Apostolov, K., Habib, N.A.: Fatty acid composition of normal and malignant cells and cytotoxicity of stearic, oleic and sterculic acids in vitro. Eur. J. Cancer 28(6), 1143–1147 (1992)

    Article  Google Scholar 

  15. Troester, M.A., Hoadley, K.A., Sørlie, T., Herbert, B.S., Børresen-Dale, A.L., Lønning, P.E., Shay, J.W., Kaufmann, W.K., Perou, C.M.: Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res. 64(12), 4218–4226 (2004)

    Article  Google Scholar 

  16. Ponnusamy, S., Meyers-Needham, M., Senkal, C.E., Saddoughi, S.A., Sentelle, D., Selvam, S.P., Salas, A., Ogretmen, B.: Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol. 6(10), 1603–1624 (2010)

    Article  Google Scholar 

  17. Zoli, W., Ricotti, L., Barzanti, F., Dal Susino, M., Frassineti, G.L., Milri, C., Casadei Giunchi, D., Amadori, D.: Schedule-dependent interaction of doxorubicin, paclitaxel and gemcitabine in human breast cancer cell lines. Int. J. Cancer 80(3), 413–416 (1999)

    Article  Google Scholar 

  18. Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., Speed, T., Spellman, P.T., DeVries, S., Lapuk, A., Wang, N.J., Kuo, W.-L., Stilwell, J.L., Pinkel, D., Albertson, D.G., Waldman, F.M., McCormick, F., Dickson, R.B., Johnson, M.D., Lippman, M., Ethier, S., Gazdar, A., Gray, J.W.: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6), 515–527 (2006)

    Article  Google Scholar 

  19. Kenny, P.A., Lee, G.Y., Myers, C.A., Neve, R.M., Semeiks, J.R., Spellman, P.T., Lorenz, K., Lee, E.H., Barcellos-Hoff, M.H., Petersen, O.W., Gray, J.W., Bissell, M.J.: The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1(1), 84–96 (2007)

    Article  Google Scholar 

  20. Fuster, M.M., Esko, J.D.: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5(7), 526–542 (2005)

    Article  Google Scholar 

  21. Swinnen, J.V., Brusselmans, K., Verhoeven, G.: Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metabol. Care 9(4), 358–365 (2006)

    Article  Google Scholar 

  22. Hsu, P.P., Sabatini, D.M.: Cancer cell metabolism: Warburg and beyond. Cell 134(5), 703–707 (2008)

    Article  Google Scholar 

  23. Le Moyec, L., Tatoud, R., Eugene, M., Gauville, C., Primot, I., Charlemagne, D., Calvo, F.: Cell and membrane lipid analysis by proton magnetic resonance spectroscopy in five breast cancer cell lines. Br. J. Cancer 66(4), 623 (1992)

    Article  Google Scholar 

  24. Baritaki, S., Apostolakis, S., Kanellou, P., Dimanche-Boitrel, M.T., Spandidos, D.A., Bonavida, B.: Reversal of tumor resistance to apoptotic stimuli by alteration of membrane fluidity: therapeutic implications. Adv. Cancer Res. 98, 149–190 (2007)

    Article  Google Scholar 

  25. Li, X., Yuan, Y.J.: Lipidomic analysis of apoptotic hela cells induced by paclitaxel. OMICS: J Integr. Biol. 15(10), 655–664 (2011)

    Article  MathSciNet  Google Scholar 

  26. Meacham, W.D., Antoon, J.W., Burow, M.E., Struckhoff, A.P., Beckman, B.S.: Sphingolipids as determinants of apoptosis and chemoresistance in the MCF-7 cell model system. Exp. Biol. Med. 234(11), 1253–1263 (2009)

    Article  Google Scholar 

  27. Kaur, J., Sanyal, S.N.: Alterations in membrane fluidity and dynamics in experimental colon cancer and its chemoprevention by diclofenac. Mol. Cell. Biochem. 341(1–2), 99–108 (2010)

    Article  Google Scholar 

  28. Schlaepfer, I.R., Hitz, C.A., Gijón, M.A., Bergman, B.C., Eckel, R.H., Jacobsen, B.M.: Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel. Mol. Cell. Endocrinol. 363(1), 111–121 (2012)

    Article  Google Scholar 

  29. Oakman, C., Tenori, L., Biganzoli, L., Santarpia, L., Cappadona, S., Luchinat, C., Di Leo, A.: Uncovering the metabolomic fingerprint of breast cancer. Int. J. Biochem. Cell Biol. 43(7), 1010–1020 (2011)

    Article  Google Scholar 

  30. Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., Xiong, W., Li, G., Lu, J., Fodstad, O., Riker, A.I., Tan, M.: MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem. 285(28), 21496–21507 (2010)

    Article  Google Scholar 

  31. Martinkova, J., Gadher, S.J., Hajduch, M., Kovarova, H.: Challenges in cancer research and multifaceted approaches for cancer biomarker quest. FEBS Lett. 583(11), 1772–1784 (2009)

    Article  Google Scholar 

  32. Peter, M.E.: Programmed cell death: apoptosis meets necrosis. Nature 471(7388), 310–312 (2011)

    Article  Google Scholar 

  33. Fenn, M.B., Pappu, V., Georgeiv, P.G., Pardalos, P.M.: Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cell lines. J. Raman Spectrosc. 44(7), 939–948 (2013)

    Article  Google Scholar 

  34. Pyrgiotakis, G., Kundakcioglu, O.E., Finton, K., Pardalos, P.M., Powers, K., Moudgil, B.M.: Cell death discrimination with Raman spectroscopy and support vector machines. Ann. Biomed. Eng. 37(7), 1464–1473 (2009)

    Article  Google Scholar 

  35. Guarracino, M.R., Xanthopoulos, P., Pyrgiotakis, G., Tomaino, V., Moudgil, B.M., Pardalos, P.M.: Classification of cancer cell death with spectral dimensionality reduction and generalized eigenvalues. Artif. Intell. Med. 53(2), 119–125 (2011)

    Article  Google Scholar 

  36. Widjaja, E., Zheng, W., Huang, Z.: Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines. Int. J. Oncol. 32(3), 653–662 (2008)

    Google Scholar 

  37. Fenn, M.B., Pappu, V., Xanthopoulos, P., Pardalos, P.M.: Data mining and optimization applied to Raman spectroscopy for oncology applications. In: International Symposium on Mathematical and Computational Biology, 5–10 November 2011

    Google Scholar 

  38. Movasaghi, Z., Rehman, S., Rehman, I.U.: Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42(5), 493–541 (2007)

    Article  Google Scholar 

  39. De Gelder, J., De Guessem, K., Vandenabeele, L.M.: Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147 (2007)

    Article  Google Scholar 

  40. Zhao, J., Carrabba, M.M., Allen, F.S.: Automated fluorescence rejection using shifted excitation Raman difference spectroscopy. Appl. Spectrosc. 7, 834–845 (2002)

    Article  Google Scholar 

  41. Zhao, J., Lui, H., McLean, D.I., Zeng, H.: Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61(11), 1225–1232 (2007)

    Article  Google Scholar 

  42. Beier, B.D., Berger, A.J.: Method for automated background subtraction from Raman spectra containing known contaminants. Analyst 134(6), 1198–1202 (2009)

    Article  Google Scholar 

  43. Lieber, C.A., Mahadevan-Jansen, A.: Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 57(11), 1363–1367 (2003)

    Article  Google Scholar 

  44. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing, pp. 41–50. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  45. Cutzu, F.: Polychotomous classification with pairwise classifiers: a new voting principle. In: Windeatt, Terry, Roli, Fabio (eds.) MCS 2003. LNCS, vol. 2709, pp. 115–124. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  46. Frank, C.J., McCreery, R.L., Redd, D.C.: Raman spectroscopy of normal and diseased human breast tissues. Anal. Chem. 67(5), 777–783 (1995)

    Article  Google Scholar 

  47. Jordan, M.A., Leslie, W.: Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004)

    Article  Google Scholar 

  48. Wang, T.H., Wang, H.S., Soong, Y.K.: Paclitaxel-induced cell death. Cancer 88(11), 2619–2628 (2000)

    Article  Google Scholar 

  49. Blajeski, A.L., Kotte, T.J., Kauffmann, S.H.: A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp. Cell Res. 270(2), 277–288 (2001)

    Article  Google Scholar 

  50. Liu, Z., Brattain, M.G., Appert, H.: Differential display of reticulocalbin in the highly invasive cell line, MDA-MB-435, versus the poorly invasive cell line, MCF-7. Biochem. Biophys. Res. Commun. 231(2), 283–289 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to acknowledge the University of Florida Research Foundation and the UF Seed Opportunity Fund for providing funding for this work. The Authors would also like to thank the Particle Engineering Research Center and the Center for Applied Optimization at the University of Florida, Gainesville, Florida for allowing this work to be carried out in these laboratories respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fenn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fenn, M., Guarracino, M., Pi, J., Pardalos, P.M. (2014). Raman Spectroscopy Using a Multiclass Extension of Fisher-Based Feature Selection Support Vector Machines (FFS-SVM) for Characterizing In-Vitro Apoptotic Cell Death Induced by Paclitaxel. In: Pardalos, P., Resende, M., Vogiatzis, C., Walteros, J. (eds) Learning and Intelligent Optimization. LION 2014. Lecture Notes in Computer Science(), vol 8426. Springer, Cham. https://doi.org/10.1007/978-3-319-09584-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09584-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09583-7

  • Online ISBN: 978-3-319-09584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics