arxiv:1405.4356v2 [cs.DC] 19 Jun 2014

Lessons from the Congested Clique Applied to MapReduce

James W. Hegeman and Sriram V. Pemmaraju

Department of Computer Science
The University of lowa
lowa City, lowa 52242-1419, USA

Abstract. The main results of this paper are (I) a simulation algoritiviich, under quite general constraints,
transforms algorithms running on the Congested Cliqueaigorithms running in the MapReduce model, and (Il)
a distributedO(A)-coloring algorithm running on the Congested Clique whiels lan expected running time of
O(1) rounds, ifA > ©(log” n); andO(log log log n) rounds otherwise. Applying the simulation theorem to the
Congested Cliqué)(A)-coloring algorithm yields ar®(1)-round O(A)-coloring algorithm in the MapReduce
model.

Our simulation algorithm illustrates a natural correspamak between per-node bandwidth in the Congested Clique
model and memory per machine in the MapReduce model. In thg&bed Clique (and more generally, any net-
work in theCONGEST model), the major impediment to constructing fast algonitis theO (log n) restriction

on message sizes. Similarly, in the MapReduce model, théioeu restrictions on memory per machine and total
system memory have a dominant effect on algorithm desigehdémving a fairly general simulation algorithm, we
highlight the similarities and differences between thesel@ets.

1 Introduction

TheCONGEST model of distributed computation is a synchronous, mespagsing model in which the amount of
information that a node can transmit along an incident edgene round is restricted 0 (log) bits [15]. As the
name suggests, tli&N'GEST model focuses onongestioras an obstacle to distributed computation. Recently, a fair
amount of research activity has focused on the design aflaistd algorithms in th€ ONGEST model assuming
that the underlying communication network ilique [2/5[12/14]. Working with such &ongested Cliquenodel
completely removes from the picture obstacles that mightuzeto nodes having to acquire information from distant
nodes (since any two nodes are neighbors), thus allowing fegtis on the problem of congestion alone. Making this
setting intriguing is also the fact that no non-trivial laweunds for computation on a Congested Clique have been
proved. In fact, in a recent paper, Lenzenl[12] showed hovotmdd-balancing deterministically so as to route up to
n? messages (each of sigklog n)) in O(1) rounds in the Congested Clique setting, provided each rsiithe isource

of at mostn messages and the sink for at mashessages. Thus a large volume of information can be moveahdro
the network very quickly and any lower-bound approach in@eagested Clique setting will have to work around
Lenzen’s routing-protocol result. While Lotker et al. [18ntion overlay networks as a possible practical appéicati

of distributed computation on a Congested Clique, as of nesearch on this model is largely driven by a theoretical
interest in exploring the limits imposed by congestion.

MapReducé] is a tremendously popular parallel-programming frammewthat has become the tool of choice for
large-scale data analytics at many companies such as AmBaoabook, Google, Yahoo!, etc., as well as at many
universities. While the actual time-efficiency of a part&muMapReduce-like implementation will depend on many
low-level technical details, Karloff et al.][9] have atteteg to formalize key constraints of this framework to prapos
aMapReduce modahd an associated MapReduce complexity clAdR(C). Informally speaking, a problem belongs
to MRC ifit can be solved in the MapReduce framework using: (i) a banof machines that is substantially sublinear
in the input size, i.e.Q(n!'~¢) for constant > 0, (i) memory per machine that is substantially sublineahiminput
size, (iii) O(poly(logn)) number of map-shuffle-reduce rounds, and (iv) polynonifaétiocal computation at each
machine in each round. Specifically, a problem is said to b&fiRC’ if it can be solved inD(log’ n) map-shuffle-
reduce rounds, while maintaining the other constraintstimead above. Karloff et al. 9] show thatinimum spanning
tree (MST) is in MRCY (i.e., MST require€)(1) map-shuffle-reduce rounds) on non-sparse instanceswiogaip
on this, Lattanzi et al[[11] show that other problems suamagimal matchingwith which the distributed computing
community is very familiar) are also iMRC" (again, for non-sparse instances). We give a more-de@disdription
of the MapReduce model in Section]1.1.

*This work is supported in part by National Science Foundatiogrant CCF 1318166. E-mail:

[james—hegeman, sriram-pemmaraju] @uiowa.edu.

http://arxiv.org/abs/1405.4356v2

The volume of communication that occurs in a Shuffle step eauite substantial and provides a strong incentive
to design algorithms in the MapReduce framework that usg few map-shuffle-reduce steps. As motivation for
their approach (which they cdiltering) to designing MapReduce algorithms, Lattanzi etall [11htioe that past
attempts to “shoehorn message-passing style algorithim#hia framework” have led to inefficient algorithms. While
this may be true for distributed message-passing algosithmgeneral, we show in this paper that algorithms designed
in the Congested Clique model provide many lessons on hoves@d algorithms in the MapReduce model. We
illustrate this by first designing an expectéqi)-round algorithm for computing @(A)-coloring for a givem-node
graph with maximum degregd > log" n in the Congested Clique model. We then simulate this algoriin the
MapReduce model and obtain a corresponding algorithm teg & constant number of map-shuffle-reduce rounds
to compute arO(A)-coloring of the given graph. While both of these results reee, what we wish to emphasize
in this paper is thesimulationof Congested Clique algorithms in the MapReduce model. @aulation can also
be used to obtain efficient MapReduce-model algorithms foeoproblems such asruling sets[2] for which an
expected® (loglog n)-round algorithm on a Congested Clique was recently deeglop

1.1 Models

The Congested Cligue ModelThe Congested Clique is a variation on the more ger@aV GEST model. The
underlying communication network is a sizeclique, i.e., every pair of nodes can directly communicaith wach
other. Computation proceeds in synchronous rounds andcim reaind a node (i) receives all messages sent to it in
the previous round; (i) performs unlimited local compidat and then (iii) sends a, possibly distinct, messagezef si
O(logn) to each other node in the network. We assume that nodes hstirctliDs that can each be represented in
O(log n) bits. We call this theCongested Cliquenodel.

Our focus in this paper is graph problems and we assume thanphit is a graplt: that is a spanning subgraph
of the communication network. Initially, each node in théwark knows who its neighbors are @i. Thus knowledge
of GG is distributed among the nodes of the network, with each madéng a particular local view af’. Note thatG
can be quite dense (e.g., haén?) edges) and therefore any reasonably fast algorithm for rthiglgm will have to
be “truly” distributed in the sense that it cannot simplyyreh shipping off the problem description to a single node
for local computation.

The MapReduce ModelOur description of the MapReduce model borrows heavily fittin work of Karloff et
al. [9] and Lattanzi et al[[11]. Introduced by Karloff et {8], the MapReduce model is an abstraction of the popular
MapReduce framework[4] implemented at Google and alsodrptipular Hadoop open-source project by Apache.
The basic unit of information in the MapReduce model {&ey, value)-pair. At a high level, computation in this
model can be viewed as the application of a sequence of tirg;teach taking as input a collection(éty, value)-
pairs and producing as output a new collectior{/efy, value)-pairs. MapReduce computation proceeds in rounds,
with each round composed of a map phase, followed by a shifleq; followed by a reduce phase. In the map phase,
(key, value) pairs are processed individually and the output of this ph#sa collection ofkey, value)-pairs. In the
shuffle phase, thedéey, value)-pairs are “routed” so that alkey, value)-pairs with the saméey end up together.
In the last phase, namely the reduce phase, each key and@tiaed values are processed together. We next describe
each of the three phases in more detail.

— The computation in the Map phase of round performed by a collection shappersone per(key, value) pair.

In other words, each mapper take&ay, value) pair and outputs a collection ¢key, value) pairs. Since each
mapper works on an individugtey, value) pair and the computation is entirely “stateless” (i.e.,dependent on
any stored information from previous computation), the pgap can be arbitrarily distributed among machines. In
the MapReduce model, keys and values are restricted to thiesize of the system, which 8(log n). Because

of this restriction, a mapper takes as input only a constamtiyer of words.

— In the Shufflephase of round, which runs concurrently with the Map phase (as possibi);\kalue pairs emitted
by the mappers are moved from the machine that produced théne tmachine which will run the reducer for
which they are destined; i.e., a key-value p@girv) emitted by a mapper is physically moved to the machine
which will run the reducer responsible for kéyin roundi. The Shuffle phase is implemented entirely by the
underlying MapReduce framework and we generally ignoreStineffle phase and treat data movement from one
machine to another as a part of the Map phase.

— In the Reducephase of round, reducers operate on the collected key-value pairs sefhieto;ta reducer is a
function taking as input a pafk, {vx; } ;), where the first element is a kéyand the second is a multiset of values
{vk,; }; which comprises all of the values contained in key-valuespamitted by mappers during roundnd

having keyk. Reducers emit a multiset of key-value p&i($, vy ;) };, where the key: in each pair is the same as
the keyk of the input.

For our purposes, the concepts of a machine and a reducat@rehiangeable, because reducers are allowed to be “as
large” as a single machine on which they compute.

The MapReduce model of Karloff et dl.l [9] tries to make exipticree key resource constraints on the MapReduce
system. Suppose that the problem input hasisi@ete that this imotreferring to the input size of a particular reducer
or mapper). We assume, as do Karloff et[al. [9] and Lattaral.¢11], that memory is measuredd@log n)-bit-sized
words.

1. Key-sizes and value-sizes are restricted &(&) multiple of the word size of the system. Because of this i@str
tion, a mapper takes as input only a constant number of words.

2. Both mappers and reducers are restricted to using spasesting ofO(n!~¢) words of memory, and time which
is polynomial inn.

3. The number of machines, or equivalently, the number afcets, is restricted t@(n').

Given these constraints, the goal is to design MapReduazithims that run in very few — preferably constant —
number of rounds. For further details on the justificatiardiiese constraints, séé [9].

Since our focus is graph algorithms, we can restate the almn&raints more specifically in terms of graph size.
Suppose that an-node graplz = (V, E) is the input. Following Lattanzi et al. T11], we assume thattemachine in
the MapReduce system has memgry n'*< for e > 0. Sincen' ¢ needs to be “substantially” sublinear in the input
size, we assume that the number of edgesf G is 2(n! <) for ¢ > . Thus the MapReduce results in this paper are
for non-sparse graphs.

1.2 Contributions

The main contribution of this paper is to show that fast athars in the Congested Clique model can be translated
via a simulation theorem into fast algorithms in the MapReditamework. As a case study, we design a fast graph-
coloring algorithm running in the Congested Clique model #ren apply the simulation theorem to this algorithm
and obtain a fast MapReduce algorithm. Specifically, given-mode graphG with maximum degreel > log® n,
we show how to compute af@(A)-coloring of G in expectedO(1) rounds in the Congested Clique model. We
also present an algorithm for small; for A < log" n we present an algorithm that computes\a 1 coloring in
O(log loglog n) rounds with high probability on a Congested Clique. The iogtion of this result to the MapReduce
model (via the simulation theorem) is that for amynode graph with2(n'*¢) edges, for constanrt > 0, there is a
MapReduce algorithm that runs (1) map-shuffle-reduce rounds using™ memory per machine, fdr < ¢ < ¢
andn®~ € machines. Note that the even when usinghemory per machine and® machines the algorithm still takes
O(1) rounds. This is in contrast to examples in Lattanzi etal] §Lith as maximal matching which requitglog n)
rounds if the memory per machineris

The coloring algorithms in both models are new and faster #rey known in the respective models, as far as we
know. However, the bigger point of this paper is the conmedtietween models that are studied in somewhat different
communities.

1.3 Related Work

The earliest interesting algorithm in the Congested Climgglel is anO(log log n)-round deterministic algorithm
to compute a minimum spanning tree (MST), due to Lotker efdd]. Gehweiler et al.[]7] presented a random
O(1)-round algorithm in the Congested Clique model that produceonstant-factor approximation algorithm for
the uniform metric facility location problem. Berns et al.l[2,3] considd the more-general non-uniform metric fa-
cility location in the Congested Cligue model and preseraambnstant-factor approximation running in expected
O(loglogn) rounds. Berns et al. reduce the metric facility locationbteen to the problem of computingZruling
set of a spanning subgraph of the underlying communicatewaerk and show how to solve this fi(loglogn)
rounds in expectation. In 2013, Lenzen presented a routioigp@ol to solve a problem called &nformation Distri-
bution TasK12]. The setup for this problem is that each nade V' is given a set ofi’ < n messages, each of size
O(logn), {m!,m2,...,m}, with destinationsl(m!) € V, j € {1,2,...,n'}. Messages are globally lexicograph-
ically ordered by their sourcg destinatiord(m{), andj. Each node is also the destination of at meshessages.
Lenzen'’s routing protocol solves the Information Disttibn Task inO(1) rounds.

Our main sources of reference on the MapReduce model anddphalgorithms in this model are the work
of Karloff et al. [S] and Lattanzi et al[[11] respectivelyeBides these, the work of Ene et al. [6] on algorithms for
clustering in MapReduce model and the work of Kumar ef al} §t0greedy algorithms in the MapReduce model are
relevant.

2 Coloring on the Congested Clique

In this section we present an algorithm, running in the CstegeClique model, that takes annode graphG with
maximum degreed and computes a®(A)-coloring in expected (log loglogn) rounds. In fact, for high-degree
graphs, i.e., wher > log® n, our algorithm computes af(A)-coloring inO(1) rounds. This algorithm, which we
call Algorithm HIGHDEGCOL, is the main contribution of this section. For graphs withximaum degree less than
log* n we appeal to an already-known coloring algorithm that col@pa(A + 1) coloring inO(log A) rounds and
then modify its implementation so that it runs@i{log log log n) rounds on a Congested Clique.

We first give an overview of Algorithm KsHDEGCoL. The reader is advised to follow the pseudocode given in
Algorithm[d as they read the following. The algorithm reety performs a simple random trial until a favorable
event occurs. Each trial is independent of previous trigte key step of Algorithm HsHDEGCoOL is that each node
picks acolor groupk from the sef{1,2,...,[A/logn]} independently and uniformly at random (Step 4). We show
(in Lemmall) that the expected number of edges in the g@plinduced by nodes in color groupis at most
O(%). Of course, some of the color groups may induce far more ealgeéso we define goodcolor group as
one that has at most edges. The measure of whether the random trial has succestteinumber of good color
groups. If most of the color groups are good, i.e., if at n¥dsiz n color groups are not good then the random trial
has succeeded and we break out of the loop. We then transthigeaph induced by a good color group to a distinct
node in constant rounds using Lenzen’s routing schéme Bi2p(11). Note that this is possible because every good
color group induces a graph that requié®s:) words of information to completely describe. Every nodé thaeives
a graph induced by a good color group locally computes a pragering of the graph using one more color than the
maximum degree of the graph it receives (Step 12). Furthexnewery such coloring in an iteration employs a distinct
palette of colors. Since there are very few color groupsadhainot good, we are able to show that the residual graph
induced by nodes notin good color groups biHs) edges. As a result, the residual graph can be communicatitsd in
entirety to a single node for local processing. This congsl¢iie coloring of all nodes in the graph.

We now analyze Algorithm HsHDEGCoL and show that (i) it terminates in expectédd) rounds and (ii) it uses
O(A) colors. Subsequently, we discuss@fiog log log n) algorithm to deal with the small case.

Lemma 1. For eachk, the expected number of edgesip is "lg—g:".

. H H HR : logn logn
Proof: Consider edgdu, v} in G. The probability that botly andv choose color group is at most>5™ - =5= =

10222". SinceG has at most A - n edges, the expected number of edgeSinis at most%. O

Lemma 2. The expected number of color-group graghshaving more tham edges is at mosbg n.

Proof: By Lemmall and Markov’s inequality, the probability that@mogroupk has more tham edges is at most

nlog?n

A = %. Since there aréA/ log n] groups, the expected number®f having more tham edges is bounded
above by2

A login
logn 2A T

log n. O

Lemma 3. With high probability, every color group ha%”gﬂ nodes.

Proof: The number of color groups igA/logn]. Thus, for anyk, the expected number of nodesdh,, denoted
[V (Gy)|, is at most - 1"%. An application of a Chernoff bound then gives, for each

I . .
P (|V(Gk)| > on - Oin) S 2_5"'1 A < 2—ologn _

nd

Taking the union over alt completes the proof. O

Lemma 4. With high probability, no node in G has more thard log n neighbors in any color group.

Algorithm 1 HIGHDEGCoOL

Input: An n-node graplG = (V, E), of maximum degree\
Output: A proper node-coloring ofr usingO(A) colors

1. Each node: in G computes and broadcasts its degree to every othermnodé'.

2. If A <log*n then use Algorithm LowDEGCOL instead.

3. while true do

4. Each node: chooses &olor groupk from the sef{1, 2, ..., [A/log n]} independently
and uniformly at random.

5. LetGy, be the subgraph @ induced by nodes of color group

6. Each node: sends its choice of color group to all neighborgin

7. Each node: computes its degree within its own color-group gr&p#f), and sends its
color group and degree within color group to node 1.

8. Node 1, knowing the partition @ into color groups and also knowing the degree of

every nodeu (u € G4) within the induced subgrapfy;,, can compute the number
of edges inGx, for eachk. Thus node 1 can determine which color-group gra@hs
aregood i.e., have at most edges.
9. If at most2 log n color-group graphs are not good, node 1 broadcasts a “break”
message to all nodes causing thenbtteak out of loop;
endwhile
10. Node 1 informs every nodein a good group of the fact thats color group is good
11. Using Lenzen’s routing protocol, distribute all infation about all good color-group
graphsGy, to distinct nodes of.
12. For each good‘;, the recipient of 7, computes a coloring af?j, usingA(Gy) + 1 colors.
The color palette used for eacy, is distinct.
13. The residual grap@’ of uncolored nodes has siz¥n) with high probability, and can thus
be transmitted to a single node (for local proper colorimg{1) rounds.
14. Each node that locally colors a subgraph informs eack othe subgraph the color it has
been assigned.

Proof: Nodew has maximum degred, so for anyk, the expected number of neighborswfvhich choose color
groupk is bounded above biyg n. Therefore, applying a Chernoff bound gives

P (|N(u) NGk| > 5logn) < 275len = %
n
Taking the union over al andu shows that, with probability at least— % the assertion of the lemma holds. O
Lemma 5. The residual graplt:, induced by groups that are good, h@$n) edges, with high probability.

Proof: The residual grapli’ is a graph induced by at mo2tog n color groups, since the algorithm is designed to
terminate only when it has performed a trial resulting in asift log n groups that are not good. With high probability,
no nodex in G has more thaf log n neighbors in any of the (at mot)og n color groups that make u@, so therefore
with high probability no node: has degree greater thafilog” n in G. SinceG has at mos{2logn) - 5"1% nodes
with high probability, it follows that the number of edgesGhis at most

5nlogn o 100n 10g4n

101
og™ n A

which isO(n) whenA > log* n. 0

(2logn) -

Lemma 6. AlgorithmHIGHDEGCOL runs in a constant number of rounds, in expectation.

Proof: By Lemma[2 and Markov's inequality, the expected number dbregroup partitioning attempts required
before the number of “bad” color groups (i.e., color grougmee induced grapis,. contain more tham edges) is
less than or equal ®log n is two. It is easy to verify that each iteration of tivhile-true loop require®(1) rounds
of communication.

WhenA > log* n, the residual grapl is of sizeO(n) with high probability, and can thus be communicated in
its entirety to a single node i@(1) rounds. That single node can then calddeterministically usingA + 1 colors
and then inform every node 6f of its determined color in one further round. O

Lemma 7. AlgorithmHIGHDEGCOL usesO(A) colors.

Proof: A palette of sizeO(logn) colors suffices for each good color group because we showkedrnmmal4 that
with high probability the maximum degree in any color grogp log n. Since there are a total ¢fA/logn] color
groups and we use a distinct palette of siXgog n) for each good color group, we use a totaldfA) colors for the
good color groups. The residual graph induced by not-goémt gwoups is colored in the last step and it requires an
additionalO(A) colors. O

2.1 Coloring low-degree graphs

Now we describe an algorithm that we calbWwDEeGCoL that, given ann-node graphG with maximum degree
A < log* n, computes a propéiA + 1)-coloring with high probability inO(log log log n) rounds in the Congested
Cligue model. The algorithm has two stages. The first staghefalgorithm is based on the simple, natural, ran-
domized coloring algorithm first analyzed by Johanns$on [&] eore recently by Barenboim et &l [1]. Each node
u starts with a color palett€’, = {1,2,..., A + 1}. In each iteration, each as-yet uncolored nadeakes a ten-
tative color choice:(u) € C, by picking a color fromC,, independently and uniformly at random. If no node in
u's neighborhood picks colar(u) thenw colors itselfc(u) ande(u) is deleted from the palettes of all neighbors of
u. Otherwiseu remains uncolored and participates in the next iteratiothefalgorithm. We call one such iteration
RANDCOLSTEP. Barenboim et al[]1] show (as part of the proof of Theoren) that if we executed (log A) iter-
ations of RNDCOLSTEP, then with high probability the nodes that remain uncolaretlice connected components
of sizeO(poly(log n)). Since we are evaluating a situation in whidh< log* n, this translates to usin@(log logn)
iterations of RNDCOLSTEP to reach a state with small connected components. Now nibtatethis algorithm uses
only the edges ofs — the graph being colored — for communication. By utilizihg &ntire bandwidth of the under-
lying cligue communication network, it is possible to spegdthis algorithm significantly and get it to complete in
O(log loglogn) rounds. The trick to doing this is to rapidly gather, at eacten, all information needed by node

to execute the algorithm locally. We make this precise frtielow.

Once we execut®(log loglogn) iterations of RNDCOLSTEP and all connected components induced by as-
yet uncolored nodes become polylogarithmic in size, they&P of the algorithm begins. In this stage, first each
connected component is gathered at a node; we show how tmatisb this inO(log log log n) rounds by appealing
to the deterministic MST algorithm on a Congested Cliquetdusotker et al.[[18]. Then each connected component
of uncolored nodes is shipped off to a distinct node and iallp¢and independently) colored usialy+ 1 colors.

We start by developing Stage 1 first. Suppose that for somstaoisc;, co, c3, T < c; loglogn iterations of
RANDCoLSTEPare needed before all connected components induced byaradalodes have size at mestlog® n
with probability at leastl — 1/n. Let GG}, denote a labeled version of graghin which each node: is labeled
(IDy,RS,), WhereID,, is theO(logn)-bit ID of nodew andRrs,, is a random bit string of lengt - [log A7. For
integerk > 0 and nodeu € V, let B(u, k) denote the set of all nodes withinhops ofu in G. The following lemma
shows that it is quite helpful if each nodeknew G'1,[B(u, T)], the subgraph of the labeled gragh, induced by
nodes inB(u,T).

Lemma 8. Suppose that each node € V knowsGy[B(u,T)]. Then each node can locally compute a color
clu) e {L}U{1,2,..., A+ 1} such that (i) nodes not colored induce a properly colored subgraph and (ii) nodes
colored_L induce connected components whose size is bounded aboy®h§? n with probability at leastl — 1/n.

Proof: With respect to the execution of iterations oki®d COLSTEP, thestateof a nodeu is its current color palette
C, and its current color choice(u). If c¢(u) = L, thenu has not colored itself; otherwise(u) is a permanently
assigned color that nodehas given itself. To figure out the state of nadafter T iterations of RAND COLSTEP, it
suffices to know (i) the state afand its neighbors aftéf — 1 iterations of RNDCoLSTEP and (ii) at mostlog A]
random bits associated with each of these nodes so thatréimeiom color choices in iteratidh can be determined.
Stated differently, it suffices to know (i) the subgra@h[B(u, 1)] and (i) the state of each node#(u, 1) afterT —1
iterations of RNDCOLSTEP. This in turn can be computed from (i) the subgraph[B(u, 2)] and (ii) the state of
all nodes inB(u, 2) afterT — 2 iterations of RNDCOLSTEP. Continuing inductively, we conclude that in order to
know the state of node afterT iterations of RRND COLSTERP, it suffices to knowG ., [B(u, T')], where each nodein
B(u,T) is labeled with an(1D,,, RS,)-pair, wherers,, is a random bit string of length - [log A]. O

Now we focus on the problem of each node gatherhgB(u,T")] and show that this problem can be solved in
O(logloglog n) rounds, given thal’ = O(loglogn) and A < log* n.

Lemma 9. There is a Congested Clique algorithm running orvanode input graphG with maximum degreg\ <
log* n that terminates irO(log log log) rounds at the end of which, every nod&nowsG, [B(u, T)).

Proof: The algorithm starts with each noddroadcasting its degree (7 to all nodes inl”. This enables every node
to locally computeA and also a random bit strirgs,, of lengthT - [log A1. After computingrs,,, each node: sends
to each neighbor ig the pair(1D,, RS,). Now each node is in possession of the collection @fD,,, RS,)-pairs for
all neighborsv. Each node: now has a goal of sending this collection to every neighboteNhat the total volume
of information thatu wishes to send out is bounded above 4y (measured irO(log n)-sized words). Also, each
nodeu is the destination for at most? words. SinceA? = o(n), using Lenzen’s routing protocdl [12], each node
can successfully send its entire collectio{ db, RS)-pairs to all neighbors in constant rounds. Based on thisived
information, each node can construct;, [B(u, 1)].

Proceeding inductively, suppose that each nedeas gathered’;, [B(u,t)], wherel < t < T. We now show
that in an additional constant rounds,can gatheiG[B(u, 2t)]. First note that B(u,t)| < A'*! for any node
u € V. Therefore(71,[B(u,t)] can be completely described usitgA*+2) words of information. In order to compute
G1[B(u,2t)], each node sends7, [B(u, t)] to each node itB(u, t). A nodeu, onreceiving= 1, [B(v, t)] for all nodes
v in B(u,t), can perform a local computation to determig[B(u, 2t)]. Note that the total volume of information
thatu needs to send out during this communicatio®{g\?'*3) words. By a symmetric reasoning, each nads the
destination for at mogD(A2!*3) words of information. Sincel < log” n andt < T = O(loglogn), A%*+3 = o(n)
and therefore using Lenzen’s routing protocol, each nodan send~ ., [B(u, t)] to each node iB(u, t) in constant
rounds.

Since the goal of the algorithm is for each nodeo learnG[B(u,T)], whereT = O(loglogn), it takes
O(logloglogn) iterations of the above described inductive procedure actrethis goal. The result follows from
the fact that each iteration involves a constant number winanication rounds. O

An immediate consequence of Lemrhas 8[and 9 is that there ingeSted Clique algorithm running on amode
input graphG with maximum degreed < log® n that terminates ir0(log loglog n) rounds at the end of which,
every node. has assigned itself a colefu) € {1} U{1,2,..., A + 1} such that (i) nodes not colored induce a
properly colored subgraph and (ii) nodes colorieéhduce connected components whose size is bounded above by
O(poly(logn)) with probability at least — 1/n. This brings us to Stage 2 of our algorithm. The first task is $tage
is to distribute information about uncolored nodes (i.edesu with ¢(x) = L) such that each connected component
in the subgraph induced by uncolored nodes ends up at a ndae iretwork. To perform this task i (log log log n)
rounds, we construct a complete, edge-weighted graph iochndn edg€ u, v} has weighto(u,v) = 1if {u,v} € E
andc(u) = ¢(v) = L and has weight otherwise. Thus, edges in the subgrapliahduced by uncolored nodes have
weight 1 and edges connecting all other pairs of nodes haightve This complete, edge-weighted graph serves as
an input to the MST algorithm of Lotker et al. Note that thipun is distributed across the network with each node
having knowledge of the weights of all — 1 edges incident on it. Also note that this knowledge can beiiaed
by all nodes after just one round of communication. As mewttbearlier, the Lotker et al. MST algorithm runs in
O(loglogn) rounds. Since we are not interested in computing an MST, flytio identifying connected components,
we do not have to run the Lotker et al. algorithm to completion

The Lotker et al. algorithm runs in phases, taking constantlrer of communication rounds per phase. At the end
of phasek > 0, the algorithm has computed a partitigit = {F{', Fy',..., F¥ } of the nodes of7 into clusters
Furthermore, for each clusté? € F*, the algorithm has computed a spanning tf&é’). The correctness of the
algorithm is ensured by the fact that each tf&é") is a subgraph of the MST. It is worth noting that every nodé t
network knows the partitio* and the collectio{T'(F) | F € F*} of trees. Suppose that the minimum size cluster
in F7* has sizeV. TheO(log log n) running time of the Lotker et al. algorithm arises from thetfhat in each phase
the algorithm merges clusters and at the end of Phasg the smallest cluster i¥**+! has size at leasy?. Thus the
size of the smallest cluster “squares” in each phase aneftirerit take<D(log log n) rounds to get to the stage where
the smallest cluster has sizeat which point there is only one clusterand7’(F') is the MST.

We are interested in executirigphases of the Lotker et al. algorithm so that the size of thallsst cluster in
FTis at least the size of the largest connected component éadoy uncolored nodes. Since the size of the largest
connected component in the graph induced by uncolored ned¥poly(logn)), it takes onlyl’ = O(logloglog n)
phases to reach such a stage. Eét= {F{', F] ..., F1} be the partition of the nodes 6f into clusters at the end
of T phases of the Lotker et al. algorithm.

Lemma 10. LetC be a connected component in the subgraph induced by undatodes. Thety' C F!' for somei.

Proof: To obtain a contradiction suppose tifatn FI' # () andC N FJ-T = () for somel < i # j < m. Then there is
an edge of weight 1 connecting a nodefifi and a node irf’}". Since|F;"| > |C], the treel’(F;") contains an edge

of weightn. Thus at some point in the Lotker et al. algorithm, it chosenterge clusters using an edge of weight
when it could have used an edge of weight 1. This contradietbehavior of the Lotker et al. algorithm. O

The rest of Stage 2 is straightforward. One nodesayconsiders each’ € 77 and deletes all edges of weight
n from T'(F). This will result in £ splitting up into smaller clusters; these clusters are treected components of
the subgraph off induced by uncolored nodes. Note that at this point we thirkk@nnected component as simply
a subset of nodes. Nodge then ships off each connected component to a distinct nasildy the node with the
smallest ID in that component. This takes constant numbenofds via the use of Lenzen'’s routing protocol. Suppose
that a node: has received a connected compon€ntNodewu then contacts the nodes @i to find out (i) all edges
connecting pairs of nodes ifl, and (ii) the current palettes, for each node € C. Since|C]| is polylogarithmic in
size andA < log® n, it is easy to see that all of this information requires pogrithmic number of bits to represent
and therefore can be communicateditin constant number of rounds via Lenzen’s routing protoblaide » then
colors each node € C using a color from its palett€’, such that the graph induced Byis properly colored. This
completes Stage 2 and we have+ 1)-coloring of G.

Lemma 11. Given ann-node graphG with maximum degreel < log* n, Algorithm LowDEGCOL computes a
proper (A + 1)-coloring in O(log loglog n) rounds in the Congested Clique model.

Combining Lemmakl6 arid 7 along with Lemma 11 gives the foligwheorem.

Theorem 1. Given amn-vertex input graptz = (V, E') with maximum degred > log* n, AlgorithmHIGHDEGCoL
computes arQ(A)-coloring in O(1) rounds (in expectation) in the Congested Clique model. Foitary A, an
O(A)-coloring can be computed i@ (log log log n) rounds in expectation in the Congested Cliqgue model.

3 MapReduce Algorithms from Congested Clique Algorithms

In this section, we prove simulationtheorem establishing that Congested Clique algorithmh(fairly weak re-
strictions) can be efficiently implemented in the MapReduoelel. The simulation ensures that a Congested Clique
algorithm running irll” rounds can be implemented@(T") rounds (more precisel$; T+ O(1) rounds) in the MapRe-
duce model, if certain communication and “memory” condifi@re met. The technical details of this simulation are
conceptually straightforward, but the details are a bri¢ate.

We will now precisely define restrictions that we need to plan Congested Clique algorithms in order for the
simulation theorem to go through. We assume that each natthe iGongested Clique possesses a word-addressable
memory whose words are indexed by the natural numbers. Falganthm A- < running in the Congested Clique,
let L(ﬁ) C N be the set of memory addressesedby nodeu during the local computation in rouryd(not including
the sending and receipt of messages).

After local computation in each round, each node in the CstagClique may send (or not send) a distinct message
of size O(log n) to each other node in the network. In defining notation, we erakpecial distinction for the case
where a node: sends in thesamemessage to every other nodén a particular round; i.e., nodesends @&roadcast
message. The reason for this distinction is that broadcastde handled more efficiently on the receiving end in the
MapReduce framework than can distinct messages semtlbqtmq(ﬂj denote a message sent by ned® nodev in
round; and letD{ C V be the set of destinations of messages sent by nadeound;. Let MY = {mq(ﬂj: v E

DY ¢ V'} be the set of messagsentby nodew in round; of algorithm.Aq¢, except letV”) =) if u has chosen
to broadcast a messagg) in roundj. Similarly, leth) = {mij: u € DY anduv is not broadcasting in roung

be the set of messagesceivedby nodeu in roundj, except that we exclude messagé@ from nodesv that have
chosen to broadcast in rougidWe say thatdc¢, running on am-node Congested Clique, (%, V)-lightweightif

(i) for each round (in the Congested CquueEueV(|ﬁfj)| + |I§j)|) = O(K);

(ii) there exists a constarit such that for each roungdand for each node, I C {1,2,...,[C-N1}; and
(iii) each nodeu performs only polynomial-time local computation in eachmd.

In plain language: no node uses more tkia{V) memory for local computation during a round; the total antoun
of memory that all nodes use and the total volume of messaggssireceive in any round is bounded @yK).
Regarding condition (iii), traditional models of distriled computation such as tBSONGEST andLOCAL models
allow nodes to perform arbitrary local computation (e.gkirtg exponential time), but since the MapReduce model
requires mappers and reducers to run in polynomial time,eeel this extra restriction.

Theorem 2. Lete, c satisfy0 < ¢ < ¢, and letG = (V, E) be a graph om vertices having)(n'*¢) edges. IfAcc

is a (n'te nt*e)-lightweight Congested Clique-model algorithm runningimput G in 7' rounds, then4dcc can be
implemented in the MapReduce model with= n°~¢ machines aneh, = ©(n'*) (words of) memory per machine
such that the implementation runsdnT") Map-Shuffle-Reduce rounds 6h

Proof: The simulation that will prove the above theorem contains $tages: thénitialization stage and th&imula-

tion stage. In the Initialization stage, the input to the MapRedsystem is transformed from the assumed format (an
unordered list of edges and vertices®f into a format in which each piece of information, be it an edgode, or
something else, that is associated with a nod@ &f gathered at a single machine. After this gathering of @ated
information has been completed, the MapReduce system calatthe execution of the Congested Clique algorithm.
Initialization stage. Input (in this case, the graph) in the MapReduce model is assumed to be presented as an
unordered sequence of tuples of the fdn «), whereu is a vertex ofG, or (&, (u, v)), where(u, v) is an edge o&.

The goal of the Initialization stage is to partition the ihgiamong then,. reducers such that each reduceeceives

a subset’. C V and all edge?, incident on nodes i, such that P,| + |E,| is bounded above bg(n'*€). This
stage can be seen as consisting of two tasks: (i) every redizsrns the degree dggu) of every node: in G and (ii)

every reducer computes a partition (the same one) givenebgdirtition functionfy : V. — {1,2,...,n,}, defined
by
1, ifx=1
Fo(z) = Fo(z — 1), if > ern i ded:(v) < nlte,

Fy(x —1)+1, otherwise

HereL(z) = {j < = : Fy(j) = Fo(z — 1)}. All nodes in the same group in the partition are mapped tcémee
value by F, and will be assigned to a single reducer. Since the degreaobf ode is bounded above hyit is easy
to see that for any € {1,2,...,n,}, F, (r) is a subset of nodes @f such that F;, ' ()| + ZueFofl(T) deg. (u)

is O(n!*€). Each of the two tasks mentioned above can be implemente(simail) constant number of MapReduce
rounds as follows.

— Map 1: In Map phase 1, for each tuple, u), a mapper chooses a random reducand emits the tuplér,).

For each tuplé, (u, v)), a mapper again chooses a random redued emits the tuplér, (u, v)). Because the
reduce keys are chosen at random, with high probabilityédigt exponentially high probability) each reducer in
Reduce phase 1 will receivg(n' <) tuples.

— Reduce 1:In Reduce phase 1, a reducereceives tuples whose values consist of some colledfjo V of
vertices and some collectiaii. C F of edges ofz. For each value consisting of a verteéxa reducer re-emits
the tuple(r, u), and for each value consisting of an edgev), reducer- re-emits the tuple-, (u, v)). In addition,
areducer emits, for each vertex such that reducerreceived an edge:, v) or (v, u), a tuple(r, u, d,,,), where
d,,, is total number of edges received by reduceontainingu. (In other wordsd,. ,, is the partial degree af
seen by reducer.)

— Map 2: In Map phase 2, mappers again load-balance tuples congaueirtices or edges as values across the
reducers uniformly at random (an action which is successfhlp.), as in Map phase 1. In addition, when a
mapper processes a tuple of the faru, d,,,), it emits the tuplé (v mod n,.), u, d,). Hereu mod n, refersto
the reduction of the identifier of nodemodulo the number of reducers,. There are at most-n,. = O(n't¢~¢)
such tuples, and thus (i) each reducer is the destination(j such tuples (of the form(v mod n,.), u, d,,));
and (ii) all tuples containing a partial degree sum of nadgemong their values are given the same key and thus
sent to the same reducer during the second MapReduce round.

— Reduce 2:In Reduce phase 2, a reducengain re-emits tuple§-, v) and (r, (u,v)) for each vertex or edge
received as a value. For tuples of the fotmu, d,), reducerr aggregates the partial degree sums.ab
compute the full degree dggu) of v in G, and emits the tuplér, u, deg. (u)).

— Map 3: In Map phase 3, mappers once again load-balance tuplesiiogtaertices or edges as values across
the reducers as in Map phases 1 and 2. For each tuples of thefon, deg, (v)), a mapper emits,. tuples
(r1,u,degy(u)), (r1,u,deg.(w)), ..., (rn,, u,deg,;(u)) — one for each reducer. Thus, for each reducer, exactly
n tuples containing (full) degree information are emittedie dor each vertex ofr.

— Reduce 3:iIn Reduce phase 3, a reducarow has access to the degrees of all vertices ahd can thus compute
the partition functiorFy defined earlier. Then, for each nodeeceived, a reduceroutputs the tuplér, Fy(u), u),
and for each edggu, v) received, a reduceroutputs the tuple&r, Fy(u), (u,v)) and(r, Fy(v), (u, v)).

— In addition to “packaging” the vertex and edge informatidid-cso that incident edges of a nodean be collected
at the reducefy(u) assigned to simulate computatiomatreducers must also emit tuples which allow both (i)

the currently collected degrees of each vertex:imnd (ii) the partition functiornF, to be propagated forward
through the rounds of the MapReduce computation. Fortin#ies is straightforward: for each degree tuple
(r,u, deg,(u)) received by reducer, reducer re-emits the same tuple. As welly : V. — {1,...,n,} can be
fully described byn pairs(v, Fo(v)), and so reducer emits then tuples(r, v, Fy(v)), which will allow reducer

r to “remember” the partition functioiy(-) in the next round. Observe that the totality of the memoryiesgl

to support knowledge of the partition function and all degrenG is O(n), and thus fits into the memory of a
reducer without any trouble.

— Map 4: Finally, in Map phase 4, a mapper receives and processesitigoedt tuple formats: (i) tuples of the
form (r,7’, z), wherer’ is another reducer index ands some information (of lengttv(1) words) representing
either a vertex or an edge; and (i) tuples of the far, z), wherew is a vertex identifier and is either a degree
value or a reducer identifier. In case (i) (tuples of the fdrm”’, z)), a mapper emits the tuple’, z). In case (ii)
(tuples of the forn(r, v, z), a mapper simply outputs the same tuplgv, z) unchanged.

— After the Map phase of the round 4 of the MapReduce computditas completed, the Initialization phase is
complete, and the simulation gf-¢ is ready to begin.

Simulation stage. At a high level, a Reduce phase serves as the “locadudation” phase of the Congested Clique
simulation, whereas a Map phase (together with the subségheaffle phase) serves as the “communication” phase
of the simulation. However, there is, in general, a constactor slow-down because it may be that the sending and
receiving of messages ¢ could cause the subset of nodes assigned to a reducer t@atgneore tha® (n! <)
memory, necessitating a re-partitioning of the nodes aniegeducers so as not to violate the memory-per-machine
constraint. ‘ ‘

Recall that\” denotes the set of memory addresses used by amnodeund; of Ac¢. Let hff)J be the value of

word j € I8 in the memory of node after nodeu has completed local computation in roundf Ac¢, but before
messages have been sent and received in this round 0y define a tuple set

HO = {(Fi(w), (u,i,h0)): j € T}

whereF; () is the partition function used in rouridLike Fy, defined in the Initialization stagé; partitionsG into n,.
groups, one per reducer, so that reducer memory constea@igt violated in roundl The collection of tuple%{fj‘l)

is a representation, in the MapReduce key-value formahefriformation necessary to simulate the computations of
nodew in round: of the Congested Clique algorithac. The use off;(u) as the key in each of the tuplesm(f)
ensures that all information needed to simulate a local edatjpn at: in A-¢ goes to the same reducer. Additionally,
note that the inclusion of the identifier afwith the values allows the words fronis memory to be reassembled and
distinguished from information associated with other roode F,*(u). We assume thak(!) is the information

in tuple format that node has initially about grapl@. In other words " = {(Fo(u),u)} U {(Fo(u), (u,v)) :
v is a neighbor ot }.

Once an initial partition functiofy (-) has been computed and the initial collectiati¥) have been assembled the

main goals of our simulation algorithm are to (i) provide actmenism for transformin@i&i_l) into 7" during the
reduce phase of a MapReduce round; and (ii) provide a meamnansimitting messages to reducers of a subsequent
round (corresponding to messages transmitted in the Cay€dique at the end of each round). Since we assume
messages to be sent and received after local computatiachased during a Congested Clique round” can be
determined front.$”; in turn, 2" is a function ofp{ " andﬂsfl).

We describe the details of the simulation of a single roundrfd:) of a Congested Clique algorithscc below.
Letj = 3i — 1. Round: of Ac¢ is simulated by three MapReduce rounds (a total of six MapexiuRe phases) —
Reducej — 1, Mapj, Reduce/, Mapj+1, Reduce + 1, and Mapj + 2. We assume inductively that as input to Reduce
phasej — 1 below, each reducer receives, in addition to data tuglé¢s) metadata tuples containing a description of

a partition functionf;_, () such that for each, 3, ., (|14 V| + MUY = O(n'+9), whereP, = F=L ().

— Reduce phasg — 1: In Reduce phasg— 1, a reducer receives input consisting 61V togetherwithj_l)
for eachu € P,; for each such, reducer performs the following steps:
(i) Reducer simulates the local computation of Roundf Acc atu.
(i) Reducerr compute§{ff) from Hffl) andﬂff_l), but does not yet outpainy tuples ofof); rather, reducer

r outputs only a tuplér, u, s,,) containing the size of the information = |Hfj) |

(i) Reducerr computesM(z) from H$”, but again,does not outpuainy elements of\M,, (). Reducerr then
computes, for each € V, the aggregate count ,, of messages emanating from nodes?;mnd destined for
v, and outputs the tuple-, v, ¢, ,,).

(iv) Reducen outputs the exact same tuples it received as Wﬁﬁj‘t 2 and/\/l
(4)

— Map phasej: Before message tuples can be generated and aggregatecb(lm:mﬁu at reducer'(u)) a
rebalancing of the nodes to reducers must be performed toetisat the reducer-memory constraint is not vio-

lated. In Map phasg, a mapper forwards tuples from eithetd ") or aﬂs_l) through unchanged. However,
for each tuple of the forn(r, u, ¢, ,,), @ mapper outputs the tuple mod n,, u, ¢,). In addition, for each tuple
of the form(r, u, s,,), @ mapper outputs,. tuples(r’, u, s,,) — one for each reducef — so that every reducer can

know the future size i\,
— Reduce phasg: In Reduce phasg, a reducer receives as input nearly the exact same input (and output) of

reducerr in the previous MapReduce round — the uniorgdf ~ andﬂfffl) for eachu € P. — except that
instead of receiving tuples of the for(n, , ¢, ,,) for eachu € V, reducern- receivesall partial message counts
for the subset of vertices for whichu mod n,. = r; as well, each reducer receivesuples of the forn{r, u, s,,)
describing the amount of memory required by nade round: of Acc. Reducer aggregates tuples of the form

(u mod n,, u, ¢, ,,) and outputsr, u, |M1(L)), S|nce|M()| is precisely the sum of the partial message counis
(Notice that a reducerreceive)(n) such tuples.) Reducerforwards all other tuples through unchanged to the
next MapReduce round.

— Map phasej + 1: In Map phase + 1, a mapper continues to forward all tuples through unchang&kduce

phasej + 1, except that for each tuple of the form «, |HS) |), @ mapper outputs,. tuples(r’, u, |Hff) |) —one
for each reducer’. In this way, each reducer in Reducer phase1 can come to know alh message counts for
each node, € V.

— Reduce phasg + 1: In Reduce phasg¢+ 1, each reducer receives allmessage counts (for each nade V)
in addition to the sizes, of the state needed by each nad& round: of As¢. Each reducer thus has enough

11)

information to determine the next partition functiéh: V. — {1,...,n.}, defined by
1, ife=1
Fi(z) = Fy(z — 1), if > er () (s + |M |) <nt!

Fi(x —1)+1, otherwise

HereL(z) = {v | v < z andF;(v) = F;(x — 1)}. After determination of the new partition functidn, reducers
are now able to successfully output the “packaged merﬁﬂﬁf)’ of roundi of Ac¢, as well as the new messages
mgL sent in round, because the new partition functiéhis specifically designed to correctly load-balance these
tuple sets across the reducers while satisfying the menmmstaint. Therefore:

(i) Reducerr now simulates the local computation at eack P, and thus outputs the set) (which can be
computed fromH | Y andﬂfjfl)). Itis important to recall here that because mappers operakey-value
pairs one at a time in the MapReduce model, there is no réstrion the size of the output from any reducer
r in any MapReduce round (other than that it be polynomial)T[®erefore, a reducer may output (and
thus free-up its memory) each tuple geﬁf') as it is created (as reduceprocesses the nodes i one at a
time), and so there is no concern about reduadtempting to maintain in memory all sat” foru e P, at
once. Note that/”, as generated by a redugeishould contain tuples of the fortm, F; (u), u h(z)) so that

> Pl
mappers in MapReduce rourid+ 2 can correctly deliver? to reducerF;(u). Recall thaﬂsz,l denotes the
contents of the word with address nodeu’s memory at the end of local computation in rouind
(i) As areducer processes, and simulates the computation at, eachunadB. one at a time, generatiﬂggf),
reducerr also use§[ff) to generate the messagles‘f) to be sent by node in roundi of Acc. Reducer
encapsulateM(i in the tuple setm!? and outputs it alongsid#,,) before moving on to the next node in

P,. As withH , tuples mM“ should initially be generated byaredueen the form(r, F;(v), u,v,mq(i)v)

so that mappers in MapReduce rouing 2 can correctly deliver the set/l to reducerF; (v).

(i) Lastly regarding the simulation procedure, whenezerodeu € P. belng simulated broadcasts a message
b\, reducer outputs the tuplér, u, be)).

(iv) After simulation of each node € P, is complete, reducer also outputs a description of the new partition
function F;.

— Map j + 2: In Map phasg + 2, a mapper simply transforms the key in a data tuple as apiplepfor each tuple

(r, F;(u), u, h(i)), a mapper simply emits the tupl&; (u), u %); for each tupler, F;(v), u, v, mSJ,L), a mapper

u,l s Pl
simply emits the tuplé F;(v), u, v, mi(f)v) The exception to this is that tupl¢s, u, be)) containing broadcast
messages are expanded: for each, a mapper emitgples(r’, u, be)) — one for each reducef — so that every
reducer in Reducer phager 2 receives a single copy of each message broadcast durind fafitd ¢
— Tuples carrying metadata describing the (new) partitiamcfion F; are forwarded unchanged, because there
already exists one copy of each such metadata tuple for edciver, and there need be only one such copy per

reducer as well. After Map phaget 2, tuples from the sets) andﬂff) have been emitted with keys (u),
and for each broadcast messaﬁé one tuple containing a copy of’ has been emitted for each reducer as well;
thus, in Reduce phage+ 2, simulation of round + 1 of algorithm.A-¢ can begin.

It remains to comment on the memory-per-machine constvaiith must be satisfied during each MapReduce

round. Observe that, inductively, for eachthe sumzuepr(mff*l)l + |Msfl)|) = O(n'*€). These data tuples
are forwarded unchanged until Reduce phasel, in which the new partition functio; (-) for the next round of

simulation is computed, and then coIIectivé{ﬁi_l) andﬂfffl) are transformed inte) andM (. By construction

of the partition functionsg”;_; and F;, and by the assumption thalcc is a (n!t¢, n'*)-lightweightalgorithm, it
follows that these data tuples are never present on any eeducumber that exceedin'*<). Secondly, it should

be mentioned that because broadcast messages are noatkght any reducer, no reducer will ever receive more
thann = O(n'*¢) tuples containing broadcast messages. Thirdly, tuplegiong state or message counts are never
present in a number exceedingt any reducer, angartial message counts are explicitly load-balanced so that only
O(n) such information is passed to a single reducer as well. lyimaktadata tuples describing a partition function
never excee®(n) on any reducer because the domain of each partition funbtersize.. O

4 Coloring in the MapReduce Framework

Using the simulation theorem of Sectigh 3, we can simulatwAthm HGHDEGCoL in the MapReduce model and
thereby achieve a@(A)-coloring MapReduce algorithm running in expectedt) rounds. As in Lattanzi et al.[11],
we consider graphs witf(n!*¢) edges¢ > 0.

Theorem 3. When the input graply’ has2(n') edges, and < ¢ < c, there exists a®(A)-coloring algorithm
running in the MapReduce model wih{n°~¢) machines an®(n'*<) memory per machine, and having an expected
running time ofO(1) rounds.

Proof: It is easy to examine the lines of code in AlgorithmaDEGCoOL to ascertain that the total amount of
non-broadcast communication in any round in bounded abpvg(b!*¢). Specifically, the total non-broadcast com-
munication corresponding to only two lines of code — Lines:@ &1 — can be as high &(n'*<). For all other lines
of code, the volume of total non-broadcast communicatidsoisnded byO(n). Similarly, it is easy to examine the
lines of code in Algorithm MGHDEGCoL to verify that the total memory (in words) used by all nodestfeir local
computations in any one round is bounded abovegy'*<). Finally, it is also easy to verify that the maximum
amount of memory used by a node in any round of computatiGhis.

Thus, Algorithm HGHDEGCoOL is an (n'*¢ n)-lightweight algorithm on a Congested Clique and applying t
Simulation Theorem (Theorelmh 1) to this algorithm yields¢tamed result. O

It is worth emphasizing that the result holds even when0; in other words, even when the per machine memory is
O(n), the algorithm can compute & A)-coloring inO(1) rounds. This is in contrast with the results in Lattanzi et
al. [11], whereO(1)-round algorithms were obtained (e.g., for maximal matghinith n'*¢ per machine memory,
only whene > 0. In their work, settings = 0 (i.e., using®(n) memory per machine) resulted i»(log n) round
algorithms.

We end with the following corollary that is an immediate ceqsence of Theorefm 3.

Corollary 1. The problem of computing an(A)-coloring for ann-node graph with maximum degreand at least
2(n'*°) edges, for > 0is in MRC".

5 Conclusions

The results in this paper connect two models that are ussiaitiied by different research communities. In general, it
would be interesting to see if this connection has benefisine those discussed in the paper. Also, it would be be
interesting to study differences between these two moBelsexample, the Congested Clique model allows nodes to
remember arbitrary amount of information from one rounchi® iext. Does this give the Congested Clique model a
provable advantage over the “stateless” MapReduce model?

For the “smallA” case, i.e., whemd = O(poly(log n)), our paper presents &(log loglogn)-round (A + 1)-
coloring algorithm on a Congested Clique. One question ititatests us is whethe&p(1) rounds will suffice to
compute arO(A)-coloring even whem\ is small?

Following the lead of Lattanzi et al.[11], we have assumed ¢tach machine in the MapReduce model contains at
leastf2(n) memory for processing am-node graph. Relaxing this assumption is interesting aads¢o the question
of whether for some > 0, O(1) MapReduce rounds would suffice to computedm\)-coloring, even when the per
machine memory i®(n'~¢).

References

1. Leonid Barenboim, Michael Elkin, Seth Pettie, and JokanBchneider. The locality of distributed symmetry bregkiin
Proc. of IEEE FOCS2012.

2. Andrew Berns, James Hegeman, and Sriram V. Pemmarajer-Fagt Distributed Algorithms for Metric Facility Locati.

In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wéahofer, editordCALP (2), volume 7392 of_ecture Notes
in Computer Sciencgages 428-439. Springer, 2012.

3. Andrew Berns, James Hegeman, and Sriram V. Pemmarajer-Fagt Distributed Algorithms for Metric Facility Locati.
CoRR abs/1308.2473, August 2013.

4. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplifitedgtocessing on large cluste@mmun. ACM51(1):107-113,
January 2008.

5. Danny Dolev, Christoph Lenzen, and Shir Peled. "tri, g@ia”: Finding triangles and small subgraphs in a disteduetting.
In Proceedings of the 26th International Conference on Disiitd ComputingDISC’12, pages 195-209, Berlin, Heidelberg,
2012. Springer-Verlag.

6. Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clusteusing mapreduce. IRroceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Datai@, KDD '11, pages 681-689, New York, NY, USA, 2011.
ACM.

7. Joachim Gehweiler, Christiane Lammersen, and ChriS@rier. A Distributed O(1)-approximation Algorithm forettni-
form Facility Location Problem. IiProceedings of the Eighteenth Annual ACM Symposium on|Bisah in Algorithms and
Architectures SPAA '06, pages 237-243, New York, NY, USA, 2006. ACM.

. Ojvind Johansson. Simple distributégi+ 1)-coloring of graphslnf. Process. Lett.70(5):229-232, June 1999.

9. Howard Karloff, Siddharth Suri, and Sergei VassilvitskA model of computation for mapreduce. Rroceedings of the
Twenty-first Annual ACM-SIAM Symposium on Discrete Algorg SODA '10, pages 938-948, Philadelphia, PA, USA, 2010.
Society for Industrial and Applied Mathematics.

10. Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskiigaindrea Vattani. Fast greedy algorithms in mapreduce ardrsing.
In Proceedings of the Twenty-fifth Annual ACM Symposium onllBisan in Algorithms and ArchitectureSPAA '13, pages
1-10, New York, NY, USA, 2013. ACM.

11. Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, &®fgei Vassilvitskii. Filtering: A method for solving giajproblems
in mapreduce. IfProceedings of the Twenty-third Annual ACM Symposium oalledism in Algorithms and Architectures
SPAA 11, pages 85-94, New York, NY, USA, 2011. ACM.

12. Christoph Lenzen. Optimal Deterministic Routing andtiBg on the Congested Clique. Rroceedings of the 2013 ACM
Symposium on Principles of Distributed ComputiR@DC '13, pages 42-50, 2013.

13. Zvi Lotker, Boaz Patt-Shamir, and David Peleg. DistéluMST for Constant Diameter Graph®istributed Computing
18(6):453—-460, 2006.

14. Boaz Patt-Shamir and Marat Teplitsky. The round conigle{ distributed sorting: Extended abstract. Pnoceedings of
the 30th Annual ACM SIGACT-SIGOPS Symposium on PrincipBgstributed ComputingPODC 11, pages 249-256, New
York, NY, USA, 2011. ACM.

15. David PelegDistributed Computing: A Locality-Sensitive Approagblume 5. Society for Industrial Mathematics, 2000.

[e¢]

	Lessons from the Congested Clique Applied to MapReduce

