
ar
X

iv
:1

40
5.

43
56

v2
 [

cs
.D

C
]

19
 J

un
 2

01
4

Lessons from the Congested Clique Applied to MapReduce⋆

James W. Hegeman and Sriram V. Pemmaraju

Department of Computer Science
The University of Iowa

Iowa City, Iowa 52242-1419, USA

Abstract. The main results of this paper are (I) a simulation algorithmwhich, under quite general constraints,
transforms algorithms running on the Congested Clique intoalgorithms running in the MapReduce model, and (II)
a distributedO(∆)-coloring algorithm running on the Congested Clique which has an expected running time of
O(1) rounds, if∆ ≥ Θ(log4 n); andO(log log log n) rounds otherwise. Applying the simulation theorem to the
Congested CliqueO(∆)-coloring algorithm yields anO(1)-roundO(∆)-coloring algorithm in the MapReduce
model.
Our simulation algorithm illustrates a natural correspondence between per-node bandwidth in the Congested Clique
model and memory per machine in the MapReduce model. In the Congested Clique (and more generally, any net-
work in theCONGEST model), the major impediment to constructing fast algorithms is theO(log n) restriction
on message sizes. Similarly, in the MapReduce model, the combined restrictions on memory per machine and total
system memory have a dominant effect on algorithm design. Inshowing a fairly general simulation algorithm, we
highlight the similarities and differences between these models.

1 Introduction

TheCONGEST model of distributed computation is a synchronous, message-passing model in which the amount of
information that a node can transmit along an incident edge in one round is restricted toO(log n) bits [15]. As the
name suggests, theCONGEST model focuses oncongestionas an obstacle to distributed computation. Recently, a fair
amount of research activity has focused on the design of distributed algorithms in theCONGEST model assuming
that the underlying communication network is aclique [2,5,12,14]. Working with such aCongested Cliquemodel
completely removes from the picture obstacles that might bedue to nodes having to acquire information from distant
nodes (since any two nodes are neighbors), thus allowing us to focus on the problem of congestion alone. Making this
setting intriguing is also the fact that no non-trivial lower bounds for computation on a Congested Clique have been
proved. In fact, in a recent paper, Lenzen [12] showed how to do load-balancing deterministically so as to route up to
n2 messages (each of sizeO(log n)) in O(1) rounds in the Congested Clique setting, provided each node is the source
of at mostn messages and the sink for at mostn messages. Thus a large volume of information can be moved around
the network very quickly and any lower-bound approach in theCongested Clique setting will have to work around
Lenzen’s routing-protocol result. While Lotker et al. [13]mention overlay networks as a possible practical application
of distributed computation on a Congested Clique, as of now,research on this model is largely driven by a theoretical
interest in exploring the limits imposed by congestion.

MapReduce[4] is a tremendously popular parallel-programming framework that has become the tool of choice for
large-scale data analytics at many companies such as Amazon, Facebook, Google, Yahoo!, etc., as well as at many
universities. While the actual time-efficiency of a particular MapReduce-like implementation will depend on many
low-level technical details, Karloff et al. [9] have attempted to formalize key constraints of this framework to propose
aMapReduce modeland an associated MapReduce complexity class (MRC). Informally speaking, a problem belongs
toMRC if it can be solved in the MapReduce framework using: (i) a number of machines that is substantially sublinear
in the input size, i.e.,O(n1−ǫ) for constantǫ > 0, (ii) memory per machine that is substantially sublinear inthe input
size, (iii) O(poly(logn)) number of map-shuffle-reduce rounds, and (iv) polynomial-time local computation at each
machine in each round. Specifically, a problem is said to be inMRCi if it can be solved inO(logi n) map-shuffle-
reduce rounds, while maintaining the other constraints mentioned above. Karloff et al. [9] show thatminimum spanning
tree(MST) is inMRC0 (i.e., MST requiresO(1) map-shuffle-reduce rounds) on non-sparse instances. Following up
on this, Lattanzi et al. [11] show that other problems such asmaximal matching(with which the distributed computing
community is very familiar) are also inMRC0 (again, for non-sparse instances). We give a more-detaileddescription
of the MapReduce model in Section 1.1.

⋆ This work is supported in part by National Science Foundation grant CCF 1318166. E-mail:
[james-hegeman,sriram-pemmaraju]@uiowa.edu.

http://arxiv.org/abs/1405.4356v2

The volume of communication that occurs in a Shuffle step can be quite substantial and provides a strong incentive
to design algorithms in the MapReduce framework that use very few map-shuffle-reduce steps. As motivation for
their approach (which they callfiltering) to designing MapReduce algorithms, Lattanzi et al. [11] mention that past
attempts to “shoehorn message-passing style algorithms into the framework” have led to inefficient algorithms. While
this may be true for distributed message-passing algorithms in general, we show in this paper that algorithms designed
in the Congested Clique model provide many lessons on how to design algorithms in the MapReduce model. We
illustrate this by first designing an expected-O(1)-round algorithm for computing aO(∆)-coloring for a givenn-node
graph with maximum degree∆ ≥ log4 n in the Congested Clique model. We then simulate this algorithm in the
MapReduce model and obtain a corresponding algorithm that uses a constant number of map-shuffle-reduce rounds
to compute anO(∆)-coloring of the given graph. While both of these results arenew, what we wish to emphasize
in this paper is thesimulationof Congested Clique algorithms in the MapReduce model. Our simulation can also
be used to obtain efficient MapReduce-model algorithms for other problems such as2-ruling sets[2] for which an
expected-O(log log n)-round algorithm on a Congested Clique was recently developed.

1.1 Models

The Congested Clique Model.The Congested Clique is a variation on the more generalCONGEST model. The
underlying communication network is a size-n clique, i.e., every pair of nodes can directly communicate with each
other. Computation proceeds in synchronous rounds and in each round a node (i) receives all messages sent to it in
the previous round; (ii) performs unlimited local computation; and then (iii) sends a, possibly distinct, message of size
O(log n) to each other node in the network. We assume that nodes have distinct IDs that can each be represented in
O(log n) bits. We call this theCongested Cliquemodel.

Our focus in this paper is graph problems and we assume that the input is a graphG that is a spanning subgraph
of the communication network. Initially, each node in the network knows who its neighbors are inG. Thus knowledge
of G is distributed among the nodes of the network, with each nodehaving a particular local view ofG. Note thatG
can be quite dense (e.g., haveΩ(n2) edges) and therefore any reasonably fast algorithm for the problem will have to
be “truly” distributed in the sense that it cannot simply rely on shipping off the problem description to a single node
for local computation.

The MapReduce Model.Our description of the MapReduce model borrows heavily fromthe work of Karloff et
al. [9] and Lattanzi et al. [11]. Introduced by Karloff et al.[9], the MapReduce model is an abstraction of the popular
MapReduce framework [4] implemented at Google and also in the popular Hadoop open-source project by Apache.

The basic unit of information in the MapReduce model is a(key, value)-pair. At a high level, computation in this
model can be viewed as the application of a sequence of functions, each taking as input a collection of(key, value)-
pairs and producing as output a new collection of(key, value)-pairs. MapReduce computation proceeds in rounds,
with each round composed of a map phase, followed by a shuffle phase, followed by a reduce phase. In the map phase,
(key, value) pairs are processed individually and the output of this phases is a collection of(key, value)-pairs. In the
shuffle phase, these(key, value)-pairs are “routed” so that all(key, value)-pairs with the samekey end up together.
In the last phase, namely the reduce phase, each key and all associated values are processed together. We next describe
each of the three phases in more detail.

– The computation in the Map phase of roundi is performed by a collection ofmappers, one per(key, value) pair.
In other words, each mapper takes a(key, value) pair and outputs a collection of(key, value) pairs. Since each
mapper works on an individual(key, value) pair and the computation is entirely “stateless” (i.e., notdependent on
any stored information from previous computation), the mappers can be arbitrarily distributed among machines. In
the MapReduce model, keys and values are restricted to the word size of the system, which isΘ(log n). Because
of this restriction, a mapper takes as input only a constant number of words.

– In theShufflephase of roundi, which runs concurrently with the Map phase (as possible), key-value pairs emitted
by the mappers are moved from the machine that produced them to the machine which will run the reducer for
which they are destined; i.e., a key-value pair(k, v) emitted by a mapper is physically moved to the machine
which will run the reducer responsible for keyk in roundi. The Shuffle phase is implemented entirely by the
underlying MapReduce framework and we generally ignore theShuffle phase and treat data movement from one
machine to another as a part of the Map phase.

– In the Reducephase of roundi, reducers operate on the collected key-value pairs sent to them; a reducer is a
function taking as input a pair(k, {vk,j}j), where the first element is a keyk and the second is a multiset of values
{vk,j}j which comprises all of the values contained in key-value pairs emitted by mappers during roundi and

having keyk. Reducers emit a multiset of key-value pairs{(k, vk,l)}l, where the keyk in each pair is the same as
the keyk of the input.

For our purposes, the concepts of a machine and a reducer are interchangeable, because reducers are allowed to be “as
large” as a single machine on which they compute.

The MapReduce model of Karloff et al. [9] tries to make explicit three key resource constraints on the MapReduce
system. Suppose that the problem input has sizen (note that this isnot referring to the input size of a particular reducer
or mapper). We assume, as do Karloff et al. [9] and Lattanzi etal. [11], that memory is measured inO(log n)-bit-sized
words.

1. Key-sizes and value-sizes are restricted to aΘ(1) multiple of the word size of the system. Because of this restric-
tion, a mapper takes as input only a constant number of words.

2. Both mappers and reducers are restricted to using space consisting ofO(n1−ǫ) words of memory, and time which
is polynomial inn.

3. The number of machines, or equivalently, the number of reducers, is restricted toO(n1−ǫ).

Given these constraints, the goal is to design MapReduce algorithms that run in very few – preferably constant –
number of rounds. For further details on the justifications for these constraints, see [9].

Since our focus is graph algorithms, we can restate the aboveconstraints more specifically in terms of graph size.
Suppose that ann-node graphG = (V,E) is the input. Following Lattanzi et al. [11], we assume that each machine in
the MapReduce system has memoryη = n1+ǫ for ǫ ≥ 0. Sincen1+ǫ needs to be “substantially” sublinear in the input
size, we assume that the number of edgesm of G isΩ(n1+c) for c > ǫ. Thus the MapReduce results in this paper are
for non-sparse graphs.

1.2 Contributions

The main contribution of this paper is to show that fast algorithms in the Congested Clique model can be translated
via a simulation theorem into fast algorithms in the MapReduce framework. As a case study, we design a fast graph-
coloring algorithm running in the Congested Clique model and then apply the simulation theorem to this algorithm
and obtain a fast MapReduce algorithm. Specifically, given an n-node graphG with maximum degree∆ ≥ log4 n,
we show how to compute anO(∆)-coloring of G in expectedO(1) rounds in the Congested Clique model. We
also present an algorithm for small∆; for ∆ < log4 n we present an algorithm that computes a∆ + 1 coloring in
O(log log logn) rounds with high probability on a Congested Clique. The implication of this result to the MapReduce
model (via the simulation theorem) is that for anyn-node graph withΩ(n1+c) edges, for constantc > 0, there is a
MapReduce algorithm that runs inO(1) map-shuffle-reduce rounds usingn1+ǫ memory per machine, for0 ≤ ǫ < c
andnc−ǫ machines. Note that the even when usingn memory per machine andnc machines the algorithm still takes
O(1) rounds. This is in contrast to examples in Lattanzi et al. [11] such as maximal matching which requireO(log n)
rounds if the memory per machine isn.

The coloring algorithms in both models are new and faster than any known in the respective models, as far as we
know. However, the bigger point of this paper is the connection between models that are studied in somewhat different
communities.

1.3 Related Work

The earliest interesting algorithm in the Congested Cliquemodel is anO(log logn)-round deterministic algorithm
to compute a minimum spanning tree (MST), due to Lotker et al.[13]. Gehweiler et al. [7] presented a random
O(1)-round algorithm in the Congested Clique model that produced a constant-factor approximation algorithm for
the uniform metric facility location problem. Berns et al. [2,3] considered the more-general non-uniform metric fa-
cility location in the Congested Clique model and presenteda constant-factor approximation running in expected
O(log logn) rounds. Berns et al. reduce the metric facility location problem to the problem of computing a2-ruling
set of a spanning subgraph of the underlying communication network and show how to solve this inO(log logn)
rounds in expectation. In 2013, Lenzen presented a routing protocol to solve a problem called anInformation Distri-
bution Task[12]. The setup for this problem is that each nodei ∈ V is given a set ofn′ ≤ n messages, each of size
O(log n), {m1

i ,m
2
i , . . . ,m

n′

i }, with destinationsd(mj
i) ∈ V , j ∈ {1, 2, . . . , n′}. Messages are globally lexicograph-

ically ordered by their sourcei, destinationd(mj
i), andj. Each node is also the destination of at mostn messages.

Lenzen’s routing protocol solves the Information Distribution Task inO(1) rounds.

Our main sources of reference on the MapReduce model and for graph algorithms in this model are the work
of Karloff et al. [9] and Lattanzi et al. [11] respectively. Besides these, the work of Ene et al. [6] on algorithms for
clustering in MapReduce model and the work of Kumar et al. [10] on greedy algorithms in the MapReduce model are
relevant.

2 Coloring on the Congested Clique

In this section we present an algorithm, running in the Congested Clique model, that takes ann-node graphG with
maximum degree∆ and computes anO(∆)-coloring in expectedO(log log logn) rounds. In fact, for high-degree
graphs, i.e., when∆ ≥ log4 n, our algorithm computes anO(∆)-coloring inO(1) rounds. This algorithm, which we
call Algorithm HIGHDEGCOL, is the main contribution of this section. For graphs with maximum degree less than
log4 n we appeal to an already-known coloring algorithm that computes a(∆ + 1) coloring inO(log∆) rounds and
then modify its implementation so that it runs inO(log log logn) rounds on a Congested Clique.

We first give an overview of Algorithm HIGHDEGCOL. The reader is advised to follow the pseudocode given in
Algorithm 1 as they read the following. The algorithm repeatedly performs a simple random trial until a favorable
event occurs. Each trial is independent of previous trials.The key step of Algorithm HIGHDEGCOL is that each node
picks acolor groupk from the set{1, 2, . . . , ⌈∆/ logn⌉} independently and uniformly at random (Step 4). We show
(in Lemma 1) that the expected number of edges in the graphGk induced by nodes in color groupk is at most
O(n log2 n

∆
). Of course, some of the color groups may induce far more edgesand so we define agoodcolor group as

one that has at mostn edges. The measure of whether the random trial has succeededis the number of good color
groups. If most of the color groups are good, i.e., if at most2 logn color groups are not good then the random trial
has succeeded and we break out of the loop. We then transmit each graph induced by a good color group to a distinct
node in constant rounds using Lenzen’s routing scheme [12] (Step 11). Note that this is possible because every good
color group induces a graph that requiresO(n) words of information to completely describe. Every node that receives
a graph induced by a good color group locally computes a proper coloring of the graph using one more color than the
maximum degree of the graph it receives (Step 12). Furthermore, every such coloring in an iteration employs a distinct
palette of colors. Since there are very few color groups thatare not good, we are able to show that the residual graph
induced by nodes not in good color groups hasO(n) edges. As a result, the residual graph can be communicated inits
entirety to a single node for local processing. This completes the coloring of all nodes in the graph.

We now analyze Algorithm HIGHDEGCOL and show that (i) it terminates in expected-O(1) rounds and (ii) it uses
O(∆) colors. Subsequently, we discuss anO(log log log n) algorithm to deal with the small∆ case.

Lemma 1. For eachk, the expected number of edges inGk is n log2 n
2∆ .

Proof: Consider edge{u, v} in G. The probability that bothu andv choose color groupk is at mostlogn
∆

· logn
∆

=
log2 n
∆2 . SinceG has at most12∆ · n edges, the expected number of edges inGk is at mostn log2 n

2∆ . ⊓⊔

Lemma 2. The expected number of color-group graphsGk having more thann edges is at mostlogn.

Proof: By Lemma 1 and Markov’s inequality, the probability that color groupk has more thann edges is at most
n log2 n
2∆·n

= log2 n
2∆ . Since there are⌈∆/ logn⌉ groups, the expected number ofGk having more thann edges is bounded

above by2 ∆
logn

· log2 n
2∆ = logn. ⊓⊔

Lemma 3. With high probability, every color group has5n log n
∆

nodes.

Proof: The number of color groups is⌈∆/ logn⌉. Thus, for anyk, the expected number of nodes inGk, denoted
|V (Gk)|, is at mostn · logn

∆
. An application of a Chernoff bound then gives, for eachk,

P

(

|V (Gk)| > 5n ·
logn

∆

)

≤ 2−5n· log n

∆ < 2−5 log n =
1

n5

Taking the union over allk completes the proof. ⊓⊔

Lemma 4. With high probability, no nodeu in G has more than5 logn neighbors in any color group.

Algorithm 1 HIGHDEGCOL

Input: An n-node graphG = (V,E), of maximum degree∆
Output: A proper node-coloring ofG usingO(∆) colors

1. Each nodeu in G computes and broadcasts its degree to every other nodev in G.
2. If ∆ ≤ log4 n then use Algorithm LOWDEGCOL instead.
3. while true do
4. Each nodeu chooses acolor groupk from the set{1, 2, . . . , ⌈∆/ log n⌉} independently

and uniformly at random.
5. LetGk be the subgraph ofG induced by nodes of color groupk.
6. Each nodeu sends its choice of color group to all neighbors inG.
7. Each nodeu computes its degree within its own color-group graphGku

and sends its
color group and degree within color group to node 1.

8. Node 1, knowing the partition ofG into color groups and also knowing the degree of
every nodeu (u ∈ Gk) within the induced subgraphGk, can compute the number
of edges inGk for eachk. Thus node 1 can determine which color-group graphsGk

aregood, i.e., have at mostn edges.
9. If at most2 log n color-group graphs are not good, node 1 broadcasts a “break”

message to all nodes causing them tobreak out of loop;
endwhile

10. Node 1 informs every nodeu in a good group of the fact thatu’s color group is good
11. Using Lenzen’s routing protocol, distribute all information about all good color-group

graphsGk to distinct nodes ofG.
12. For each goodGk, the recipient ofGk computes a coloring ofGk using∆(Gk) + 1 colors.

The color palette used for eachGk is distinct.
13. The residual graphG of uncolored nodes has sizeO(n) with high probability, and can thus

be transmitted to a single node (for local proper coloring) inO(1) rounds.
14. Each node that locally colors a subgraph informs each node in the subgraph the color it has

been assigned.

Proof: Nodeu has maximum degree∆, so for anyk, the expected number of neighbors ofu which choose color
groupk is bounded above bylogn. Therefore, applying a Chernoff bound gives

P (|N(u) ∩Gk| > 5 logn) ≤ 2−5 logn =
1

n5

Taking the union over allk andu shows that, with probability at least1− 1
n3 , the assertion of the lemma holds. ⊓⊔

Lemma 5. The residual graphG, induced by groups that are good, hasO(n) edges, with high probability.

Proof: The residual graphG is a graph induced by at most2 logn color groups, since the algorithm is designed to
terminate only when it has performed a trial resulting in at most2 logn groups that are not good. With high probability,
no nodeu in G has more than5 logn neighbors in any of the (at most)2 logn color groups that make upG, so therefore
with high probability no nodeu has degree greater than10 log2 n in G. SinceG has at most(2 logn) · 5n logn

∆
nodes

with high probability, it follows that the number of edges inG is at most

(2 logn) ·
5n logn

∆
· 10 log2 n =

100n log4 n

∆

which isO(n) when∆ ≥ log4 n. ⊓⊔

Lemma 6. AlgorithmHIGHDEGCOL runs in a constant number of rounds, in expectation.

Proof: By Lemma 2 and Markov’s inequality, the expected number of color-group partitioning attempts required
before the number of “bad” color groups (i.e., color groups whose induced graphsGk contain more thann edges) is
less than or equal to2 logn is two. It is easy to verify that each iteration of thewhile-true loop requiresO(1) rounds
of communication.

When∆ ≥ log4 n, the residual graphG is of sizeO(n) with high probability, and can thus be communicated in
its entirety to a single node inO(1) rounds. That single node can then colorG deterministically using∆ + 1 colors
and then inform every node ofG of its determined color in one further round. ⊓⊔

Lemma 7. AlgorithmHIGHDEGCOL usesO(∆) colors.

Proof: A palette of sizeO(log n) colors suffices for each good color group because we showed inLemma 4 that
with high probability the maximum degree in any color group is 5 logn. Since there are a total of⌈∆/ logn⌉ color
groups and we use a distinct palette of sizeO(log n) for each good color group, we use a total ofO(∆) colors for the
good color groups. The residual graph induced by not-good color groups is colored in the last step and it requires an
additionalO(∆) colors. ⊓⊔

2.1 Coloring low-degree graphs

Now we describe an algorithm that we call LOWDEGCOL that, given ann-node graphG with maximum degree
∆ < log4 n, computes a proper(∆ + 1)-coloring with high probability inO(log log logn) rounds in the Congested
Clique model. The algorithm has two stages. The first stage ofthe algorithm is based on the simple, natural, ran-
domized coloring algorithm first analyzed by Johannson [8] and more recently by Barenboim et al. [1]. Each node
u starts with a color paletteCu = {1, 2, . . . , ∆ + 1}. In each iteration, each as-yet uncolored nodeu makes a ten-
tative color choicec(u) ∈ Cu by picking a color fromCu independently and uniformly at random. If no node in
u’s neighborhood picks colorc(u) thenu colors itselfc(u) andc(u) is deleted from the palettes of all neighbors of
u. Otherwise,u remains uncolored and participates in the next iteration ofthe algorithm. We call one such iteration
RANDCOLSTEP. Barenboim et al. [1] show (as part of the proof of Theorem 5.1) that if we executedO(log∆) iter-
ations of RANDCOLSTEP, then with high probability the nodes that remain uncoloredinduce connected components
of sizeO(poly(logn)). Since we are evaluating a situation in which∆ < log4 n, this translates to usingO(log logn)
iterations of RANDCOLSTEP to reach a state with small connected components. Now noticethat this algorithm uses
only the edges ofG – the graph being colored – for communication. By utilizing the entire bandwidth of the under-
lying clique communication network, it is possible to speedup this algorithm significantly and get it to complete in
O(log log logn) rounds. The trick to doing this is to rapidly gather, at each nodeu, all information needed by nodeu
to execute the algorithm locally. We make this precise further below.

Once we executeO(log log logn) iterations of RANDCOLSTEP and all connected components induced by as-
yet uncolored nodes become polylogarithmic in size, then Stage 2 of the algorithm begins. In this stage, first each
connected component is gathered at a node; we show how to accomplish this inO(log log logn) rounds by appealing
to the deterministic MST algorithm on a Congested Clique dueto Lotker et al. [13]. Then each connected component
of uncolored nodes is shipped off to a distinct node and is locally (and independently) colored using∆+ 1 colors.

We start by developing Stage 1 first. Suppose that for some constantsc1, c2, c3, T < c1 log logn iterations of
RANDCOLSTEPare needed before all connected components induced by uncolored nodes have size at mostc2 ·log

c3 n
with probability at least1 − 1/n. Let GL denote a labeled version of graphG in which each nodeu is labeled
(IDu,RSu), whereIDu is theO(logn)-bit ID of nodeu andRSu is a random bit string of lengthT · ⌈log∆⌉. For
integerk ≥ 0 and nodeu ∈ V , letB(u, k) denote the set of all nodes withink hops ofu in G. The following lemma
shows that it is quite helpful if each nodeu knewGL[B(u, T)], the subgraph of the labeled graphGL induced by
nodes inB(u, T).

Lemma 8. Suppose that each nodeu ∈ V knowsGL[B(u, T)]. Then each nodeu can locally compute a color
c(u) ∈ {⊥} ∪ {1, 2, . . . , ∆+ 1} such that (i) nodes not colored⊥ induce a properly colored subgraph and (ii) nodes
colored⊥ induce connected components whose size is bounded above byc2 log

c3 n with probability at least1− 1/n.

Proof: With respect to the execution of iterations of RANDCOLSTEP, thestateof a nodeu is its current color palette
Cu and its current color choicec(u). If c(u) = ⊥, thenu has not colored itself; otherwise,c(u) is a permanently
assigned color that nodeu has given itself. To figure out the state of nodeu afterT iterations of RANDCOLSTEP, it
suffices to know (i) the state ofu and its neighbors afterT − 1 iterations of RANDCOLSTEP and (ii) at most⌈log∆⌉
random bits associated with each of these nodes so that theirrandom color choices in iterationT can be determined.
Stated differently, it suffices to know (i) the subgraphGL[B(u, 1)] and (ii) the state of each node inB(u, 1) afterT −1
iterations of RANDCOLSTEP. This in turn can be computed from (i) the subgraphGL[B(u, 2)] and (ii) the state of
all nodes inB(u, 2) afterT − 2 iterations of RANDCOLSTEP. Continuing inductively, we conclude that in order to
know the state of nodeu afterT iterations of RANDCOLSTEP, it suffices to knowGL[B(u, T)], where each nodev in
B(u, T) is labeled with an(IDv,RSv)-pair, whereRSv is a random bit string of lengthT · ⌈log∆⌉. ⊓⊔

Now we focus on the problem of each node gatheringGL[B(u, T)] and show that this problem can be solved in
O(log log logn) rounds, given thatT = O(log log n) and∆ < log4 n.

Lemma 9. There is a Congested Clique algorithm running on ann-node input graphG with maximum degree∆ <
log4 n that terminates inO(log log logn) rounds at the end of which, every nodeu knowsGL[B(u, T)].

Proof: The algorithm starts with each nodeu broadcasting its degree inG to all nodes inV . This enables every node
to locally compute∆ and also a random bit stringRSu of lengthT · ⌈log∆⌉. After computingRSu, each nodeu sends
to each neighbor inG the pair(IDu,RSu). Now each nodeu is in possession of the collection of(IDv,RSv)-pairs for
all neighborsv. Each nodeu now has a goal of sending this collection to every neighbor. Note that the total volume
of information thatu wishes to send out is bounded above by∆2 (measured inO(log n)-sized words). Also, each
nodeu is the destination for at most∆2 words. Since∆2 = o(n), using Lenzen’s routing protocol [12], each node
can successfully send its entire collection of(ID,RS)-pairs to all neighbors in constant rounds. Based on this received
information, each nodeu can constructGL[B(u, 1)].

Proceeding inductively, suppose that each nodeu has gatheredGL[B(u, t)], where1 ≤ t < T . We now show
that in an additional constant rounds,u can gatherGL[B(u, 2t)]. First note that|B(u, t)| ≤ ∆t+1 for any node
u ∈ V . Therefore,GL[B(u, t)] can be completely described usingO(∆t+2) words of information. In order to compute
GL[B(u, 2t)], each nodeu sendsGL[B(u, t)] to each node inB(u, t). A nodeu, on receivingGL[B(v, t)] for all nodes
v in B(u, t), can perform a local computation to determineGL[B(u, 2t)]. Note that the total volume of information
thatu needs to send out during this communication isO(∆2t+3) words. By a symmetric reasoning, each nodeu is the
destination for at mostO(∆2t+3) words of information. Since∆ < log4 n andt < T = O(log log n), ∆2t+3 = o(n)
and therefore using Lenzen’s routing protocol, each nodeu can sendGL[B(u, t)] to each node inB(u, t) in constant
rounds.

Since the goal of the algorithm is for each nodeu to learnGL[B(u, T)], whereT = O(log logn), it takes
O(log log logn) iterations of the above described inductive procedure to reach this goal. The result follows from
the fact that each iteration involves a constant number of communication rounds. ⊓⊔

An immediate consequence of Lemmas 8 and 9 is that there is a Congested Clique algorithm running on ann-node
input graphG with maximum degree∆ < log4 n that terminates inO(log log logn) rounds at the end of which,
every nodeu has assigned itself a colorc(u) ∈ {⊥} ∪ {1, 2, . . . , ∆ + 1} such that (i) nodes not colored⊥ induce a
properly colored subgraph and (ii) nodes colored⊥ induce connected components whose size is bounded above by
O(poly(logn)) with probability at least1− 1/n. This brings us to Stage 2 of our algorithm. The first task in this stage
is to distribute information about uncolored nodes (i.e., nodesu with c(u) = ⊥) such that each connected component
in the subgraph induced by uncolored nodes ends up at a node inthe network. To perform this task inO(log log logn)
rounds, we construct a complete, edge-weighted graph in which an edge{u, v} has weightw(u, v) = 1 if {u, v} ∈ E
andc(u) = c(v) = ⊥ and has weightn otherwise. Thus, edges in the subgraph ofG induced by uncolored nodes have
weight 1 and edges connecting all other pairs of nodes have weight n. This complete, edge-weighted graph serves as
an input to the MST algorithm of Lotker et al. Note that this input is distributed across the network with each node
having knowledge of the weights of alln − 1 edges incident on it. Also note that this knowledge can be acquired
by all nodes after just one round of communication. As mentioned earlier, the Lotker et al. MST algorithm runs in
O(log logn) rounds. Since we are not interested in computing an MST, but only in identifying connected components,
we do not have to run the Lotker et al. algorithm to completion.

The Lotker et al. algorithm runs in phases, taking constant number of communication rounds per phase. At the end
of phasek ≥ 0, the algorithm has computed a partitionFk = {F k

1 , F
k
2 , . . . , F

k
mk

} of the nodes ofG into clusters.
Furthermore, for each clusterF ∈ Fk, the algorithm has computed a spanning treeT (F). The correctness of the
algorithm is ensured by the fact that each treeT (F) is a subgraph of the MST. It is worth noting that every node in the
network knows the partitionFk and the collection{T (F) | F ∈ Fk} of trees. Suppose that the minimum size cluster
in Fk has sizeN . TheO(log logn) running time of the Lotker et al. algorithm arises from the fact that in each phase
the algorithm merges clusters and at the end of Phasek+1 the smallest cluster inFk+1 has size at leastN2. Thus the
size of the smallest cluster “squares” in each phase and therefore it takesO(log logn) rounds to get to the stage where
the smallest cluster has sizen, at which point there is only one clusterF andT (F) is the MST.

We are interested in executingT phases of the Lotker et al. algorithm so that the size of the smallest cluster in
FT is at least the size of the largest connected component induced by uncolored nodes. Since the size of the largest
connected component in the graph induced by uncolored nodesis O(poly(log n)), it takes onlyT = O(log log logn)
phases to reach such a stage. LetFT = {FT

1 , FT
2 , . . . , FT

m} be the partition of the nodes ofG into clusters at the end
of T phases of the Lotker et al. algorithm.

Lemma 10. LetC be a connected component in the subgraph induced by uncolored nodes. ThenC ⊆ FT
i for somei.

Proof: To obtain a contradiction suppose thatC ∩ FT
i 6= ∅ andC ∩ FT

j 6= ∅ for some1 ≤ i 6= j ≤ m. Then there is
an edge of weight 1 connecting a node inFT

i and a node inFT
j . Since|FT

i | ≥ |C|, the treeT (FT
i) contains an edge

of weightn. Thus at some point in the Lotker et al. algorithm, it chose tomerge clusters using an edge of weightn
when it could have used an edge of weight 1. This contradicts the behavior of the Lotker et al. algorithm. ⊓⊔

The rest of Stage 2 is straightforward. One node, sayu∗, considers eachF ∈ FT and deletes all edges of weight
n from T (F). This will result inF splitting up into smaller clusters; these clusters are the connected components of
the subgraph ofG induced by uncolored nodes. Note that at this point we think of a connected component as simply
a subset of nodes. Nodeu∗ then ships off each connected component to a distinct node, possibly the node with the
smallest ID in that component. This takes constant number ofrounds via the use of Lenzen’s routing protocol. Suppose
that a nodeu has received a connected componentC. Nodeu then contacts the nodes inC to find out (i) all edges
connecting pairs of nodes inC, and (ii) the current palettesCv for each nodev ∈ C. Since|C| is polylogarithmic in
size and∆ < log4 n, it is easy to see that all of this information requires polylogarithmic number of bits to represent
and therefore can be communicated tou in constant number of rounds via Lenzen’s routing protocol.Nodeu then
colors each nodev ∈ C using a color from its paletteCv such that the graph induced byC is properly colored. This
completes Stage 2 and we have a(∆+ 1)-coloring ofG.

Lemma 11. Given ann-node graphG with maximum degree∆ ≤ log4 n, Algorithm LOWDEGCOL computes a
proper(∆+ 1)-coloring inO(log log logn) rounds in the Congested Clique model.

Combining Lemmas 6 and 7 along with Lemma 11 gives the following theorem.

Theorem 1. Given ann-vertex input graphG = (V,E) with maximum degree∆ ≥ log4 n, AlgorithmHIGHDEGCOL

computes anO(∆)-coloring in O(1) rounds (in expectation) in the Congested Clique model. For arbitrary ∆, an
O(∆)-coloring can be computed inO(log log logn) rounds in expectation in the Congested Clique model.

3 MapReduce Algorithms from Congested Clique Algorithms

In this section, we prove asimulationtheorem establishing that Congested Clique algorithms (with fairly weak re-
strictions) can be efficiently implemented in the MapReducemodel. The simulation ensures that a Congested Clique
algorithm running inT rounds can be implemented inO(T) rounds (more precisely,3·T+O(1) rounds) in the MapRe-
duce model, if certain communication and “memory” conditions are met. The technical details of this simulation are
conceptually straightforward, but the details are a bit intricate.

We will now precisely define restrictions that we need to place on Congested Clique algorithms in order for the
simulation theorem to go through. We assume that each node inthe Congested Clique possesses a word-addressable
memory whose words are indexed by the natural numbers. For analgorithmACC running in the Congested Clique,
let I(j)u ⊂ N be the set of memory addressesusedby nodeu during the local computation in roundj (not including
the sending and receipt of messages).

After local computation in each round, each node in the Congested Clique may send (or not send) a distinct message
of sizeO(log n) to each other node in the network. In defining notation, we make a special distinction for the case
where a nodeu sends in thesamemessage to every other nodev in a particular round; i.e., nodeu sends abroadcast
message. The reason for this distinction is that broadcastscan be handled more efficiently on the receiving end in the
MapReduce framework than can distinct messages sent byu. Letm(j)

u,v denote a message sent by nodeu to nodev in

roundj and letD(j)
u ⊆ V be the set of destinations of messages sent by nodeu in roundj. LetM (j)

u = {m
(j)
u,v : v ∈

D
(j)
u ⊂ V } be the set of messagessentby nodeu in roundj of algorithmACC , except letM (j)

u = ∅ if u has chosen

to broadcast a messageb(j)u in roundj. Similarly, letM
(j)

u = {m
(j)
v,u : u ∈ D

(j)
v andv is not broadcasting in roundj}

be the set of messagesreceivedby nodeu in roundj, except that we exclude messagesb
(j)
v from nodesv that have

chosen to broadcast in roundj. We say thatACC , running on ann-node Congested Clique, is(K,N)-lightweightif

(i) for each roundj (in the Congested Clique),
∑

u∈V (|M
(j)

u |+ |I
(j)
u |) = O(K);

(ii) there exists a constantC such that for each roundj and for each nodeu, I(j)u ⊆ {1, 2, . . . , ⌈C ·N⌉}; and
(iii) each nodeu performs only polynomial-time local computation in each round.

In plain language: no node uses more thanO(N) memory for local computation during a round; the total amount
of memory that all nodes use and the total volume of messages nodes receive in any round is bounded byO(K).
Regarding condition (iii), traditional models of distributed computation such as theCONGEST andLOCAL models
allow nodes to perform arbitrary local computation (e.g., taking exponential time), but since the MapReduce model
requires mappers and reducers to run in polynomial time, we need this extra restriction.

Theorem 2. Let ǫ, c satisfy0 ≤ ǫ ≤ c, and letG = (V,E) be a graph onn vertices havingO(n1+c) edges. IfACC

is a (n1+c, n1+ǫ)-lightweight Congested Clique-model algorithm running oninputG in T rounds, thenACC can be
implemented in the MapReduce model withnr = nc−ǫ machines andmr = Θ(n1+ǫ) (words of) memory per machine
such that the implementation runs inO(T) Map-Shuffle-Reduce rounds onG.

Proof: The simulation that will prove the above theorem contains two stages: theInitialization stage and theSimula-
tion stage. In the Initialization stage, the input to the MapReduce system is transformed from the assumed format (an
unordered list of edges and vertices ofG) into a format in which each piece of information, be it an edge, node, or
something else, that is associated with a node ofG is gathered at a single machine. After this gathering of associated
information has been completed, the MapReduce system can emulate the execution of the Congested Clique algorithm.
Initialization stage. Input (in this case, the graphG) in the MapReduce model is assumed to be presented as an
unordered sequence of tuples of the form(∅, u), whereu is a vertex ofG, or (∅, (u, v)), where(u, v) is an edge ofG.
The goal of the Initialization stage is to partition the input G among thenr reducers such that each reducerr receives
a subsetPr ⊆ V and all edgesEr incident on nodes inPr such that|Pr| + |Er| is bounded above byO(n1+ǫ). This
stage can be seen as consisting of two tasks: (i) every reducer r learns the degree degG(u) of every nodeu in G and (ii)
every reducer computes a partition (the same one) given by the partition functionF0 : V −→ {1, 2, . . . , nr}, defined
by

F0(x) =











1, if x = 1

F0(x− 1), if
∑

v∈L(x) degG(v) ≤ n1+ǫ,

F0(x− 1) + 1, otherwise

HereL(x) = {j < x : F0(j) = F0(x − 1)}. All nodes in the same group in the partition are mapped to thesame
value byF0 and will be assigned to a single reducer. Since the degree of each node is bounded above byn, it is easy
to see that for anyr ∈ {1, 2, . . . , nr}, F−1

0 (r) is a subset of nodes ofG such that|F−1
0 (r)| +

∑

u∈F
−1
0 (r) degG(u)

is O(n1+ǫ). Each of the two tasks mentioned above can be implemented in a(small) constant number of MapReduce
rounds as follows.

– Map 1: In Map phase 1, for each tuple(∅, u), a mapper chooses a random reducerr and emits the tuple(r, u).
For each tuple(∅, (u, v)), a mapper again chooses a random reducerr and emits the tuple(r, (u, v)). Because the
reduce keys are chosen at random, with high probability (actually, exponentially high probability) each reducer in
Reduce phase 1 will receiveO(n1+ǫ) tuples.

– Reduce 1:In Reduce phase 1, a reducerr receives tuples whose values consist of some collectionPr ⊆ V of
vertices and some collectionEr ⊆ E of edges ofG. For each value consisting of a vertexu, a reducerr re-emits
the tuple(r, u), and for each value consisting of an edge(u, v), reducerr re-emits the tuple(r, (u, v)). In addition,
a reducerr emits, for each vertexu such that reducerr received an edge(u, v) or (v, u), a tuple(r, u, dr,u), where
dr,u is total number of edges received by reducerr containingu. (In other words,dr,u is the partial degree ofu
seen by reducerr.)

– Map 2: In Map phase 2, mappers again load-balance tuples containing vertices or edges as values across the
reducers uniformly at random (an action which is successfulw.h.p.), as in Map phase 1. In addition, when a
mapper processes a tuple of the form(r, u, dr,u), it emits the tuple((u mod nr), u, dr,u). Hereu mod nr refers to
the reduction of the identifier of nodeu modulo the number of reducers,nr. There are at mostn ·nr = O(n1+c−ǫ)
such tuples, and thus (i) each reducer is the destination ofO(n) such tuples (of the form((u mod nr), u, dr,u));
and (ii) all tuples containing a partial degree sum of nodeu among their values are given the same key and thus
sent to the same reducer during the second MapReduce round.

– Reduce 2:In Reduce phase 2, a reducerr again re-emits tuples(r, u) and (r, (u, v)) for each vertex or edge
received as a value. For tuples of the form(r, u, dr′,u), reducerr aggregates the partial degree sums ofu to
compute the full degree degG(u) of u in G, and emits the tuple(r, u, degG(u)).

– Map 3: In Map phase 3, mappers once again load-balance tuples containing vertices or edges as values across
the reducers as in Map phases 1 and 2. For each tuples of the form (r, u, degG(u)), a mapper emitsnr tuples
(r1, u, degG(u)), (r1, u, degG(u)), . . . , (rnr

, u, degG(u)) – one for each reducer. Thus, for each reducer, exactly
n tuples containing (full) degree information are emitted – one for each vertex ofG.

– Reduce 3:In Reduce phase 3, a reducerr now has access to the degrees of all vertices ofG and can thus compute
the partition functionF0 defined earlier. Then, for each nodeu received, a reducerr outputs the tuple(r, F0(u), u),
and for each edge(u, v) received, a reducerr outputs the tuples(r, F0(u), (u, v)) and(r, F0(v), (u, v)).

– In addition to “packaging” the vertex and edge information of G so that incident edges of a nodeu can be collected
at the reducerF0(u) assigned to simulate computation atu, reducers must also emit tuples which allow both (i)

the currently collected degrees of each vertex inG and (ii) the partition functionF0 to be propagated forward
through the rounds of the MapReduce computation. Fortunately this is straightforward: for each degree tuple
(r, u, degG(u)) received by reducerr, reducerr re-emits the same tuple. As well,F0 : V −→ {1, . . . , nr} can be
fully described byn pairs(v, F0(v)), and so reducerr emits then tuples(r, v, F0(v)), which will allow reducer
r to “remember” the partition functionF0(·) in the next round. Observe that the totality of the memory required
to support knowledge of the partition function and all degrees inG is O(n), and thus fits into the memory of a
reducer without any trouble.

– Map 4: Finally, in Map phase 4, a mapper receives and processes two different tuple formats: (i) tuples of the
form (r, r′, z), wherer′ is another reducer index andz is some information (of lengthO(1) words) representing
either a vertex or an edge; and (ii) tuples of the form(r, v, z), wherev is a vertex identifier andz is either a degree
value or a reducer identifier. In case (i) (tuples of the form(r, r′, z)), a mapper emits the tuple(r′, z). In case (ii)
(tuples of the form(r, v, z), a mapper simply outputs the same tuple(r, v, z) unchanged.

– After the Map phase of the round 4 of the MapReduce computation has completed, the Initialization phase is
complete, and the simulation ofACC is ready to begin.

Simulation stage. At a high level, a Reduce phase serves as the “local computation” phase of the Congested Clique
simulation, whereas a Map phase (together with the subsequent shuffle phase) serves as the “communication” phase
of the simulation. However, there is, in general, a constant-factor slow-down because it may be that the sending and
receiving of messages inACC could cause the subset of nodes assigned to a reducer to aggregate more thanO(n1+ǫ)
memory, necessitating a re-partitioning of the nodes amongthe reducers so as not to violate the memory-per-machine
constraint.

Recall thatI(i)u denotes the set of memory addresses used by a nodeu in roundi of ACC . Leth(i)
u,j be the value of

word j ∈ I
(i)
u in the memory of nodeu after nodeu has completed local computation in roundi of ACC , but before

messages have been sent and received in this round. Fori > 0, define a tuple set

H(i)
u = {(Fi(u), (u, i, h

(i)
u,j)) : j ∈ I(i)u }

whereFi(·) is the partition function used in roundi. LikeF0, defined in the Initialization stage,Fi partitionsG intonr

groups, one per reducer, so that reducer memory constraintsare not violated in roundi. The collection of tuplesH(i−1)
u

is a representation, in the MapReduce key-value format, of the information necessary to simulate the computations of
nodeu in roundi of the Congested Clique algorithmACC . The use ofFi(u) as the key in each of the tuples inH(i)

u

ensures that all information needed to simulate a local computation atu in ACC goes to the same reducer. Additionally,
note that the inclusion of the identifier ofu with the values allows the words fromu’s memory to be reassembled and
distinguished from information associated with other nodes v ∈ F−1

i (u). We assume thatH(0)
u is the information

in tuple format that nodeu has initially about graphG. In other words,H(0)
u = {(F0(u), u)} ∪ {(F0(u), (u, v)) :

v is a neighbor ofu}.

Once an initial partition functionF0(·) has been computed and the initial collectionsH
(0)
u have been assembled the

main goals of our simulation algorithm are to (i) provide a mechanism for transformingH(i−1)
u into H

(i)
u during the

reduce phase of a MapReduce round; and (ii) provide a means oftransmitting messages to reducers of a subsequent
round (corresponding to messages transmitted in the Congested Clique at the end of each round). Since we assume
messages to be sent and received after local computation hasoccurred during a Congested Clique round,M

(i)
u can be

determined fromH(i)
u ; in turn,H(i)

u is a function ofH(i−1)
u andM

(i−1)

u .
We describe the details of the simulation of a single round (roundi) of a Congested Clique algorithmACC below.

Let j = 3i − 1. Roundi of ACC is simulated by three MapReduce rounds (a total of six Map or Reduce phases) –
Reducej−1, Mapj, Reducej, Mapj+1, Reducej+1, and Mapj+2. We assume inductively that as input to Reduce
phasej − 1 below, each reducer receives, in addition to data tuples,O(n) metadata tuples containing a description of

a partition functionFi−1(·) such that for eachr,
∑

u∈Pr
(|H

(i−1)
u |+ |M

(i−1)

u |) = O(n1+ǫ), wherePr = F−1
i−1(r).

– Reduce phasej−1: In Reduce phasej−1, a reducerr receives input consisting ofH(i−1)
u together withM

(i−1)

u

for eachu ∈ Pr; for each suchu, reducerr performs the following steps:
(i) Reducerr simulates the local computation of Roundi of ACC atu.

(ii) Reducerr computesH(i)
u fromH

(i−1)
u andM

(i−1)

u , but does not yet outputany tuples ofH(i)
u ; rather, reducer

r outputs only a tuple(r, u, su) containing the size of the informationsu = |H
(i)
u |.

(iii) Reducerr computesM(i)
u from H

(i)
u , but again,does not outputany elements ofM(i)

u . Reducerr then
computes, for eachv ∈ V , the aggregate countcr,v of messages emanating from nodes inPr and destined for
v, and outputs the tuple(r, v, cr,v).

(iv) Reducerr outputs the exact same tuples it received as input,H
(i−1)
u andM

(i−1)

u .

– Map phasej: Before message tuples can be generated and aggregated (as a collectionM
(i)

u at reducerF (u)) a
rebalancing of the nodes to reducers must be performed to ensure that the reducer-memory constraint is not vio-

lated. In Map phasej, a mapper forwards tuples from either aH(i−1)
u or aM

(i−1)

u through unchanged. However,
for each tuple of the form(r, u, cr,u), a mapper outputs the tuple(u mod nr, u, cr,u). In addition, for each tuple
of the form(r, u, su), a mapper outputsnr tuples(r′, u, su) – one for each reducerr′ – so that every reducer can

know the future size ofH(i)
u .

– Reduce phasej: In Reduce phasej, a reducerr receives as input nearly the exact same input (and output) of

reducerr in the previous MapReduce round – the union ofH
(i−1)
u andM

(i−1)

u for eachu ∈ Pr – except that
instead of receiving tuples of the form(r, u, cr,u) for eachu ∈ V , reducerr receivesall partial message counts
for the subset of verticesu for whichu mod nr = r; as well, each reducer receivesn tuples of the form(r, u, su)
describing the amount of memory required by nodeu in roundi of ACC . Reducerr aggregates tuples of the form

(u mod nr, u, cr,u) and outputs(r, u, |M
(i)

u |), since|M
(i)

u | is precisely the sum of the partial message countscr,u.
(Notice that a reducerr receivesO(n) such tuples.) Reducerr forwards all other tuples through unchanged to the
next MapReduce round.

– Map phasej + 1: In Map phasej + 1, a mapper continues to forward all tuples through unchangedto Reduce

phasej + 1, except that for each tuple of the form(r, u, |M
(i)

u |), a mapper outputsnr tuples(r′, u, |M
(i)

u |) – one
for each reducerr′. In this way, each reducer in Reducer phasej + 1 can come to know alln message counts for
each nodeu ∈ V .

– Reduce phasej + 1: In Reduce phasej + 1, each reducer receives alln message counts (for each nodeu ∈ V)
in addition to the sizessu of the state needed by each nodeu in roundi of ACC . Each reducer thus has enough
information to determine the next partition functionFi : V −→ {1, . . . , nr}, defined by

Fi(x) =











1, if x = 1

Fi(x− 1), if
∑

v∈L(x)(sv + |M
(i)

v |) ≤ n1+ǫ,

Fi(x− 1) + 1, otherwise

HereL(x) = {v | v < x andFi(v) = Fi(x− 1)}. After determination of the new partition functionFi, reducers
are now able to successfully output the “packaged memory”H

(i)
u of roundi of ACC , as well as the new messages

m
(i)
u,v sent in roundi, because the new partition functionFi is specifically designed to correctly load-balance these

tuple sets across the reducers while satisfying the memory constraint. Therefore:
(i) Reducerr now simulates the local computation at eachu ∈ Pr and thus outputs the setH(i)

u (which can be

computed fromH(i−1)
u andM

(i−1)

u). It is important to recall here that because mappers operate on key-value
pairs one at a time in the MapReduce model, there is no restriction on the size of the output from any reducer
r in any MapReduce round (other than that it be polynomial). [9] Therefore, a reducerr may output (and
thus free-up its memory) each tuple setH

(i)
u as it is created (as reducerr processes the nodes inPr one at a

time), and so there is no concern about reducerr attempting to maintain in memory all setsH(i)
u for u ∈ Pr at

once. Note thatH(i)
u , as generated by a reducerr, should contain tuples of the form(r, Fi(u), u, h

(i)
u,l) so that

mappers in MapReduce roundj + 2 can correctly deliverH(i)
u to reducerFi(u). Recall thath(i)

u,l denotes the
contents of the word with addressl in nodeu’s memory at the end of local computation in roundi.

(ii) As a reducerr processes, and simulates the computation at, each nodeu ∈ Pr one at a time, generatingH(i)
u ,

reducerr also usesH(i)
u to generate the messagesM

(i)
u to be sent by nodeu in roundi of ACC . Reducerr

encapsulatesM (i)
u in the tuple setM(i)

u and outputs it alongsideH(i)
u before moving on to the next node in

Pr. As withH
(i)
u , tuples inM(i)

u should initially be generated by a reducerr in the form(r, Fi(v), u, v,m
(i)
u,v)

so that mappers in MapReduce roundj + 2 can correctly deliver the setM
(i)

v to reducerFi(v).
(iii) Lastly regarding the simulation procedure, whenevera nodeu ∈ Pr being simulated broadcasts a message

b
(i)
u , reducerr outputs the tuple(r, u, b(i)u).

(iv) After simulation of each nodeu ∈ Pr is complete, reducerr also outputs a description of the new partition
functionFi.

– Map j + 2: In Map phasej + 2, a mapper simply transforms the key in a data tuple as appropriate: for each tuple
(r, Fi(u), u, h

(i)
u,l), a mapper simply emits the tuple(Fi(u), u, h

(i)
u,l); for each tuple(r, Fi(v), u, v,m

(i)
u,v), a mapper

simply emits the tuple(Fi(v), u, v,m
(i)
u,v). The exception to this is that tuples(r, u, b(i)u) containing broadcast

messages are expanded: for each, a mapper emitsnr tuples(r′, u, b(i)u) – one for each reducerr′ – so that every
reducer in Reducer phasej + 2 receives a single copy of each message broadcast during round i of ACC .

– Tuples carrying metadata describing the (new) partition function Fi are forwarded unchanged, because there
already exists one copy of each such metadata tuple for each reducer, and there need be only one such copy per

reducer as well. After Map phasej + 2, tuples from the setsH(i)
u andM

(i)

u have been emitted with keysFi(u),
and for each broadcast messageb

(i)
u , one tuple containing a copy ofb(i)u has been emitted for each reducer as well;

thus, in Reduce phasej + 2, simulation of roundi+ 1 of algorithmACC can begin.

It remains to comment on the memory-per-machine constraintwhich must be satisfied during each MapReduce

round. Observe that, inductively, for eachr, the sum
∑

u∈Pr
(|H

(i−1)
u | + |M

(i−1)

u |) = O(n1+ǫ). These data tuples
are forwarded unchanged until Reduce phasej + 1, in which the new partition functionFi(·) for the next round of

simulation is computed, and then collectivelyH
(i−1)
u andM

(i−1)

u are transformed intoH(i)
u andM(i)

u . By construction
of the partition functionsFi−1 andFi, and by the assumption thatACC is a (n1+c, n1+ǫ)-lightweightalgorithm, it
follows that these data tuples are never present on any reducer a number that exceedsΘ(n1+ǫ). Secondly, it should
be mentioned that because broadcast messages are not duplicated at any reducerr, no reducer will ever receive more
thann = O(n1+ǫ) tuples containing broadcast messages. Thirdly, tuples containing state or message counts are never
present in a number exceedingn at any reducer, andpartial message counts are explicitly load-balanced so that only
O(n) such information is passed to a single reducer as well. Finally, metadata tuples describing a partition function
never exceedΘ(n) on any reducer because the domain of each partition functionhas sizen. ⊓⊔

4 Coloring in the MapReduce Framework

Using the simulation theorem of Section 3, we can simulate Algorithm HIGHDEGCOL in the MapReduce model and
thereby achieve anO(∆)-coloring MapReduce algorithm running in expected-O(1) rounds. As in Lattanzi et al. [11],
we consider graphs withΩ(n1+c) edges,c > 0.

Theorem 3. When the input graphG hasΩ(n1+c) edges, and0 ≤ ǫ < c, there exists anO(∆)-coloring algorithm
running in the MapReduce model withΘ(nc−ǫ) machines andΘ(n1+ǫ) memory per machine, and having an expected
running time ofO(1) rounds.

Proof: It is easy to examine the lines of code in Algorithm HIGHDEGCOL to ascertain that the total amount of
non-broadcast communication in any round in bounded above by O(n1+c). Specifically, the total non-broadcast com-
munication corresponding to only two lines of code – Lines 6 and 11 – can be as high asΘ(n1+c). For all other lines
of code, the volume of total non-broadcast communication isbounded byO(n). Similarly, it is easy to examine the
lines of code in Algorithm HIGHDEGCOL to verify that the total memory (in words) used by all nodes for their local
computations in any one round is bounded above byO(n1+c). Finally, it is also easy to verify that the maximum
amount of memory used by a node in any round of computation isO(n).

Thus, Algorithm HIGHDEGCOL is an(n1+c, n)-lightweight algorithm on a Congested Clique and applying the
Simulation Theorem (Theorem 1) to this algorithm yields theclaimed result. ⊓⊔

It is worth emphasizing that the result holds even whenǫ = 0; in other words, even when the per machine memory is
O(n), the algorithm can compute anO(∆)-coloring inO(1) rounds. This is in contrast with the results in Lattanzi et
al. [11], whereO(1)-round algorithms were obtained (e.g., for maximal matching) with n1+ǫ per machine memory,
only whenǫ > 0. In their work, settingǫ = 0 (i.e., usingΘ(n) memory per machine) resulted inO(log n) round
algorithms.

We end with the following corollary that is an immediate consequence of Theorem 3.

Corollary 1. The problem of computing anO(∆)-coloring for ann-node graph with maximum degree∆ and at least
Ω(n1+c) edges, forc > 0 is inMRC0.

5 Conclusions

The results in this paper connect two models that are usuallystudied by different research communities. In general, it
would be interesting to see if this connection has benefits beyond those discussed in the paper. Also, it would be be
interesting to study differences between these two models.For example, the Congested Clique model allows nodes to
remember arbitrary amount of information from one round to the next. Does this give the Congested Clique model a
provable advantage over the “stateless” MapReduce model?

For the “small∆” case, i.e., when∆ = O(poly(log n)), our paper presents anO(log log logn)-round(∆ + 1)-
coloring algorithm on a Congested Clique. One question thatinterests us is whetherO(1) rounds will suffice to
compute anO(∆)-coloring even when∆ is small?

Following the lead of Lattanzi et al. [11], we have assumed that each machine in the MapReduce model contains at
leastΩ(n) memory for processing ann-node graph. Relaxing this assumption is interesting and leads to the question
of whether for someǫ > 0, O(1) MapReduce rounds would suffice to compute anO(∆)-coloring, even when the per
machine memory isO(n1−ǫ).

References

1. Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of distributed symmetry breaking. In
Proc. of IEEE FOCS, 2012.

2. Andrew Berns, James Hegeman, and Sriram V. Pemmaraju. Super-Fast Distributed Algorithms for Metric Facility Location.
In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors,ICALP (2), volume 7392 ofLecture Notes
in Computer Science, pages 428–439. Springer, 2012.

3. Andrew Berns, James Hegeman, and Sriram V. Pemmaraju. Super-Fast Distributed Algorithms for Metric Facility Location.
CoRR, abs/1308.2473, August 2013.

4. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.Commun. ACM, 51(1):107–113,
January 2008.

5. Danny Dolev, Christoph Lenzen, and Shir Peled. ”tri, tri again”: Finding triangles and small subgraphs in a distributed setting.
In Proceedings of the 26th International Conference on Distributed Computing, DISC’12, pages 195–209, Berlin, Heidelberg,
2012. Springer-Verlag.

6. Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. InProceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 681–689, New York, NY, USA, 2011.
ACM.

7. Joachim Gehweiler, Christiane Lammersen, and ChristianSohler. A Distributed O(1)-approximation Algorithm for the Uni-
form Facility Location Problem. InProceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’06, pages 237–243, New York, NY, USA, 2006. ACM.

8. Öjvind Johansson. Simple distributed(δ + 1)-coloring of graphs.Inf. Process. Lett., 70(5):229–232, June 1999.
9. Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce. InProceedings of the

Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 938–948, Philadelphia, PA, USA, 2010.
Society for Industrial and Applied Mathematics.

10. Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms in mapreduce and streaming.
In Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, pages
1–10, New York, NY, USA, 2013. ACM.

11. Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, andSergei Vassilvitskii. Filtering: A method for solving graph problems
in mapreduce. InProceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’11, pages 85–94, New York, NY, USA, 2011. ACM.

12. Christoph Lenzen. Optimal Deterministic Routing and Sorting on the Congested Clique. InProceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, PODC ’13, pages 42–50, 2013.

13. Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for Constant Diameter Graphs.Distributed Computing,
18(6):453–460, 2006.

14. Boaz Patt-Shamir and Marat Teplitsky. The round complexity of distributed sorting: Extended abstract. InProceedings of
the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’11, pages 249–256, New
York, NY, USA, 2011. ACM.

15. David Peleg.Distributed Computing: A Locality-Sensitive Approach, volume 5. Society for Industrial Mathematics, 2000.

	Lessons from the Congested Clique Applied to MapReduce

