Skip to main content

A Recursive Approach to Multi-robot Exploration of Trees

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8576))

Abstract

The multi-robot exploration problem is to explore an unknown graph of size n and depth d with k robots starting from the same node. For known graphs a traversal of all nodes takes at most \({\cal O}(d + n/k)\) steps. The ratio between the time until cooperating robots explore an unknown graph and the optimal traversal of a known graph is called the competitive exploration time ratio.

It is known that for any algorithm this ratio is at least \(\Omega\left((\log k)/\log \log k\right)\). For k ≤ n robots the best algorithm known so far achieves a competitive time ratio of \({\cal O}\left({k}/{\log k} \right)\).

Here, we improve this bound for trees with bounded depth or a minimum number of robots. Starting from a simple \({\cal O}(d)\)-competitive algorithm, called Yo-yo, we recursively improve it by the Yo-star algorithm, which for any 0 < α < 1 transforms a g(d,k)-competitive algorithm into a \({\cal O}( (g(d^{\alpha},k) \log k + d^{1-\alpha})(\log k + \log n))\)-competitive algorithm. So, we achieve a competitive bound of \({\cal O}\left(2^{{\cal O}(\sqrt{(\log d)(\log\log k)})}(\log k)(\log k+ \log n)\right)\). This improves the best known bounds for trees of depth d, whenever the number of robots is at least \( k=2^{\omega(\sqrt{(\log d)(\log \log d)})}\) and \(n=2^{O(2^{\sqrt{\log d}})}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM Journal on Computing 29(4), 1164 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, pp. 842–843. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Google Scholar 

  3. Bender, M.A.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proceedings of the Thirty Fifth Annual Symposium on Foundations of Computer Science, pp. 75–85 (1994)

    Google Scholar 

  4. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. Information and Computation 176(1), 1–21 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Transactions on Robotics 27(4), 707–717 (2011)

    Article  Google Scholar 

  6. Deng, X., Papadimitriou, C.: Exploring an unknown graph. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, vol. 1, pp. 355–361 (October 1990)

    Google Scholar 

  7. Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 520–532. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theor. Comput. Sci. 326, 343–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dynia, M., Kutyłowski, J., Meyer auf der Heide, F., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Netw. 48, 166–177 (2006)

    Article  MATH  Google Scholar 

  13. Förster, K.-T., Wattenhofer, R.: Directed graph exploration. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 151–165. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environments by a mobile robot. Comput. Geom. Theory Appl. 24(3), 197–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.-I.: Online graph exploration algorithms for cycles and trees by multiple searchers. Journal of Combinatorial Optimization, 1–16 (2012)

    Google Scholar 

  16. Kolenderska, A., Kosowski, A., Małafiejski, M., Żyliński, P.: An improved strategy for exploring a grid polygon. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 222–236. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2012, pp. 27–36. ACM, New York (2012)

    Google Scholar 

  18. Rao, N.S.V., Kareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410:1–58, Oak Ridge National Laboratory (July 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ortolf, C., Schindelhauer, C. (2014). A Recursive Approach to Multi-robot Exploration of Trees. In: Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 8576. Springer, Cham. https://doi.org/10.1007/978-3-319-09620-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09620-9_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09619-3

  • Online ISBN: 978-3-319-09620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics