
ar
X

iv
:1

40
3.

62
30

v3
 [

cs
.F

L
]

 3
0

Ju
n

20
14

Pumping lemma and Ogden lemma for

displacement context-free grammars

Alexey Sorokin1,2

1 Moscow State University, Faculty of Mathematics and Mechanics
2 Moscow Institute of Physics and Technology,
Faculty of Innovations and High Technologies

Abstract. The pumping lemma and Ogden lemma offer a powerful
method to prove that a particular language is not context-free. In 2008
Kanazawa proved an analogue of pumping lemma for well-nested multiple-
context free languages. However, the statement of lemma is too weak for
practical usage. We prove a stronger variant of pumping lemma and an
analogue of Ogden lemma for this language family. We also use these
statements to prove that some natural context-sensitive languages can-
not be generated by tree-adjoining grammars.

1 Introduction

Since 80-s context-free grammars are known to be too restrictive for syntactic
description of natural language ([10]). The class of mildly context-sensitive lan-
guages ([1]) was an informal attempt to capture the degree of context-sensitivity
required for most common language phenomena keeping as much advantages
of context-free grammars as possible. The principal properties to inherit are
the feasible polynomial parsing complexity, independence of derivation from
context (the notion of context had to be extended to handle long-distance de-
pendencies) and existence of convenient normal forms. The class of well-nested
multiple context-free languages (wMCFLs) is one of the candidates to satisfy
these requirements3. The corresponding grammar formalism, well-nested mul-
tiple context-free grammars (well-nested MCFGs or wMCFGs), is defined as a
subclass of multiple context-free grammars (MCFGs, [9]) with rules of special
form providing the correct embedding of constituents. In particular, 2-wMCFGs
are equivalent to tree-adjoining grammars (TAGs, [14], [2]) and then to head
grammars ([8]).

We find it sensible to think of wMCFGs as the generalization of head gram-
mars, not the restriction of MCFGs. Our approach is based on two principal
ideas. The first is to derive not words but terms whose values are the words
of the language. Thus the generative power of a grammar formalism essentially
depends on the set of term connectives and their interpretation as language op-
erations. If the only operation we use is concatenation, the terms are just strings
of terminals and nonterminals and we get nothing but context-free grammars.

3 see [4] for discussion.

http://arxiv.org/abs/1403.6230v3

2

Our approach seems redundant there, but is vital in more complex cases. The
second idea is to extend the alphabet by a distinguished separator 14. Using
the separators, the rules of well-nested MCFGs may be simulated with the help
of intercalation connectives. The binary operation ⊙j of j-intercalation replaces
the j-th separator in its first argument by its second argument (for example,
a1b1c ⊙2 a1b = a1ba1bc). It is straightforward to prove that all “well-nested”
combinations of constituents can be presented using only intercalation and con-
catenation operations.

The exact generative power of wMCFGs is not known. Moreover, some lan-
guages are supposed not to be wMCFLs, although they are not proved to be out-
side this family. The most known example is the MIX language {w ∈ {a, b, c}∗ |
|w|a = |w|b = |w|c}. It was shown in [4] to be not a 2-MCFL, but the proof
used combinatorial and geometric arguments arguments which are troublesome
to be generalized for the class of all wMCFGs. The pumping lemma for wM-
CFLs presented in [3] is also too weak since it does not impose any conditions
on the length and position of the pumped segment. We prove a stronger version
of pumping lemma and weak Ogden lemma5 for well-nested MCFGs basing on
the ideas already used in [3]. Our variant of Ogden lemma allows us to give a
simple proof of the fact that MIX cannot be generated by a TAG.

We suppose the reader to be familiar with the basics of formal languages
theory nevertheless all the required definitions are explicitly formulated. In order
not to interrupt the flow of the paper heavy technical proofs are left in the
Appendices in the end of the paper.

2 Preliminaries

2.1 Terms and their equivalence

In this section we define displacement context-free grammars (DCFGs) which are
a more “purely logical” reformulation of well-nested MCFGs. The first subsection
is devoted to the notions of term, context and generalized context that play
the key role in the architecture of DCFGs, it also contains some results on
term equivalence which are extensively used in the further. We mostly follow
the definitions from [12], but the purposes of this work require some technical
complications.

Let Σ be a finite alphabet and 1 /∈ Σ be a distinguished separator, let Σ1 =
Σ∪{1}. For every word w ∈ Σ∗

1 we define its rank rk(w) = |w|1. We define the j-
th intercalation operation ⊙j which consists in replacing the j-th separator in its
first argument by its second argument. For example, a1b11d⊙2 c1c = a1bc1c1d.

Let k be a natural number and N be the set of nonterminals. The function
rk : N → 0, k assigns every element of N its rank. Let Opk = {·,⊙1, . . . ,⊙k}

4 This idea is inspired by the works of Morrill and Valent́ın on discontinuous Lambek
calculus ([5], [13]).

5 A stronger version of Ogden lemma for tree-adjoining languages which form the first
level of well-nested MCFL hierarchy was proved in [7], but the proof is difficult to
be generalized.

3

be the set of binary operation symbols, then the ranked set of k-correct terms
Tmk(N,Σ) is defined in the following way (we write simply Tmk in the further):

1. N ⊂ Tmk(N,Σ),
2. Σ∗ ⊂ Tmk(N,Σ), ∀w ∈ Σ∗ rk(w) = 0,
3. 1 ∈ Tmk, rk(1) = 1,
4. If α, β ∈ Tmk and rk(α) + rk(β) ≤ k, then (α · β) ∈ Tmk,

rk(α · β) = rk(α) + rk(β).
5. If j ≤ k, α, β ∈ Tmk, rk(α) + rk(β) ≤ k + 1, rk(α) ≥ j, then

(α⊙j β) ∈ Tmk, rk(α · β) = rk(α) + rk(β) − 1.

We refer to the elements of the set N ∪ Σ∗ ∪ {1} as basic subterms. We
will often omit the symbol of concatenation and assume that concatenation has
greater priority then intercalation, so Ab ⊙2 cD means (A · b) ⊙2 (c · D). This
simplification allows us to consider words in the alphabet Σ∗

1 as terms either.
The set of k-correct terms includes all the terms of sort k or less that also do
not contain subterms of rank greater than k.

Let Var = {x1, x2, . . .} be a countable of variables. We assume that every
variable has a fixed rank and there is an infinite set of variables of every rank.
A context C[x] is a term where a variable x occurs in a leaf position, the rank
of x must respect the constraints of term construction. Provided β ∈ Tmk and
rk(x) = rk(β), C[β] denotes the result of substituting β for x in C. For example,
C[x] = b1 ⊙1 (a · x) is a context and C[A · c] = b1 ⊙1 aAc. The notion of
multicontext is defined in the same way, except it may contain several distinct
variables x1, . . . , xt. In the case t = 0 a multicontext is just a term. If for any
i it holds that rk(αi) = rk(xi), C[α1, . . . , αt] denotes the result of substituting
α1, . . . , αt for x1, . . . , xt in C.

We call a term (respectively, a context, a multicontext) ground if it contains
no occurrences of nonterminals. let µ be a valuation function, mapping every vari-
able of rank l to some language of words of rank l. Then every ground multicon-
text α is assigned a value, interpreting the elements of Σ∗

1 as themselves and the
connectives from Opk as corresponding language operations. Note that ground
terms have the same value under all valuations. Two ground multicontexts
C1[x1, . . . , xt] and C2[x1, . . . , xt] with the same variables are equivalent, if the ex-
pressions C1[µ(x1), . . . , µ(xt)] and C2[µ(x1), . . . , µ(xt)] have the same value un-
der any valuation µ. The equivalence relation is denoted by∼, note that α ∼ µ(α)
for any ground term α. ∼ is a congruence relation, which means that the equiv-
alences C′ ∼ C′′ and αi ∼ βi for any i ≤ t imply C′[α1, . . . , αt] ∼ C′′[β1, . . . , βt].
The lemma below follows from the definitions6.

Lemma 1. The following ground multicontexts are equivalent:

1. (x1 · x2) · x3 ∼ x1 · (x2 · x3),
2. (x1 · x2)⊙j x3 ∼ (x1 ⊙j x3) · x2 if j ≤ rk(x1),
3. (x1 · x2)⊙j x3 ∼ x1 · (x2 ⊙j−rk(x1) x3) if rk(x1) < j ≤ rk(x1) + rk(x2),

6 As shown in [13], these equivalencies form the axiomatics of equational theory of
displacement algebras

4

4. (x1 ⊙l x2)⊙j x3 ∼ (x1 ⊙j x3)⊙l+rk(x3)−1 x2 if j < l,
5. (x1 ⊙l x2)⊙j x3 ∼ x1 ⊙l (x2 ⊙j−l+1 x3) if l ≤ j < l + rk(x2),
6. (x1 ⊙l x2)⊙j x3 ∼ (x1 ⊙j−rk(x2)+1 x3)⊙l x2 if j ≥ l + rk(x2).
7. 1⊙1 x1 ∼ x1,
8. x1 ⊙j 1 ∼ x1 for any j ≤ rk(x1).

Let α be a term, we call its skeleton a ground multicontext Cα[x1, . . . , xt]
such that α = Cα[B1, . . . , Bt] for some nonterminals B1, . . . , Bt. A skeleton is
obtained by replacing all the nonterminal leaves of α by variables of the same
rank in left-to-right order. Two terms α1 and α2 are called equivalent if they
can be represented in the form α1 = C1[A1, . . . , At] and α2 = C2[A1, . . . , At] for
some equivalent ground multicontexts C1 and C2.

With every multicontext α we associate its syntactic tree tree(α) in a natural
way. Then submulticontexts of α correspond to the nodes of this tree and vice
versa, a submulticontext is internal if it corresponds to an internal node (it means
the submulticontext contains a binary connective). A multicontext is k-essential
if its rank is less than k, as well as the rank of all the variables and nonterminals
occurring in it. The next lemma is proved in the Appendix A.

Lemma 2. For any k-essential multicontext C there is an equivalent k-correct
multicontext C′.

Since a term is just a special case of a multicontext, the next corollary holds:

Corollary 1. For any k-essential term α exists an equivalent k-correct term α′.

2.2 Displacement context-free grammars

This subsection introduces the notion of a displacement context-free grammar.
In the definitions below GrTmk denotes the set of all ground terms in Tmk.

Definition 1. A k-displacement context-free grammar (k-DCFG) is a quadru-
ple G = 〈N,Σ, P, S〉, where Σ is a finite alphabet, N is a finite ranked set of
nonterminals and Σ ∩N = ∅, S ∈ N is a start symbol such that rk(S) = 0 and
P is a set of rules of the form A → α. Here A is a nonterminal, α is a term
from Tmk(N,Σ), such that rk(A) = rk(α).

Definition 2. The derivability relation ⊢G∈ N×Tmk associated with the gram-
mar G is the smallest reflexive transitive relation such that the facts (B →
β) ∈ P and A ⊢ C[B] imply that A ⊢ C[β] for any context C. Let the set of
words derivable from A ∈ N be LG(A) = {ν(α) | A ⊢G α, α ∈ GrTmk}, then
L(G) = LG(S).

Example 1. Let the i-DCFG Gi be the grammar Gi = 〈{S, T }, {a, b}, Pi, S〉.
Here Pi is the following set of rules (notation A → α|β means A → α,A → β):

S → (. . . (
︸ ︷︷ ︸

i−1 times

aT ⊙1 a) + . . .)⊙1 a | (. . . (
︸ ︷︷ ︸

i−1 times

bT ⊙1 b) + . . .)⊙1 b

T → (. . . (
︸ ︷︷ ︸

i−1 times

aT ⊙1 1a) + . . .)⊙i 1a | (. . . (
︸ ︷︷ ︸

i−1 times

bT ⊙1 1b) + . . .)⊙i 1b | 1i

5

Gi generates the language {wi+1 | w ∈ {a, b}+}. For example, this is the deriva-
tion of the word (aba)3 in G2: S → (aT ⊙1 a) ⊙1 a → (a((bT ⊙1 1b) ⊙2 1b) ⊙1

a) ⊙1 a → (a((b((aT ⊙1 1a) ⊙2 1a) ⊙1 1b) ⊙2 1b) ⊙1 a) ⊙1 a → (a((b((a11 ⊙1

1a) ⊙2 1a) ⊙1 1b) ⊙2 1b) ⊙1 a) ⊙1 a = (a(b(a1a1a ⊙1 1b) +2 1b) +1 a) ⊙1 a =
(aba1ba1ba⊙1 a)⊙1 a = abaabaaba.

Two k-DCFGs are equivalent if they generate the same language. Since inter-
nal nodes of terms in a k-DCFG rules are also of rank k or less, the k-DCFGs can
be binarized just like the context-free grammars to obtain a variant of Chomsky
normal form. Precisely, the following theorem holds (see [12] for details):

Theorem 1. Every k-DCFG is equivalent to some k-DCFG G = 〈N,Σ, P, S〉
which has the rules only of the following form:

1. A → B · C, where A ∈ N, B,C ∈ N − {S},
2. A → B ⊙j C, where j ≤ k, A ∈ N, B,C ∈ N − {S},
3. A → a, where A ∈ N, a ∈ Σ1,
4. S → ǫ.

We have already mentioned that k-DCFGs are equivalent to (k+1)-wMCFGs.
In the case of k = 1 this statement is straightforward since both 1-DCFGs and
2-wMCFGs are just reformulations of Pollard wrap grammars ([8]). We will not
recall the definitions of a wMCFG, the interested reader may consult [9] and [3].

3 Terms and derivations in DCFGs

In this section we investigate more thoroughly the properties of terms and deriva-
tion in DCFGs. At first we give some fundamental notions. We assume that all
the grammars are in Chomsky normal form.

Definition 3. A node v′ in the syntactic tree is a direct descendant of a node
v if rk(v′) = rk(v), v′ is a descendant of v and all the nodes on the path from v
to v′ has the same rank as v and v′. A subterm β is a direct subterm of a term
α, if its root node is the direct descendant of the root of α.

Let α be a term of rank l, we denote by α ⊗ 7(u1, . . . , ul) the result of
simultaneous replacement of all the separators in α by u1, . . . , ul.

Lemma 3. Let α = C[β] for some ground context C and term β of rank l.
There exist words s1, s2, u1, . . . , ul ∈ Σ∗

1 depending only from the context C such

that α ∼ s1(β ⊗ (u1, . . . , ul))s2 and rk(α) = rk(s1) + rk(s2) +
l∑

i=1

rk(ui).

Proof. Induction on the structure of the context C. The induction step uses
Lemma 1 and the equivalence between a ground term and its value.

7 This notation is brought from discontinuous Lambek calculus.

6

Lemma 4. Let β be a direct subterm of a term α and C be the ground context
such that α = C[β]. Then the equivalence α ∼ s1(β ⊗ (y11z1, . . . , yl1zl))s2 holds
for some words s1, s2, y1, z1 . . . , yl, zl ∈ Σ∗, depending only from the context C.

Proof. Induction on the structure of the context C, the base is trivial. On the
induction step consider the root connective of the term α. If this connective is ·,
then α has the form α′ ·η or η ·α′ for some ground term η of sort 0 and some term
α such that β is its direct subterm. The statement follows from the induction
hypothesis with the help of the fact that η is equivalent to the word ν(η) ∈ Σ∗.

If the root connective is ⊙, then α = α′ ⊙j η or α = η⊙1 α
′ for some ground

term η of sort 1 and α′ having a direct subterm β. Then the statement also
easily follows from the induction hypothesis.

Let D be the derivation of α from some nonterminal A of the grammar G (we
denote it by D : A ⊢ α). We associate with D its derivation tree TD obtained
by attaching nonterminals to the nodes of tree(α). The labeling procedure is
the following: if the last step of D applied the rule B → β in the context C
then we label by B the root node of the inserted subtree and keep other labels
unchanged. Since G is in Chomsky normal form, only the nonterminal leaves
of tree(α) are unlabeled. Then we label every such node by the nonterminal it
contains. The lemma below is proved by induction on derivation length.

Lemma 5.

1. Let D : A ⊢ α and TD be the corresponding derivation tree. For every repre-
sentation α = C[β] there are derivations D1 : A ⊢ C[B] and D2 : B ⊢ β such
that TD is obtained by replacing B with TD2

in the context C.
2. Let D : A ⊢ α and TD be the corresponding derivation tree. For every repre-

sentation α = C[β1, . . . , βt] there are derivations D0 : A ⊢ C[B1, . . . Bt] and
Di : Bi ⊢ βi for any i ≤ t such that TD is obtained by replacing Bi with TDi

in the multicontext C.

A rule A → α is derivable in a grammar G if A ⊢G α. Adding derivable
rules to a grammar does not change the language it generates. Rules A → α and
A → α′ are called equivalent if the terms α and α′ are equivalent. If one of such
rules is already in G, adding the other does not affect the generated language.
Note that if every rule of G′ is equivalent to some rule of G and vice versa, then
the grammars themselves are also equivalent.

We call a term α derivable in the grammar G if A ⊢ α for some nonterminal
A and S-derivable, if it is derived from initial nonterminal. Let T be a derivation
tree for the derivation D : A ⊢ α, we call its subtree T ′ inherent if every node in
T ′ either have the same number of children as in T or has no children at all.

Let us consider inherent subtrees more attentively. As any derivation tree,
an internal subtree T ′ with a root labeled by B may be a considered as a syn-
tactic tree of some term β, in this case it holds that B ⊢ β. If T ′ contain
t nonterminal nodes, then there is a representation β = C[B1, . . . , Bt] such
that α = C0[C[β1, . . . , βt]] for some context C0, multicontext C, nonterminals
B1, . . . , Bt and terms β1, . . . , βt, satisfying the following properties:

7

1. A ⊢ C0[B],
2. B ⊢ C[B1, . . . Bt],
3. Bi ⊢ βi for any i ≤ t.

Let us consider inherent subtrees more attentively. As any derivation tree, an
internal subtree T ′ with a root labeled by B may be a considered as a syntactic
tree of some term β, in this case it holds that B ⊢ β. Let T ′ contain t nonterminal
nodes and C be its skeleton, then there is a representation β = C[B1, . . . , Bt]
such that α = C0[C[β1, . . . , βt]] for some context C0, nonterminals B1, . . . , Bt

and terms β1, . . . , βt, satisfying the following properties:

1. A ⊢ C0[B],
2. B ⊢ C[B1, . . . Bt],
3. Bi ⊢ βi for any i ≤ t.

Let v be a node of rank l in the derivation tree T . We call the vicinity of v
an inherent subtree Uv satisfying the following properties: v is a node of Uv, all
the leaves of Uv are of rank distinct from l or are the leaves of the whole tree
T , the root of Uv is not of rank l or is the root of the whole tree, all internal
nodes of Uv are of rank l. By definition every node has a unique vicinity. Note
that the vicinities of two nodes cannot have common internal nodes unless these
vicinities coincide.

Let G be a k-DCFG containing Nl nonterminals of rank l and T be a deriva-
tion tree in this grammar. We call an l-matryoshka8 a subbranch of length
Nl + 1 or more, containing only nodes of rank l. Note that all the elements of
l-matryoshka are direct descendants of each other. By the pigeon-hole principle
it contains two nodes with the same nonterminal label.

We denote the depth of a term β by d(β). A term is called l-internal if all
its internal nodes, possibly except the root, are of rank l. If it is additionally
l-essential and d(β) ≤ Nl + 1, then it is called l-redundant. The grammar G is
called l-duplicated, if for every derivable rule A → α with α being l-redundant,
there is an equivalent derivable rule A → α′ with (l − 1)-correct term α′.

Lemma 6. For every k-DCFG G in Chomsky normal form and every l ≤ k
there is an equivalent l-duplicated grammar G′ in Chomsky normal form with
the same set of nonterminals of rank l and greater.

Proof. We call a rule A → α with l-redundant term α unduplicated, if there is no
equivalent rule Aα′ for an (l−1)-correct term α′ in G. Since α is l-redundant, by
Lemma 1 there is an equivalent (l−1) correct term α′. We enrich the set of rules
with productions, obtained during binarization of the rule A → α′, thus the rule
A → α is not unduplicated anymore. Let us prove no new unduplicated rule has
appeared. Indeed, if a term is in the right side of such derivable rule, then all its
binary nodes except the root are of rank l. It means that there is at least one

8 Matryoshka is a Russian souvenir consisting of several dolls nested one into another.
We use this term since the yields of the subtrees, whose roots are the elements of an
l-matryoshka, demonstrate the same nesting property.

8

nonterminal of rank l in every rule used in its derivation. But all new rules do
not contain nonterminals of rank l and greater since α′ is an (l−1)-correct term.
We are able to remove all l-unduplicated rules in such manner, so the lemma is
proved.

Definition 4. A path in the derivation tree is called l-heavy if all the nodes on
this path are of rank l or greater.

Definition 5. A k-DCFL G′ is m-compact if for every word w there is a deriva-
tion tree Tw such that for every node v of positive rank l in Tw there is an element
v′ of l′-matryoshka for some l′ ≥ l, such that v and v′ are connected by an l-heavy
path whose length is not greater than m.

Theorem 2. For every k-DCFL G there is an equivalent k-DCFL G′, which is
m-compact.

Proof. See Appendix B.

4 Main results

In this section we use Theorem 2 to prove a strengthed version of pumping
lemma and an analogue of Ogden lemma for k-DCFGs.

Definition 6. 9 We call a l-pump a pair of internal nodes v and v′ of a deriva-
tion tree, such that v and v′ has the same label of rank l− 1 and v′ is the direct
descendant of v. In this case v is the top and v′ — the bottom node of the pump.

Theorem 3. For any k-DCFL L there is number n, such that any word w ∈ L
with |w| > n can be represented in the form w = s0y1u1z1s1y2u2z2s2 . . . ylulzlsl
for some l ≤ k + 1, satisfying the following requirements:

1. |y1z1 . . . ylzl| > 0,
2. |y1u1z1 . . . ylulzl| ≤ n,
3. For any p ∈ IN the word s0y

p
1u1z

p
1s1 . . . y

p
l ulz

p
l sl belongs to L(G).

Proof. By theorem 2 we assume that L is generated by a m-compact grammar
G for some natural m. Let Nl be the number of nonterminals of rank l in this
grammar. N+ = max (Nl|l > 0) and N = N0 +N+ +m. We set n = 2N .

Let w ∈ L(G) be a word such that |w| ≥ n and Tw be its derivation tree,
deriving the term α and satisfying the requirement of Theorem 2, then d(Tw) ≥
n+1. Consider the N0+1 deepest nodes of the longest branch of Tw. If all them
are of rank 0, then some pair of nodes have the same label and hence form a
1-pump. If conversely, some node vt is of rank t > 0, then there is an element
of some l′-matryoshka on the distance not greater than m from vt. Then the
distance from vt to the upper node of this matryoshka is at most m+N+. This

9 Actually our notion of l-pump reformulates the definition of an even k-pump from
[3].

9

l′-matryoshka contains an l′ + 1-pump, and the depth of the top node of this
pump differs from the depth of Tw by at most N0 + N+ + m = n. So we have
proved an existence of such an l-pump for some l ≤ k+1, that the depth of the
subtree below its top node is at most n (in this case l = l′ + 1).

Let v and v′ be the top and bottom nodes of this pump, B be their non-
terminal label, and C1 and C2 be their outer contexts. Then α = C1[C2[β]] for
some term β satisfying the following properties:

1. S ⊢ C1[B],
2. B ⊢ C2[B],
3. B ⊢ β.

Let ν(β) = u11 . . . 1ul. By Lemma 4 the context C2[γ] is equivalent to y1(γ
⊗ (z11y2, . . . , zl−11yl))zl for some words y1, z1, . . . yl, zl ∈ Σ∗ for any term γ of
rank l − 1. Also C1[η] ∼ s0(η ⊗ (s1, . . . , sl−1))sl for some words s0, . . . , sl ∈ Σ∗.
Then w is equivalent and hence equal to the word s0((y1((u11 . . . 1ul)⊗ (z11y2,
. . . , zl−11yl))zl)⊗(s1, . . . , sl−1))sl = s0((y1u1z11 . . . 1ylulzl)⊗(s1, . . . , sl−1))sl =
s0y1u1z1s1 . . . ylulzlsl. The depth of C2[β] is not greater than N , so its value
y1u1z11 . . . 1ylulzl cannot be longer than n. It remains to prove the third state-
ment.

We denote by Cp
2 the context C2 [. . . [

︸︷︷︸

(p−1) times

C2] . . .]. Repeating the derivation

B ⊢ C2[B] p times, we obtain the derivation B ⊢ Cp
2 [B]. Applying Lemma 4 to

the context C2 several times and using Lemma 1, we get the equivalence Cp
2 [γ] ∼

yp1(γ ⊗ (zp11y
p
2 , . . . , z

p
l−11y

p
l))z

p
l . Setting γ = β yields that yp1u1z

p
11 . . . 1z

p
l uly

p
l ∈

LG′(B) and consequently s0y
p
1u1z

p
1s1 . . . z

p
l uly

p
l sl ∈ LG′(S). The theorem is

proved.

Let the pair of nodes v and v′ be an l-pump. We call its collapsing the
replacement of subtree growing from v by subtree growing from v′. The scope of
an l-pump consists of the nodes being descendants of v but not of v′; these are
the nodes removed when collapsing this pump.

Lemma 7. Let T ′ be a tree obtained from T by collapsing some pump. If the
nodes v1 and v2 form a pump in T ′, then they have also formed a pump in T .

Proof. Let v and v′ be, respectively, the top and bottom nodes of the collapsed
pair. If v′ is not on the path from v1 to v2 in T ′ then v2 has already been
a direct descendant of v1 in T . Otherwise (v1, v

′) and (v′, v2) are the pairs of
direct descendants in T ′, which means that(v1, v) and (v′, v2) were the pairs of
direct descendants in T . Using the fact that v′ was a direct descendant of v
in T and the transitivity of direct descendance, we obtain that v2 was a direct
descendant of v1 in T , implying they formed a pump. The lemma is proved.

Lemma 7 implies that a terminal vertex being in scope of a pump in a col-
lapsed derivation tree was also in scope of this pump in the original tree. This
fact allows us to prove a weakened analogue of the Ogden lemma ([6]).

10

Theorem 4 (Ogden lemma for 1-DCFGs). For any k-DCFL L there is a
number t such that for any word w ∈ L with at least t selected positions there
is a representation w = s0y1u1z1s1 . . . ylulzlsl for some k ≤ l+ 1, satisfying the
following conditions:

1. For any p ∈ IN the word s0y
p
1u1z

p
1 . . . y

p
l ulz

p
l sl belongs to L(G).

2. There is at least one selected position in some of the words y1, z1, . . . , yl, zl.

Proof. We set t equal to n from pumping lemma. It suffices to show that one of
the selected positions is in scope of some pump. We use an induction on |w|, note
that this length is at least n. There is a presentation w = x′

0y
′

1u
′

1z
′

1x
′

1 . . . y
′

lu
′

lz
′

lx
′

l

such that the word x′

0u
′

lx
′

1 . . . u
′

lx
′

l is also in L. If the removed words contained a
labeled position, the lemma is proved. Otherwise the word w′ = x′

0u
′

lx
′

1 . . . u
′

lx
′

l

contains the same number of labeled positions and we can apply the induction
hypothesis to its derivation tree T ′, which is obtained from T by collapsing.
Then one of the selected positions is in scope of some pump in T ′, which implies
by Lemma 7 it was in scope of a pump in T already. The theorem is proved.

5 Examples of non 1-DCFLs

In this section we use the established theoretical results to give some examples of
non-1-DCFLs. To address this question we need to investigate more thoroughly
the properties of constituents of displacement context-free grammars. A con-
stituent is the fragment of the word derived from a node of derivation tree. In
the context-free case every constituent is a continuous subword, hence it can be
described by two numbers: the position of its first symbol and the position of its
last symbol plus one (we add one to deal with empty constituents). Recall that
context-free constituents must be correctly embedded which means they either
do not intersect or one constituent is the part of the another.

The situation is a bit more complex in the case of DCFGs. However, the
results of [11] provide analogous geometrical intuition. The constituents of rank
1 are the words of the form w11w2, where w1, w2 are continuous subwords of the
derived word w. Then a constituent of rank 1 is characterized by four indexes
i1 ≤ j1 ≤ i2 ≤ j2 of the borders of its subwords. We identify a constituent with
a tuple of its characterizing indexes in the ascending order. The proofs of the
statements below are carried out to the Appendix.

Lemma 8. 10 One of the possibilities below hold without loss of generality for
any pair of constituents (i1, j1, i2, j2) and (i′1, j

′

1, i
′

2, j
′

2):

1. j2 ≤ i′1,
2. j1 ≤ i′1 ≤ j′2 ≤ i2,
3. i1 ≤ i′1 ≤ j′2 ≤ j1 or i2 ≤ i′1 ≤ j′2 ≤ j2,
4. i1 ≤ i′1 ≤ j′1 ≤ j1 ≤ i2 ≤ i′2 ≤ j′2 ≤ j2.

10 Geometrical illustrations are also given in the Appendix.

11

Since every pump is just a pair of properly embedded constituents labeled by
the same nonterminal, Lemma 8 helps to specify the mutual positions of different
2-pumps. The scope of the pump contains exactly the positions which are in the
top constituent but not in the bottom, so every 2-pump is described by eight
indexes i1 ≤ j1 ≤ k1 ≤ l1 ≤ i2 ≤ j2 ≤ k2 ≤ l2, such that (i1, l1, i2, l2) is the
tuple of indexes of its top constituent and (j1, k1, j2, k2) — of the bottom.

Lemma 9. 11 One of the possibilities below hold without loss of generality for
any pair of 2-pumps (i1, j1, k1, l1, i2, j2, k2, l2) and (i′1, j

′

1, k
′

1, l
′

1, i
′

2, j
′

2, k
′

2, l
′

2):

1. l2 ≤ i′1,
2. i1 ≤ i′1 ≤ l′2 ≤ j1 or k2 ≤ i′1 ≤ l′2 ≤ l2,
3. i1 ≤ i′1 ≤j′1 ≤j1 ≤k1 ≤k′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j′2 ≤j2 ≤k2 ≤k′2 ≤ l′2 ≤ l2,
4. i1 ≤ i′1 ≤j′1 ≤k′1 ≤j1 ≤k1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j2 ≤k2 ≤j′2 ≤k′2 ≤ l′2 ≤ l2,
5. i1 ≤ i′1 ≤j1 ≤k1 ≤j′1 ≤k′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j′2 ≤k′2 ≤j2 ≤k2 ≤ l′2 ≤ l2,
6. i1 ≤ i′1 ≤j1 ≤j′1 ≤k′1 ≤k1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j2 ≤j′2 ≤k′2 ≤k2 ≤ l′2 ≤ l2,
7. k1 ≤ i′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤ l′2 ≤ j2,
8. i1 ≤ i′1 ≤ l′1 ≤ j1 ≤ k2 ≤ i′2 ≤ l′2 ≤ l2,
9. k1 ≤ i′1 ≤ l′2 ≤ l1 or i2 ≤ i′1 ≤ l′2 ≤ j2,

10. j1 ≤ i′1 ≤ l′1 ≤ k1 ≤ j2 ≤ i′2 ≤ l′2 ≤ k2,
11. j1 ≤ i′1 ≤ l′2 ≤ k1 or j2 ≤ i′1 ≤ l′2 ≤ k2,
12. l1 ≤ i′2 ≤ l′2 ≤ i2.

Let π1 = (i1, j1, k1, l1, i2, j2, k2, l2) and π2 = (i′1, j
′

1, k
′

1, l
′

1, i
′

2, j
′

2, k
′

2, l
′

2) be two
2-pumps. We call a pair of π1 and π2 linear if l2 ≤ i′1 or l′2 ≤ i1. We call π1 outer
for the pump π2 if i1 ≤ i′1 ≤ l′2 ≤ l2. Note that if a pair of 2-pumps is not linear,
then one of its elements is the outer pump for another. We call π1 embracing for
π2 if l1 ≤ i′1 ≤ l′2 ≤ i2.

Corollary 2. Let (i1, j1, k1, l1, i2, j2, k2, l2) and (i′1, j
′

1, k
′

1, l
′

1, i
′

2, j
′

2, k
′

2, l
′

2) be 2-
pumps such that one of the segments of the second pump is a proper subset of
the segment [l1; i2]. Then either the second pump is outer for the first (which
means i′1 ≤ i1 ≤ l2 ≤ l′2) or the first pump is embracing for the second.

Lemma 9 allows us to give some examples of non 1-DCFLs. The first example
is the language 4MIX = {w ∈ {a, b, c, d}∗ | |w|a = |w|b = |w|c = |w|d}.

Theorem 5. The language 4MIX cannot be generated by any 1-DCFG.

Proof. Since wMCFLs are closed under intersection with regular languages, it
suffices to prove that the language 4MIX∩(a+b+c+d+)2 is not a 1-DCFL. Assume
the contrary, let t be the number from Ogden’s lemma applied to this language.
Let the word w = am1bm2cm3dm4an1bn2cn3dn4 satisfy the following conditions:

1. min (mj , nj) ≥ t,
2. m1 ≥ (3M + 1)(M + t), where M = max (m2,m4, n3),
3. m4 ≥ (n1 + 1)(n1 + t).

11 The illustrations are in the Appendix.

12

Note that every 2-pump contains an equal number of a-s, b-s, c-s and d-s,
and every continuous segment of it consists of identical symbols (we call such
segments homogeneous). We enumerate the maximal continuous homogeneous
subwords of w from 1 to 8. Then every 2-pump intersects with exactly 4 of such
segments. We call a [d1, . . . , dl]-pump a pump intersecting the segments with
numbers d1, . . . , dl (and possibly some others).

We select 3M +1 segments of length t in the first segment of the word w so,
that any two segments are separated by not less than M symbols. By Theorem
4 each such segment intersects with some 2-pump. We want to prove that some
of them intersects with a [1, 3, 6, 8]-pump. Indeed, any two points from different
segments cannot belong to the same [1, 7]-pump since in this case there is a
continuous segment of at least M + 1 a-s in the pump, then the pump contains
at least M +1 c-s, which exceeds the length of the 7-th segment. It follows that
there are at most M [1, 7]-pumps, by the same arguments there are at most
M [1, 2]-pumps and at most M [1, 4]-pumps, therefore the number of [1]-pumps
which are not [1, 3, 6, 8]-pumps is less than 3M + 1 which proves the existence
of a [1, 3, 6, 8]-pump.

By the same arguments there is at least one [4]-pump π, which is not a [4, 5]-
pump. By corollary 2 applied to the [1, 3, 6, 8]-pump π′, either π is an outer pump
for π′ (which means π should be a [1, 4, 8]-pump) or π is embraced by π′. In the
first case there are two d-segments in the pump, in the second case it should
be a [3, 4, 5, 6]-pump which contradicts our assumption. So we have reached a
contradiction and the theorem is proved.

Our technique of embedding different 2-pumps also works in a more complex
case. Consider the language MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}.
It is expected to be not a DCFL since it demonstrates an extreme degree of
unprojectivity. It is proved in [4] that MIX is not a 2-wMCFL (and hence not
a 1-DCFL). The proof extensively uses geometrical arguments and is therefore
very difficult to be generalized for similar languages or wMCFGs of higher order.
Our proof uses only the Ogden’s lemma for DCFGs and is much shorter.

Theorem 6. The MIX language is not a 1-DCFL.

Proof. We use the same method and notation as in the case of 4MIX language.
Again, it suffices to prove that the language L = MIX ∩ a+b+c+b+c+a+ is not
a 1-DCFL. Let t be the number from Ogden’s lemma for L. Consider the word
w = am1bm2cm3bn2cn3an1 satisfying the following properties:

1. min (mj , nj) ≥ t,
2. m1 ≥ (2M + 1)(M + t), where M = max (m3, n2),
3. n1 ≥ (2M + 1)(M + t), where M = max (m3, n2),
4. m3 ≥ (n2 + 1)(n2 + t).

By the same arguments as in Theorem 5 we establish the existence of [1, 2, 5]-
and [2, 5, 6]-pumps. Since they cannot form a linear pair of 2-pumps, one of them
is an outer pump for another, which implies one of them is a [1, 2, 5, 6]-pump, we

13

denote this pump by π′. The conditionm3 ≥ (n2+1)(n2+t) implies the existence
of a [2, 3]-pump π. If π is embraced by a [1, 2, 5, 6]-pump, then it contains no a-s,
which is impossible, therefore by Corollary 2 π is an outer pump π′ and actually
a [1, 2, 3, 6]-pump.

The condition n2 ≥ t implies the existence of a [4]-pump, which is a [1, 4, 6]-
pump by the same arguments as in the previous paragraph. To be correctly
embedded with the [1, 2, 3, 6]-pump it should be a [1, 2, 4, 6]-pump but there are
no c-s in such pump. Hence we reached the contradiction and the MIX-language
cannot be generated by a 1-DCFG. The theorem is proved.

6 Conclusions and future work

We have proved a strong version of the pumping lemma and a weak Ogden
lemma for the class of DCFLs which is also the class of well-nested multiple
context-free languages. These statements allow us to prove that some languages,
like the well-known MIX-language, do not belong to the family of 1-DCFLs or, in
other terms, the family of tree adjoining languages. We hope to adopt the proof
for the case of semiblind three-counter language {w ∈ {a, b, c}∗ | |w|a = |w|b =
|w|c, ∀u ⊑ w |u|a ≥ |u|b ≥ |u|c} to prove that a shuffle iteration of a one-word
language may lie outside the family of 1-DCFLs. The author supposes that the
technique used in the article will work not also in the case of 2-pumps, but also in
a more complex cases. We hope that our results will help understand better the
structure of well-nested MCFLs and, in particular, prove the Kanazawa-Salvati
conjecture, which states that MIX is not a well-nested MCFL.

7 Acknowledgements

The author thanks Makoto Kanazawa for his helpful suggestions and the anony-
mous referees of DLT 2014 conference, whose thoughtful comments essentially
improved the paper.

References

1. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required
to provide reasonable structural descriptions? University of Pennsylvania, Moore
School of Electrical Engineering, Department of Computer and Information Science
(1985)

2. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In Rozenberg, G., Salomaa,
A., eds.: Handbook of formal languages. Springer (1997) 69–123

3. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Developments in Language Theory, Springer (2009) 312–325

4. Kanazawa, M., Salvati, S.: MIX is not a tree-adjoining language. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers-Volume 1, Association for Computational Linguistics (2012) 666–674

14

5. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. Journal of Logic,
Language and Information 20(1) (2011) 1–48

6. Ogden, W.: A helpful result for proving inherent ambiguity. Theory of Computing
Systems 2(3) (1968) 191–194

7. Palis, M.A., Shende, S.M.: Pumping lemmas for the control language hierarchy.
Mathematical systems theory 28(3) (1995) 199–213

8. Pollard, C.: Generalized phrase structure grammars, head grammars, and natural
languages. PhD thesis, Stanford University, Stanford (1984)

9. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2) (1991) 191–229

10. Shieber, S.M.: Evidence against the context-freeness of natural language. In: The
Formal complexity of natural language. Springer (1987) 320–334

11. Sorokin, A.: Monoid automata for displacement context-free languages.
In: ESSLLI Student Session 2013 Preproceedings. (2013) 158–167
http://loriweb.org/uploads/ESSLLIStuS2013.pdf#page=162
Extended version to appear in ESSLLI Student Session 12-13 Selected Papers,
http://arxiv.org/abs/1403.6060.

12. Sorokin, A.: Normal forms for multiple context-free languages and displacement
Lambek grammars. In: Logical Foundations of Computer Science. Springer (2013)
319–334

13. Valentın, O., Morrill, G.: Theory of discontinuous lambek calculus. PhD thesis,
Universitat Autonoma de Barcelona (2012)

14. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Tree adjoining and head wrapping. In:
Proceedings of the 11th coference on Computational linguistics, Association for
Computational Linguistics (1986) 202–207

A Multicontext equivalence

A multicontext C is called k-correct, if the rank of all its submulticontexts does
not exceed k. If only the rank of C as well as rank of all its leafs is not greater
than k, the multicontext is called k-essential.

Lemma 10. For any k-essential multicontext C there is an equivalent k-correct
multicontext C′.

Proof. At first we prove that there is an equivalent multicontext with no in-
ternal submulticontexts of rank greater than k. Let K be the maximal rank of
submulticontexts in C, a submulticontext occurrence is called heavy if the rank
of the corresponding submulticontext equals K. We use induction on K and the
number of heavy submulticontext occurrences.

Let (C1, v1) be an occurrence a submulticontext C1 of rank K with mini-
mal depth among all such occurrences. v cannot be the root of tree(C) since
rk(C) < K so let (C2, v2) be the submulticontext occurrence corresponding to
the parent of v1 in the syntactic tree. Then rk(C2) < rk(C1) which implies that
C2 = C1 ⊙j E for some 0-ranked multicontext E. We transform C2 to an equiv-
alent submulticontext C′

2 with less occurrences of heavy submulticontexts. The
transformation uses the equivalences from Lemma 2.

15

Consider the possible structure of the multicontext C1. First, let it has the
form C1 = C3 · C4. If rk(C3) ≤ j then the multicontext C′

2 = (C3 ⊙j E) · C4 is
equivalent to C2 and has less occurrences of submulticontexts of rank K because
we have removed the occurrence of submulticontext C1 and haven’t add any other
heavy multicontexts. In case j > rk(β) the multicontext C′

2 = C3 · (C4 ⊙j−rk(C3)

E) does the same job.
Now let C1 have the form C1 = C3 ⊙l C4. If j < l then we define C′

2 =
(C3 ⊙j E)⊙l−1 C4. In case l ≤ j < l + rk(C4) we set C′

2 = C3 ⊙l (C4 ⊙j−l+l E)
and in case j ≥ l + rk(β) we define C′

2 = (C3 ⊙l+rk(C4)−1 E) ⊙j C4. In all the
cases C′

2 is equivalent to C2 by lemma 2 and has fewer occurrences of heavy
submulticontexts.

Since C2 was a submulticontext of C, there is a context C0 such that C =
C0[C2]. Then the multicontext C′′ = C0[C

′

2] is equivalent to C and has fewer
occurrences of heavy submulticontexts. We can apply the induction hypothesis
to C′′ and obtain the required multicontext C′.

In case k ≥ 1 the proof is completed since the rank of elements of Σ1 cannot
be greater then 1 and the ranks of other atomic submulticontexts are smaller
than k by theorem conditions. In the case k = 0 we need a minor complication
since some leaves of tree(C′) might be labeled by 1. However, they all occur in
submulticontexts of the form 1⊙1E for some E of rank 0 since C has no internal
submulticontexts of positive rank. If we replace all submulticontexts of the form
1⊙1 E by the corresponding multicontext E, we obtain an equivalent 0-correct
multicontext. The lemma is proved.

B Modifying derivation trees

Definition 7. A k-DCFL G′ is m-compact if for every word w there is a deriva-
tion tree Tw such that for every node v of positive rank l in Tw there is an element
v′ of l′-matryoshka for some l′ ≥ l, such that the length of the path between v
and v′ is not greater than m and all the nodes in this path has rank l or greater.

Theorem 7. For every k-DCFL G there is an equivalent k-DCFL G′, which is
m-compact.

Proof. We inductively construct the grammars Gk+1 = G,Gk, . . . , G1 = G′

satisfying the following properties:

1. All these grammars are equivalent.
2. For any grammar Gl there exists a natural number ml such that for any

word w ∈ L(Gl) there is a derivation tree Tw,l of the grammar Gl, satisfying
the following properties: for any node v′ of rank l′ ≥ l in this tree there is
an element v′′ of some l′′-matreshka connected with v′ by an l-heavy path,
whose length is not greater than ml.

We set mk+1 = 0 and take m = m1. For Gk+1 the conditions specified are
trivial since there are no nonterminals of rank k+1 or greater. The grammar Gl

is obtained from Gl+1 by duplicating all the derivable rules in Gl, whose right

16

sides are l-redundant. The duplication process is the same as in Lemma 6. We
also set ml = ml+1+2Nl where Nl is the number of nonterminals of rank l in Gl

(or Gl+1 since these numbers are equal by Lemma 6). The lemmas below justify
that all the constructed grammars satisfy the desirable properties.

In the further we fix some number l and consider only the derivations in the
grammar Gl.

Lemma 11. For any w ∈ L(G) there is a S-derivable term α such that w =
µ(α) with the derivation Dl : S ⊢ α whose tree TD,l satisfy the following proper-
ties:

1. The vicinity of any node v of rank l either contains a node of greater rank
or an element of some l-matreshka.

2. Any node v′ of rank l′ > l is connected with some element v′′ of some l′′

-matreshka with l′′ ≥ l′ by an l′-heavy path whose length does not exceed
ml+1.

Proof. We start from the derivation tree TD,l+1 of w in the grammar Gl+1. This
tree remains a correct derivation tree in Gl and satisfies the second property by
induction hypothesis. We want to reduce the number of nodes of rank l whose
vicinity does not satisfy the first statement of the lemma, preserving the second
property. Let Nl be the number of nonterminals of rank l in the grammar Gl.

Let T be a tree obtained on some stage of this process and v be its node of
rank l whose vicinity Uv violates the first property. Consequently, Uv contains
no subbranches with more than Nl consecutive nodes of rank l, which means
that d(Uv) ≤ Nl+1 since all internal nodes of Uv has rank l. Additionally, since
the second part of the first property is incorrect, the rank of all Uv leaves is less
than l, as well is the rank of its root. Let B denote the nonterminal label of the
root of Uv.

Hence, the term β = Cβ [B1, . . . , Bt] corresponding to Uv is l-essential (C
denotes the skeleton of B). By definition, the rule B → β is l-redundant in
Gl; since Gl has the same nonterminals of rank l as Gl+1, this rule was also
redundant in Gl+1. Therefore by construction Gl has an equivalent derivable
rule B → β′ for some (l − 1)-correct term β′. Recall that β′ = Cβ′ [B1, . . . , Bt]
for some ground multicontext Cβ′ equivalent to Cβ .

Let α denote the term derivable by the tree T . Then α = C0[Cβ [β1, . . . , βt]]
for some terms β1, . . . , βt derivable from B1, . . . , Bt respectively. Consider the
term α′ = C0[Cβ′ [β1, . . . , βt]], it is also derivable from A since the rule B → β′ is
derivable in Gl by construction and the remaining derivation is the same. It also
derives the word w, because term equivalence is a congruence relation. Since β′

is (l− 1)-essential, we have removed a node with incorrect vicinity, so it remains
to show that the second property is preserved.

Let T ′ be the derivation tree of α′, it is obtained from T by replacing the
vicinity Uv with the derivation tree of β′ from B. Consider the l′-heavy path
connecting some node v′ of rank l′ > l with an element v′′ in some matreshka
of rank l′′ ≥ l′ in the old tree T . This path cannot traverse Uv since all the

17

leaf nodes of Uv are of smaller rank. Since Gl contains the same number of
nonterminals of rank l and greater as Gl+1 does, v′′ remains an element of an
l′′-matreshka in T ′. Choosing the same l′-heavy path as in T , we provide the
second property. Repeating the described procedure, we also provide the first
property, so the lemma is proved.

Lemma 12. The tree TD,l constructed in the previous lemma also satisfies the
following property: for any node v of rank l it is connected with some element v′

of an l′-matreshka by an l-heavy path, whose length is at most ml+1.

Proof. For every node v of rank l we consider its vicinity Uv. There are two
possibilities: the depth of v in Uv is greater than Nl and it is at most Nl. In
the first case there is subbranch of length at least Nl + 1 which contains v and
consists only of internal nodes of Uv. Hence v is the element of an l-matreshka
itself and satisfies the requirements of the lemma.

Now the depth of v is not greater than Nl. If the root of Uv, which we denote
by v0, is of rank greater than l, then the distance between v and v0 is at most Nl

and all the intermediate nodes are of rank l. Extending this path by a sequence
of nodes with rank l+1 and greater from v0 to its closest element of l′-matreshka
with l′ > l, we obtain the path from v to the same matreshka element. Note that
its length is not greater then ml+1 +Nl ≤ ml.

If the rank of v0 is less then l then it cannot have two children of rank l, but
has only one such child v1. All other nodes of rank l in Uv are direct descendants
of v1. If d(Uv) ≥ Nl + 2, then v1 is an element of an l-matreshka. Since the
number of nodes between v1 and v is at most Nl < ml, the requirements of
lemma are again satisfied.

The only remaining case is when d(Uv) < Nl + 2 and Uv contains a node of
rank l + 1 or greater. Let v2 be such a node and l′ be its rank. Then v2 is a
descendant of v1 and the distance between these nodes is at most Nl+1. There-
fore the path between v and v2 consists of at most 2Nl edges and intermediate
nodes are of rank l. By Lemma 11 v2 is connected by an l′-heavy path of length
at most ml+1 with an element v′′ of an l′′-matreshka for some l′′ > l′. Then the
distance between v and v′′ is not greater than ml+1 + 2Nl = ml which proves
the final case. The lemma is proved.

These two lemmas imply Theorem 7.

C Constituents in displacements context-free grammars

This section we discuss the geometrical interpretation of constituents in dis-
placement context-free grammars. A constituent is a (possibly discontinuous)
fragment of a word derived from a node of its derivation tree. The nonterminal
label of this node is the label of the constituent. In the basic context-free case
the constituents are just continuous subwords, so every constituent is completely
defined by two indexes i, j: the position of its first symbol and the position of
its last symbol plus one (we add one to deal with empty constituents). Different

18

constituents should satisfy the embedding conditions: either one of them is inside
the other ([i; j] ⊆ [i′; j′] or [i′; j′] ⊆ [i; j] in terms of indexes), or they do not
have common internal points ([i; j] ∩ [i′; j′] is one of the sets ∅, {i}, {j}). Two
principal variants for mutual positions of different constituents are shown on the
picture below.

B

A B A

Let us now inspect the constituent structure of 1-DCFGs. In the case of these
grammars every constituent is either a continuous subword, if its label is of rank
0, or a word of the form w11w2 where w1 and w2 are continuous segments of the
derived word w, if the label is of rank 1. We focus our attention on the latter case
because nothing has changed from the context-free case for the constituents of
rank 0. Then the first continuous part of the constituents is described by indexes
i1, j1 and the second part by indexes i2, j2. Therefore every constituent of rank 1
corresponds to a tuple (i1, j1, i2, j2) of its indexes taken in the ascending order.
We will not distinguish constituents and their index tuple in the further.

The following lemma about mutual positions of different constituents was
proved in [11] in a more general case.

Lemma 13. One of the possibilities below hold without loss of generality for any
pair of constituents (i1, j1, i2, j2) and (i′1, j

′

1, i
′

2, j
′

2):

1. j2 ≤ i′1,
2. j1 ≤ i′1 ≤ j′2 ≤ i2,
3. i1 ≤ i′1 ≤ j′2 ≤ j1 or i2 ≤ i′1 ≤ j′2 ≤ j2,
4. i1 ≤ i′1 ≤ j′1 ≤ j1 ≤ i2 ≤ i′2 ≤ j′2 ≤ j2.

The statement of the lemma above has a nice geometrical interpretation. We
associate with every constituent (i1, j1, i2, j2) of rank 1 the following curve (the
constituents themselves are marked by horizontal lines):

i1 j1 i2 j2

19

The remarkable property of this interpretation is that if we write a derived
word of the abscissa axis, enumerate the positions in it and draw the curves
corresponding to all its constituents, then these curves must not intersect except
the limit points. On the picture below we show all principal variants of differ-
ent constituents location (solid and dash horizontal lines mark the constituents
themselves).

Provided geometrical interpretation is very helpful in our main task: studying
mutual postions of different pumps. Indeed, every pump is defined by its top and
bottom nodes, which carry the same nonterminal labels and are connected by
the path of nodes of the same rank. Since every node of the derivation tree
corresponds to a constituent, then a pump is matched with a pair of embedded
constituents with the same label. As earlier, we concentrate on the 4-pumps
which correspond to a pair of constituents of rank 1. Then every pump can
be defined by 8 numbers i1 ≤ j1 ≤ k1 ≤ l1 ≤ i2 ≤ j2 ≤ k2 ≤ l2 such that
(i1, l1, i2, l2) are the indexes of its top consituent and (j1, k1, j2, k2) — of the
bottom. We call the segments [i1; j1], [k1; l1], [i2; j2], [k2; l2] the segments of the

20

pump and identify a pump with the ascending tuple of its indexes. Below we
illustrate how two constituents of rank 1 with the same label form a 4-pump:

i1 j1 k1 l1 i2 j2 k2 l2

Since the curves on the picture are the bounding curves for the constituents
forming the pump, the curves corresponding to different pumps must not in-
tersect anywhere except the abscissa axis. The following lemma interprets the
geometrical conditions on correct embedding in terms of pump segments:

Lemma 14. One of the possibilities below hold without loss of generality for any
pair of 4-pumps (i1, j1, k1, l1, i2, j2, k2, l2) and (i′1, j

′

1, k
′

1, l
′

1, i
′

2, j
′

2, k
′

2, l
′

2):

1. l2 ≤ i′1,
2. i1 ≤ i′1 ≤ l′2 ≤ j1 or k2 ≤ i′1 ≤ l′2 ≤ l2,
3. i1 ≤ i′1 ≤j′1 ≤j1 ≤k1 ≤k′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j′2 ≤j2 ≤k2 ≤k′2 ≤ l′2 ≤ l2,
4. i1 ≤ i′1 ≤j′1 ≤k′1 ≤j1 ≤k1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j2 ≤k2 ≤j′2 ≤k′2 ≤ l′2 ≤ l2,
5. i1 ≤ i′1 ≤j1 ≤k1 ≤j′1 ≤k′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j′2 ≤k′2 ≤j2 ≤k2 ≤ l′2 ≤ l2,
6. i1 ≤ i′1 ≤j1 ≤j′1 ≤k′1 ≤k1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j2 ≤j′2 ≤k′2 ≤k2 ≤ l′2 ≤ l2,
7. k1 ≤ i′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤ l′2 ≤ j2,
8. i1 ≤ i′1 ≤ l′1 ≤ j1 ≤ k2 ≤ i′2 ≤ l′2 ≤ l2,
9. k1 ≤ i′1 ≤ l′2 ≤ l1 or i2 ≤ i′1 ≤ l′2 ≤ j2,

10. j1 ≤ i′1 ≤ l′1 ≤ k1 ≤ j2 ≤ i′2 ≤ l′2 ≤ k2,
11. j1 ≤ i′1 ≤ l′2 ≤ k1 or j2 ≤ i′1 ≤ l′2 ≤ k2,
12. l1 ≤ i′2 ≤ l′2 ≤ i2.

Proof. We derive the current lemma formally from Lemma 13, illustrating the
proof by geometrical arguments. We call a pair of 4-pumps linear if l2 ≤ i′1
or l′2 ≤ i1. We call the pump (i1, j1, k1, l1, i2, j2, k2, l2) outer for the pump
(i′1, j

′

1, k
′

1, l
′

1, i
′

2, j
′

2, k
′

2, l
′

2) if the condition i1 ≤ i′1 ≤ l′2 ≤ l2 holds. Note that
if two pumps do not form a linear pair, then one of them is an outer for the
other.

We denote π = (i1, j1, k1, l1, i2, j2, k2, l2) and π′ = (i′1, j
′

1, k
′

1, l
′

1, i
′

2, j
′

2, k
′

2, l
′

2)
to shorten the notation. If the pair of π and π′ is linear then up to renaming
the pumps the first alternative of the lemma holds. Otherwise one of the pumps
is the outer for another, let π be such a pump. So i1 ≤ i′1 ≤ l′2 ≤ l2. Consider
the constituents (i1, l1, i2, l2), (j1, k1, j2, k2), (i

′

1, l
′

1, i
′

2, l
′

2), (j
′

1, k
′

1, j
′

2, k
′

2), each of
then bounds a region on the plane. By the geometric interpretation of Lemma

21

13 for any pair of such regions there are only two possibilities either the elements
of the pair do not intersect or the smaller constituent is inside the bigger.

Consider at first the case when the regions of the constituents (i1, l1, i2, l2)
and (i′1, l

′

1, i
′

2, l
′

2) do not intersect. Since the segment [i′1; l2] is a subset of the
segment [i1; l2] it is possible only when l1 ≤ i′1 ≤ l′2 ≤ i2, which is one of the
alternatives provided by the present lemma. It is illustrated on the picture below.

i1 l1 i2 l2i′1 l′1 i′2 l′2

In the other case the region corresponding to the constituent (i1, l1, i2, l2)
contains all the other regions. We consider different variants of embedding of the
constituents. If constituents (j1, k1, j2, k2) and (i′1, l

′

1, i
′

2, l
′

2) do not intersect,then
either l′2 ≤ j1, k2 ≤ i′1, l

′

1 ≤ j1 ≤ k2 ≤ i′2 or k1 ≤ i′1 ≤ l′2 ≤ j2. In the first case
i1 ≤ i′1 ≤ l′2 ≤ j1, symmetrically in the second k2 ≤ i′1 ≤ l′2 ≤ l2, and in the third
case i1 ≤ i′1 ≤ l′1 ≤ j1 ≤ k2 ≤ i′2 ≤ l′2 ≤ l2 which all satisfy the requirements of
the present lemma. The third case is illustrated on the picture below:

i1 l1 i2 l2j1 k1 j2 k2i′1 l′1 i′2 l′2

Consider the last subcase k1 ≤ i′1 ≤ l′2 ≤ j2, then applying Lemma 13 to
the constituents (i1, l1, i2, l2) and (i′1, l

′

1, i
′

2, l
′

2) we obtain that either l′2 ≤ l1,
i2 ≤ i′1 or l′1 ≤ l1 ≤ i2 ≤ i′2. Taking into account all the inequalities, we obtain
that there are three possibilities: k1 ≤ i′1 ≤ l′2 ≤ l1, i2 ≤ i′1 ≤ l′2 ≤ j2 or
k1 ≤ i′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤ l′2 ≤ j2. All these variants are allowed in the
lemma statement. The latter variant is illustrated on the picture below:

i1 l1 i2 l2i′1 l′1 i′2 l′2j1 k1 j2 k2

Now consider the case when the region of the constituent (i′1, l
′

1, i
′

2, l
′

2) is inside
the region of (j1, k1, j2, k2). It means that one of the following possibilities hold:

22

j1 ≤ i′1 ≤ k′2 ≤ k1, j2 ≤ i′1 ≤ l′2 ≤ k2 or i′1 ≤ j1 ≤ k1 ≤ l′1 ≤ i′2 ≤ j1 ≤ k2 ≤ l′2.
All these variants satisfy the requirements of the Lemma.

So it remains to inspect the case when the region of constituent (i′1, l
′

1, i
′

2, l
′

2)
includes the region of (j1, k1, j2, k2). This situation is illustrated on the picture
below:

i1 l1 i2 l2i′1 l′1 i′2 l′2j1 k1 j2 k2

Then i1 ≤ i′1 ≤ j1 ≤ k1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤ j2 ≤ k2 ≤ l′2 ≤ l2 and we
should consider the mutual positions of the regions of constituents (j1, k1, j2, k2)
and (j′1, k

′

1, j
′

2, k
′

2). This leads us to the following variants:

i′1 ≤ j′1 ≤ k′1 ≤ j1 ≤ k1 ≤ l′1 ≤ i′2 ≤ j2 ≤ k2 ≤ j′2 ≤ k′2 ≤ l′2,
i′1 ≤ j1 ≤ j′1 ≤ k′1 ≤ k1 ≤ l′1 ≤ i′2 ≤ j2 ≤ j′2 ≤ k′2 ≤ k2 ≤ l′2,
i′1 ≤ j1 ≤ k1 ≤ j′1 ≤ k′1 ≤ l′1 ≤ i′2 ≤ j′2 ≤ k′2 ≤ j2 ≤ k2 ≤ l′2,
i′1 ≤ j′1 ≤ j1 ≤ k1 ≤ k′1 ≤ l′1 ≤ i′2 ≤ j′2 ≤ j2 ≤ k2 ≤≤ k′2 ≤ l′2,

But all such variants are allowed by the conclusion of the lemma. All the cases
have been verified and the lemma is proved.

	Pumping lemma and Ogden lemma for displacement context-free grammars
	1 Introduction
	2 Preliminaries
	2.1 Terms and their equivalence
	2.2 Displacement context-free grammars

	3 Terms and derivations in DCFGs
	4 Main results
	5 Examples of non 1-DCFLs
	6 Conclusions and future work
	7 Acknowledgements
	A Multicontext equivalence
	B Modifying derivation trees
	C Constituents in displacements context-free grammars

