
INSTITUT FÜR INFORMATIK

k-Abelian Pattern Matching

Thorsten Ehlers, Florin Manea, Robert Mercaş, Dirk
Nowotka

Bericht Nr. 1402

March 20, 2014

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

k-Abelian Pattern Matching

Thorsten Ehlers, Florin Manea, Robert Mercaş, Dirk Nowotka

Bericht Nr. 1402

March 20, 2014

ISSN 2192-6247

e-mail: {the,flm,rgm,dn}@informatik.uni-kiel.de

Dieser Bericht ist als persönliche Mitteilung aufzufassen.

k-Abelian Pattern Matching ?

Thorsten Ehlers, Florin Manea, Robert Mercaş, and Dirk Nowotka

Christian-Albrechts-Universität zu Kiel, Institut für Informatik,
D-24098 Kiel, Germany, {the,flm,rgm,dn}@informatik.uni-kiel.de

Abstract. Two words are called k-abelian equivalent, if they share the
same multiplicities for all factors of length at most k. We present an
optimal linear time algorithm for identifying all occurrences of factors
in a text that are k-abelian equivalent to some pattern P . Moreover,
an optimal algorithm for finding the largest k for which two words are
k-abelian equivalent is given. Solutions for various online versions of the
k-abelian pattern matching problem are also proposed.

1 Introduction

The notion of k-abelian equivalence generalises the concepts of both the identity
and the abelian equivalence of two words. Two words are called k-abelian equiv-
alent, if they share the same multiplicities for all factors of length at most k.
It is straightforward to see that two words of length n are identical if they are
n-equivalent and they are abelian equivalent, if they are 1-abelian equivalent.

The notion of k-abelian equivalence was introduced in [1] and since then
has captured more and more attention. The concept has been investigated with
respect to repetitions [2–4], to periodicity properties [5], as well as to the com-
plexity functions of the equivalence classes it determines [6]. In particular, it has
been shown that in most situations, the concept oscillates between the two limit
cases given above, identifying itself with one or the other.

Pattern matching is one of the most basic and well studied algorithmic prob-
lems: given a text T and a pattern P , we are interested in finding one or all
occurrences of P in T . Besides the many obvious applications of pattern match-
ing for finding a specific fragment in a larger sequential data structure, practi-
cal applications often emphasise the approximate variants of pattern matching
like in the context of computational molecular biology [7]. Approximate pat-
tern matching problems aim to find occurrences of factors of the text T that are
equivalent to the pattern P by some given equivalence relation. In this paper, we
investigate the approximate pattern matching problem with respect to k-abelian
equivalence.

After fixing our notation, we show in Section 2 that the identification of all
factors of a text T which are k-abelian equivalent to some pattern P can be done

? T. Ehlers is supported by the BMBF grant 01IS110355. F. Manea is supported by the
DFG grant 596676. R. Mercaş is supported by the DFG grant 582014. D. Nowotka
is supported by the DFG Heisenberg grant 590179.

in linear time with respect to the length of the text and the pattern, just as in
the special cases of identity and abelian equivalence (Theorem 2). Moreover, we
also show that identifying the largest k for which two given words are k-abelian
equivalent takes time linear in the length of the words (Theorem 3). In Section 3
we investigate the pattern matching problem for k-abelian equivalences in the
setting of online algorithms, and propose a series of real-time solutions of this
problem (Theorem 4). Section 4 studies the same problem for an extended form
of k-abelian equivalence. Finally, in Section 5 we give experimental results and
discuss the problem of building index structures for k-abelian pattern matching.
For the detailed proofs of the results in this paper please see the Appendix.

Preliminaries. An alphabet, i.e., ⌃, is a finite set of symbols. Let � = |⌃| denote
its cardinality and take ⌃ = {1, . . . ,�}; at times we will use the letter 0 /2 ⌃.
By " we denote the empty symbol. A word w is a finite sequence of letters from
⌃. We denote by |w| its length and by |w|u the number of occurrences of u in w.

The set of all words over ⌃ is denoted by ⌃

⇤, while the set of all words of
length n is denoted by ⌃

n for any positive integer n. The catenation of two words
u and v is the word uv obtained by adding to the right of u the letters of v. For
a factorization w = uxv, we say that x is a factor of w. Whenever u is empty, x
is a prefix of w, i.e., x p w, and when v is empty, x is a su�x of w. For w of
length n, and the numbers i  j 2 {1, . . . , n}, we denote by w[i] the i

th symbol
of w and by w[i..j] the factor w[i] · · ·w[j]; clearly, w = w[1..n] = w[1] · · ·w[n].

Considering the lexicographical order on ⌃

⇤, for words u and v, we say that
u is lexicographically smaller than v, i.e., u 

lex

v, if either u is a prefix of v or
there exist a, b 2 ⌃ such that a < b, wa p u, and wb p v for some word w.

Let w be a word over ⌃. The Parikh vector of the word w is an array ⇡w[·]
with � components, where ⇡w[a] = |w|a for all a 2 ⌃.

Words u and v are abelian equivalent if |u|a = |v|a for all letters a 2 ⌃. That
is, two words are abelian equivalent over ⌃ i↵ they have the same Parikh vector.

We say that u and v are k-abelian equivalent, i.e., u ⌘k v, if either u = v or
|u|, |v| � k, |u|t = |v|t for every t 2 ⌃

k, u[1..k � 1] = v[1..k � 1] and u[n � k +
2..n] = v[n�k+2..n]. According to [6], the su�x-equality requirement can be in
fact dropped. An equivalent definition is that u ⌘k v if |u|t = |v|t for every word
t of length at most k. A k-abelian n

th power is a word u

1

. . . un, where u1

, . . . , un

are pairwise k-abelian equivalent. Obviously, 1-abelian equivalence is the same
as abelian equivalence, while equality is equivalent to 1-abelian equivalence.

Recall that a multi-set represents a set together with the multiplicity of each
of the elements (i.e., both elements and multiplicities are present). We say that
two words are extended-k-abelian equivalent if their multi-sets of factors of length
k coincide (the condition of having the same prefixes is dropped).

In this paper, we solve a series of algorithmic problems related to k-abelian
equivalence. The algorithms we propose use the RAM with logarithmic word
size model. We also assume that whenever we are given as input of our problems
a word w of length n, the alphabet of w is in fact included in {1, . . . , n} (i.e.,
� = |⌃|  n). This is a common assumption in algorithmics on words and
can be in fact replaced with a more general assumption, namely that ⌃ can be

2

sorted in linear time by radix sort (see, e.g., the discussion in [8]). Clearly, for all
results proved for integer alphabets our reasoning holds canonically for constant
alphabets (i.e., with � 2 O(1)), as well. Finally, note that most pattern matching
problems that we deal with require searching for a word P inside another word
T ; generally, P is called pattern and T is called text.

The following result is well known.

Theorem 1. For a pattern P 2 ⌃

m and a text T 2 ⌃

n, we can identify all
factors of T that are abelian equivalent to P in O(n+m).

Remark 1. The above result can be adapted to identify all the length |P | factors
P

0 of T that contain the same letters as P (not necessarily with same multiplicity
as in P , so not abelian equivalent), and

P
a2⌃ |⇡P [a]�⇡P 0 [a]|  �, for some �.

We conclude the preliminaries section with a series of data structures.
For a string u of length n, over an alphabet ⌃ ✓ {1, . . . , n}, we define a su�x-

array data structure that contains two arrays Suf u, which is a permutation of
{1, . . . , n}, and lcpu, with n elements from {0, . . . , n�1}. Called the su�x array
of u, Suf u is defined such that Suf u[i] = j i↵ u[j..n] is the i

th su�x of u, in the
lexicographical order. The following lemma is straightforward.

Lemma 1. Let w 2 ⌃

n. If for 1  i < j  n and u 2 ⌃

⇤ we have u p

w[Suf w[i]..n] and u p w[Suf w[j]..n], then u p w[Suf w[`]..n] for any i  `  j.

The array lcpu is defined by lcpu[1] = 1 and lcpu[r] is the length of the
longest common prefix of the su�xes found on positions r and r�1 in the su�x
array, i.e., u[Suf u[r� 1]..n] and u[Suf u[r]..n]. Both arrays Suf u and lcpu can be
constructed in O(n) time (see [8], and the references therein). Moreover, lcpu

can be processed in O(n) time to produce a more general data structure that
enables us to return in constant time the answer to longest common prefix (or,
for short, LCP-) queries “LCP(i, j): What is the length of the longest common
prefix of u[i..n] and u[j..n]?”.

2 O✏ine k-abelian pattern matching

The first step of our algorithms is to define the k-encoding of a word. For w 2 ⌃

n,
we define the word #(w, k) of length n� k + 1 as follows:

– let S = {w[i+ 1..i+ k] | 0  i  n� k} be the set of length k factors of w;
– sort S lexicographically and associate with each factor w[i+1..i+k] its rank

(position) in the sorted set, i.e., rank(i);
– let #(w, k)[i] = rank(i).

Clearly, #(w, k) is defined over an alphabet included in {1, . . . , n�k+1}. More-
over, w is uniquely defined by the set S and the word #(w, k).

It is important to note that #(w, k) can be computed in linear time.

Lemma 2. Let w 2 ⌃

n with �  n. We can compute #(w, k) in O(n) time.

3

Proof. We determine the ranks rank(i) of the factors w[i + 1..i + k] in the set
S = {w[i + 1..i + k] | 0  i  n � k} by identifying in the su�x array of w
the contiguous groups of su�xes that share a common prefix of length k, and
then assigning to each of these groups (from left to right) consecutive numbers,
starting with 1; the su�xes of length less than k are not taken into account. ut

The following lemma, although straightforward, is essential to our algorithms.

Lemma 3. Let w
1

, w

2

2 ⌃

n. If w
1

⌘k w

2

for some integer k, then w

1

[1..k�1] =
w

2

[1..k � 1], w
1

[n� k + 2..n] = w

2

[n� k + 2..n], and #(w
1

, k) ⌘
1

#(w
2

, k).

Proof. The equality #(w
1

, k) ⌘
1

#(w
2

, k) follows from the fact that w
1

and w

2

have the same factors of length k, with the same multiplicities. ut
If we take w

1

= 1236 and w

2

= 1456, both over the alphabet {1, . . . , 6}, for
k = 1 we have w

1

[1..k � 1] = w

2

[1..k � 1] = " and #(w
1

, 1) = 1234 = #(w
2

, 1),
but w

1

is not abelian equivalent to w

2

. Hence, the converse implication of the
lemma does not necessarily hold. In order for the converse to hold as well, we
need to check that the two words have the same set of factors of length k.

We can test in linear time the k-abelian equivalence of two words:

Lemma 4. Let w
1

, w

2

2 ⌃

n and k be an integer with 1  k  n. We can decide
whether w

1

⌘k w

2

in O(n) time.

Proof. We construct w = w

1

0w
2

, and compute Suf w. Next, we compute #(w, k)
of length 2n�k+2, and set w0

1

= #(w, k)[1..n�k+1] and w

0
2

= #(w, k)[n+2..2n�
k + 2](the two encodings are done using the ranking of w, and disconsider all
letters of #(w, k) that contain a 0). Hence, w0

1

and w

0
2

contain the same letters
if they have the same multi-set of factors of length k. Note that w

0
1

and w

0
2

are computed in linear time, as they only require the computation of #(w, k).
Finally, we remark that w

1

⌘k w

2

i↵ w

1

[1..k � 1] = w

2

[1..k � 1] and w

0
1

⌘
1

w

0
2

.
This last equality can be tested in linear time, by Theorem 1. ut

Lemma 4 together with its proof suggests a simple way to transform and solve
in linear time the k-abelian pattern matching problem following the classical
abelian pattern matching problem, solved in Theorem 1.

Problem 1. Given a text T and some pattern P , over an alphabet ⌃, find all
factors of T that are k-abelian equivalent to P .

Theorem 2. Given a text T 2 ⌃

n and some pattern P 2 ⌃

m, we can find all
factors of T that are k-abelian equivalent to P in time O(n+m).

Proof. As in the proof of Lemma 4, we construct the word w = T0P , and the
encoding #(w, k) = w

0. Let T

0 = w

0[1..n � k + 1] and P

0 = w

0[n + 2..n +m �
k + 2]. Also, build LCP -data structures for T0P . Now, for any i > 0, a factor
T [i..i+m� 1] is k-abelian equivalent to P i↵ T [i..i+k� 2] = P [1..k� 1] (tested
in O(1) time using LCP -queries), and T

0[i..i+m� 1] ⌘a P

0.
Therefore, it is enough to find in linear time all the positions i of T 0 where

factors that are abelian equivalent to P

0 occur, and then check, for each of them,
whether T [i..i+ k� 2] = P [1..k� 1]. All the positions fulfilling these conditions
correspond to positions in T where a factor k-abelian equivalent to P occurs. ut

4

Remark 2. Since Problem 1 is reducible to the classical abelian pattern matching
problem, by Remark 1, our algorithm can be adapted to produce in linear time
all the factors P

0 of length |P | of T that contain the same factors of length k

as P (not necessarily in the same numbers, so P

0 is not necessarily k-abelian
equivalent to P) such that

P
t2⌃k | |P 0|t � |P |t | �, for some �.

Using the same reduction, we can extend a result from [9]:

Corollary 1. For a word w 2 ⌃

n and a positive integer k, we can identify all
factors of w that are k-abelian powers in ⇥((n� k + 1)2) time.

The results shown so far help us answer a related, bit more di�cult problem.

Problem 2. For words u, v 2 ⌃

n, find the largest integer k such that u ⌘k v.

The immediate approach to solve this problem is to look through all possible
k for the largest value such that u ⌘k v. With the search for k implemented as a
binary search, this approach takes O(n log n) time, using the solution described
in Lemma 4. However, this problem can also be solved in linear time.

Theorem 3. Given two words u, v 2 ⌃

n, we can find the greatest positive inte-
ger k such that u ⌘k v in linear time O(n).

Proof. As before, we construct w = u0v, the Suf w and LCPw data structures.
Due to Lemma 1, if there exists a positive integer k such that u ⌘k v, then

the su�xes of both u and v that share a common prefix of length at least k are
grouped together in Suf w. Also, if k is maximum such that u ⌘k v, then the
su�xes of length at most k�1 of u and v coincide, and if we truncate the su�xes
of u and v to length k, then we should obtain the same multi-set for each word.

Following this remark, we split the su�x array of w into two separate new
arrays: one contains su�xes that correspond to u and the other one the su�xes
corresponding to v, each with exactly n�k+1 elements. Using the two arrays, we
compute in linear time the maximum `

1

, resp. `
2

, such that the su�xes of length
`

1

�1, resp. prefixes of length `

2

�1, of u and v coincide. We take ` = min{`
1

, `

2

}.
Further, going simultaneously through the sorted su�xes of u and v we com-

pute the longest common prefix of the i

th su�x of u (in lexicographic order)
and of the i

th su�x of v. Let `

0 be the minimum value for which there exists i

such that the ith su�x of u shares a common prefix of length exactly `

0 with the
i

th su�x of v (the su�xes are again counted in lexicographical order), but both
su�xes have length at least `0+1. The value k we were looking for is min{`0, `}.

Therefore, to solve Problem 2, we first compute in linear time the values `

and `

0, and then return the value k we were looking for as min{`, `0}. The whole
algorithm takes O(n) time, clearly, and produces the desired output. ut

3 Real-time k-abelian pattern matching

So far we discussed static problems, i.e., in Problem 1 both P and T are given
at the beginning and we process them both in order to solve the problem. Now

5

consider a di↵erent type of problem: we are given P and k, while T is read letter
by letter (i.e., in an online manner). We want to preprocess P so we can tell, after
each new letter, whether the prefix of T read so far ends with a factor k-abelian
equivalent to P . We assume that P is over ⌃ = {1, . . . ,�}; here, � 2 O(m).

Problem 3. Preprocess a pattern P and an integer k such that when given a text
T , in letter by letter manner, to answer at each moment, e�ciently, whether the
prefix of T read so far ends with a factor k-abelian equivalent to P .

In general, an algorithm for such a problem is called online algorithm. For sim-
plicity, when discussing this type of problem, we call the time needed to tell
whether the prefix of T ends with a factor k-equivalent to P query time, while
the time needed to preprocess P is called preprocessing time. If a solution has
constant query time, then its algorithm is called real-time.

First, note that for k = 1, the result of Theorem 1 holds for the real-time
version of Problem 3, as well (see the proof of Theorem 1 in the Appendix).

The solution for k > 1 is based on the k-encoding strategy used already in the
previous sections. We consider the sets of letters {1, . . . , `

1

} of #(P, k � 1) and
{1, . . . , `

2

} of #(P, k), where `
1

 `

2

+1  m� k+2. Recall that i 2 {1, . . . , `
1

}
(resp., i 2 {1, . . . , `

2

}) is the rank of a factor of length k � 1 (resp., k) of P , in
the lexicographically ordered set of all factors of length k�1 (resp., k) of P . Let
f

1

[i] (resp., f
2

[i]) be the length k � 1 (resp., k) factor of P , whose position in
the lexicographically ordered set of factors of length k � 1 (resp., k) of P is i.

Further, we compute the list of triples L = {(i, a, j) | 1  i  `

1

, 1  j 
`

2

, a 2 ⌃, and f

1

[i]a = f

2

[j]}. The su�xes of P that share the same prefix of
length k � 1 form a contiguous subarray of the su�x array of P , according to
Lemma 1. Moreover, each of these groups can be split into several subgroups,
that come one after the other in the su�x array, based on the letter following the
common prefix. Accordingly, these subgroups correspond to the groups of su�xes
that share a common prefix of length k, ordered lexicographically. Computing
the subgroups corresponding to a group of su�xes takes linear time, in the size
of the group, thus O(m), altogether. Therefore, we can compute all elements of
L in linear time, as well, and collect them in a linked list, for instance.

Alternatively, one can see L as the set of the (explicit or implicit) edges that
connect (explicit or implicit) nodes of depth k� 1 to (explicit or implicit) nodes
of depth k in the su�x tree constructed for P .

Now, we discuss several ways of implementing L so we can e�ciently test
whether there is a triple (i, a, ·) in L, and, if so, quickly find its third component.

One way is to implement a m ⇥ � table M [·][·], where M [i][a] = j i↵
(i, a, j) 2 L. In this case, both operations mentioned above take constant time,
while constructing this data structure takes O(m�) time and space; however,
the table M is sparse, so such an implementation of L is not practical.

As each component of the triples of L is a number between 1 and m, and
L has at most m elements, we can also use perfect hashing to construct a hash
table with satellite information and a dictionary search data structure, useful
to do the above mentioned operations in O(1) time. The construction of these

6

data structures can be done in O(m log logm) time deterministically (see [10,
Theorem 1]) or in O(m) expected time, while the table itself takes O(m) space.
Using these structures the two operations mentioned above take O(1) time.

Finally, allowing more than O(1) time for the operations on L, another im-
plementation can be used. For each i we define a data structure in which the
pairs (a, j), with (i, a, j) 2 L, are stored. Assume that these pairs (a, j) are or-
dered by their first component, i.e., a. Now, each of the operations on L can
be seen as a predecessor search among the pairs stored in the data structure
associated to i, where the key on which the sorting/searching is done is the first
component of the stored pairs. There are at most � such components, so we
can construct a van Emde Boas tree containing these pairs [11]. Since the time
needed to construct such a tree is ti (the number of triples having i on the first
position) for each i, the time needed to construct the trees for all i’s is O(m),
and they can be stored in O(m) space. Further, doing predecessor search in each
structure takes O(log log �) time per query.

Once L constructed, we compute in O(m) time, using Suf P and L, the values
suf [j] upper bounded by `

1

, such that suf [j] = i i↵ f

2

[j] = af

1

[i] for some a 2 ⌃.
As a first step for the real-time k-abelian pattern matching problem, using a

real-time pattern matching algorithm, e.g., [12], each time we read a new letter
of T we report whether P [1..k � 1] is a su�x of the prefix of T read so far.

Assume now that before reading the newest symbol of T , denoted a, the
longest su�x of the text we already read, of length at most |P | and whose factors
of length k are all factors of P , was P 0 with #(P 0

, k) = j

1

. . . jm0�kjm0�k+1

for
some m

0  m. Let i = suf [jm0�k+1

], and check whether a triple (i, a, ·) is in L.
If so, we return its third component, say j. The su�x of T becomes P 00, with

#(P 00
, k) = j

1

. . . jm0�kjm0�k+1

j, ifm0
< m, or #(P 00

, k) = j

2

. . . jm0�kjm0�k+1

j,
otherwise. Using real-time abelian pattern matching we check whether #(P 00

, k)
is abelian equivalent to #(P, k). If yes, we can decide in constant time whether
the prefixes of length k� 1 of P and P

00 coincide, and, hence whether P 00 ⌘k P .
When no (i, a, ·) is in L, we restart the procedure above when we find a new

occurrence of P [1..k�1], by reading the next letter and taking i = #(P, k�1)[1].
Therefore, the time we spend for each read letter is upper bounded by the

time needed to find a triple in L. In conclusion, we obtain the following result.

Theorem 4. Given a pattern P 2 ⌃

m for |⌃| = �, and a positive integer k,
the online k-abelian pattern matching problem can be solved in:

– O(m�) preprocessing time, O(m�) space, and O(1) query time.

– O(m log logm) preprocessing time, O(m) space, and O(1) query time.

– O(m) expected preprocessing time, O(m) space, and O(1) query time.

– O(m) preprocessing time, O(m) space, and O(log log �) query time.

4 Online extended-k-abelian pattern matching

In this section, we consider the following more general problem.

7

Problem 4. Preprocess a pattern P and an integer k such that given a text T ,
in letter by letter manner, to answer at each moment, e�ciently, whether the
prefix of T read so far ends with a factor extended-k-abelian equivalent to P .

Although the idea used to solve Problem 3 cannot be directly applied in this
setting, the strategy stays the same: for every letter of the text T we read we
check if the su�x of length P can be encoded using the letters of #(P, k), and
use a real-time abelian pattern matching algorithm to tell whether this su�x is
extended-k-abelian equivalent to P . For this we maintain and update for each
new letter read, a succinct representation of the longest factor of P , with length
at most k, that is a su�x of the prefix of T read so far.

In addition to the previously mentioned data structures, we now also con-
struct in O(m) time the su�x tree of P together with the su�x links (see, e.g.,
[13]). We say that a node of the su�x tree of P corresponds to the factor P [i..j]
i↵ the path from the root to that node is labelled with P [i..j]. For the succinct
representation of the longest factor of P with length at most k, that is a su�x of
the prefix of T read so far, we use the (explicit or implicit) node of the su�x-tree
of P that corresponds to this factor, together with its length; when that node is
implicit, we store the lowest explicit ancestor of this node.

For simplicity, we store the edges of the su�x tree of P using perfect hashing;
we can check in O(1) time whether a node is the source of an edge labelled with a
certain letter, and simultaneously get the respective target node (when it exists).
Also, the longest factor of P with length at most k, that is a su�x of the prefix
of T read so far is called the P -su�x of that prefix of T , or the current P -su�x.

Online Algorithm. We first remark that if P [i..i+`�1] is the P -su�x of T [1..j],
then the P -su�x of T [1..j+1] has length at most `+1. Therefore, when updating
the representation of the current P -su�x, we just have to find the longest su�x
of the previous P -su�x that can be extended by the letter T [j + 1].

We show first how to compute the P -su�x of T [1..j + 1] when the succinct
representation defined above of the P -su�x of T [1..j], namely X = P [i..i+`�1],
is known. If ` = k we use the approach in the previous section. If ` < k and
a = T [j+1], we first try to extend X with a, and see whether the new string Xa

is a factor of P (an edge whose label starts with a leaves the node corresponding
to X in the su�x tree of P). If yes, then Xa becomes the current P -su�x and we
update the succinct representation of the factor of P according to the node where
the aforementioned edge leads. If not, then we try extending the factor X[2..`]
with a. To compute its corresponding node in the su�x tree, we take the lowest
explicit ancestor N

1

of the node N corresponding to X, and follow its su�x
link. This takes us to an explicit node N

2

that corresponds to a prefix of X[2..`],
which is not necessarily the lowest explicit ancestor of the node corresponding
to that factor. Thus, we use the letters that labelled the path from N

1

to N (i.e.,
the remaining su�x of X[2..`]) to advance in the su�x tree from N

2

, until we
reach the node N

3

corresponding to X[2..`]; we also compute in the same time
the lowest explicit ancestor of N

3

. Then we check again if this node is the source
of an edge whose label begins with a. If yes, then we found the current P -su�x;

8

this is P [i+1..i+ `� 1]a, and we, therefore, also have its representation. If not,
we repeat the procedure for the factor X[3..`], now a su�x of X[2..`], and so on.

It is simpler to compute the total time spent executing all the above algo-
rithm, than upper bound each of the steps. Notice that each symbol of T is used
only once to go through an edge of the tree. Thus, in total, we make at most
O(n) steps for this action and only constant time for each of the other steps,
which are executed at most O(n) times. Therefore, the overall complexity of
maintaining the succinct representation of the longest su�x of T that is a factor
of P with length at most k, is O(n). Using this, together with the approach of the
previous section (for ` = k), we get that Problem 4 can be solved in time O(n)
and space O(m), to which the time and space needed to preprocess the pattern
P should be added (either O(m log logm) in a deterministic implementation of
the perfect hashing, or O(m) expected). The space needed remains O(m).

Other implementations of the set of edges of the su�x tree lead, as previously
discussed, to other time complexities: with preprocessing time and space O(m�)
(resp. O(m)) the algorithm runs in O(n) (resp. O(n log log �)) time.

Real-time Algorithm. For a real-time algorithm, the idea is to report only the
factors of T that are extended-k-abelian equivalent to P , thus not update the
information after each new read letter, but have it ready whenever a length k

factor of P is found. For this we also need the following data structures from [14]:

Lemma 5. We can preprocess a word P 2 ⌃

m in O(m log k) time and linear
space O(m) such that, for each i and j with j� i  k, we can return in constant
time the (explicit or implicit) node of the su�x tree of P corresponding to P [i..j].

Using this we skip the search of the tree for nodes corresponding to the su�xes of
the current P -su�x. However, for a constant upper bound on the time needed to
perform the update of the representation of the P -su�x that we try to maintain,
we still have to deal with the unknown number of su�xes of the current P -su�x
of T [1..j], to determine the P -su�x of T [1..j + 1], when a new letter is read.

First, we maintain a queue of the letters read from T . In each step enqueue
the new letter, and perform two more checks: 1) check whether the factor of P
whose representation is stored can be extended by the first element in the queue;
if yes, 2) update the P -su�x and its representation accordingly, delete the first
letter from the queue, and repeat the previous check with the current P -su�x
and its representation (also performing the eventual update of the P -su�x and
of the queue); if no, 20) using the O(1) query in Lemma 5, get the node for the
longest proper su�x of the factor of P whose representation we had, and check
whether the first letter of the queue extends it.

Since when the current P -su�x has length ` and it cannot be extended the
number of su�xes of factors of P we have to check until reaching again a P -su�x
of length ` equals the number of letters read between these two moments, we use
the lazy update algorithm described above to update the succinct representation
of the current P -su�x, and output that we did not find a factor of T that is
extended-k-abelian equivalent to P as long as its length is not k; when we reach
a length k factor, the queue is empty and the succinct representation is that of

9

the current P -su�x of the read prefix. Then we proceed just as in the case of the
algorithm for Theorem 4, until the length decreases, and repeat the procedure.

Again, the previous discussion on the implementation of the su�x tree ap-
plies. Thus, for a real-time algorithm, the preprocessing uses O(m) space and the
time needed is O(m(log k+log logm)) deterministically, or O(m log k) expected.

5 Further Remarks

Experiments. We tested the algorithm for Theorem 2 on the E.coli and Vibrio
cholera genomes with text sizes 4, 638, 690 and 1, 109, 333, respectively, for ⌃ =
{A, C, G, T}. Having in mind the DNA sequencing process, one may see our pattern
matching problem in the following way: given a template sequence P , we want to
find out whether the long sequence T contains other sequences that may produce
the same reads (of length k). For exemplification purposes, the pattern P was
chosen so that m = 100 and P = T [i..i+m�1] for random i 2 {1, . . . , n�m+1}.
The values of k were chosen as multiples of 3, considering the normal length of a
codon, with the assumption that removing an entire amino acid does not change
the structure of a protein as much as the removal of one of the nucleotides from
the translating RNA. We looked, as suggested in Remark 2, for factors P

0 of
T such that the sum, over all factors of length k, of the absolute values of the
di↵erences between the number of occurrences of a factor in P

0 and those of the
same factor in P is upper bounded by some �. For each values of k and �, we
ran 100 tests. As P is a factor of T , each test finds at least one match. Fig. 1
reports the average number of matches except for this one occurrence.

� E.coli Vibrio cholera

k=3 k=6 k=9 k=3 k=6 k=9

0 0.04 0.04 0.04 0.01 0 0

2 0.04 0.04 0.04 0.01 0 0

4 0.04 0.04 0.04 0.02 0 0

8 0.06 0.04 0.04 0.03 0 0

16 0.1 0.05 0.04 0.11 0 0

32 0.16 0.05 0.05 0.27 0 0

64 353.2 0.05 0.05 98.26 0 0

128 18576.09 0.04 0.05 4742.9 0.02 0

256 18715.59 7.32 0.05 4747.54 1.45 0

Fig. 1. Experiments with 100 runs each

k E.coli Vibrio cholera �k
+ k

1 5 5 5

2 18 18 18

3 67 67 67

4 260 260 260

5 1,011 1,029 1,029

6 4,102 4,102 4,102

7 16,390 16,389 16,391

8 65,371 65,106 65,544

9 256,559 234,324 262,153

Fig. 2. Alphabet size for #(w, k)

For k � 6 the number of matches is quite low. Interestingly, the number of
matches for � = 256 is not too far from the expected number of matches, if these
tests were run on random data. In that case, as m � 2k� 2 and � is su�ciently
large, the problem is degraded to finding exact matches on two factors of length
k � 1 each. Hence, the probability for a match is upper bounded by �

�2k+2.
Additionally, we tested the extended version of k-abelian matching (Fig. 3).

Here, we ignored the requirement of equal prefixes and su�xes of length k � 1.
Please note that for � = 256 there is a match on every factor of T . Again,

we found only few matches for small values of �. A reason for this may be the
increased number of di↵erent length k factors which appear, in close numbers, in
the chosen texts. In Fig. 2 we give the number of di↵erent ranks that appeared
in #(w, k), together with an upper bound �

k + k. This bound is due to the

10

� E.coli Vibrio cholera

k=3 k=6 k=9 k=3 k=6 k=9

0 0.07 0.04 0.04 0.02 0 0

2 2.34 2.12 2.12 2.19 2 2

4 4.74 4.2 4.2 4.41 4 4

8 9.38 8.36 8.36 9.09 8.01 8

16 20.44 16.76 16.68 19.38 16.05 16

32 48.06 33.74 33.47 46.05 32.21 32.01

64 78747.81 68.12 67.19 22283 64.98 64.02

128 4594162.28 139.14 135.21 1106909.91 139.68 131.16

256 4638591 4638591 4638591 1108151 1108151 1108151

Fig. 3. Disregarding matches on prefixes and su�xes, 100 runs each

fact that there are at most �

k factors of length k, and additionally k factors
containing 0. The number of occurrences are quite close to the upper bound.

A motivation for the very rare occurrences of some pattern in an arbitrary
text comes also from an analytical analysis of the probability of a match in the
latter setting; given the dependencies among the letters of #(T, k), the problem
can be seen in terms of a Markov source of order k � 1. Another, more loose
view of the problem, would be in the form of the string matching over reduced
set of patterns problem, when the set of independent length k factors occurring
at positions kj +1 in the pattern, for j � 0, is the one that we look for within a
factor of length |P | in the text. However, this second model is not tight as it does
not consider the fact that each factor of length k is influenced by the preceding
k � 1 factors of length k. For more details, we recommend [15, Sect. 7.2–7.3].

Index structures. A problem worth considering in this context, and that was
recently considered in the context of abelian pattern matching [16, 17], is that of
building index structures for k-abelian pattern matching. Basically, now we are
given a positive integer k and a text T , and we want to preprocess the text such
that we can answer quickly queries in which we are given a pattern P and have
to report whether T has a factor that is k-abelian to P . Recall our assumption
that the alphabet of T and of the query-patterns is integer.

Generally, we can approach the problem as follows. Following the solution of
the online pattern matching problem, we consider the sets of letters {1, . . . , `

1

}
of #(T, k � 1) and {1, . . . , `

2

} of #(T, k), where `

1

 `

2

+ 1  n � k + 2. Let
f

1

[i] (resp., f
2

[i]) be the factor of length k� 1 (resp., k) of T , whose rank in the
lexicographically ordered set of all factors of length k� 1 (resp., k) of T is i. We
construct Suf T and the list L = {(i, a, j) | 1  i  `

1

, 1  j  `

2

, a 2 ⌃, and
f

1

[i]a = f

2

[j]}, and implement L such that we can test e�ciently whether there
is a triple (i, a, ·) in L, and, if so, to find e�ciently its third component.

Assume we use perfect hashing to store the edges of the su�x tree of T and
the list L. Then, given a pattern P 2 ⌃

m, we find in time O(k) an occurrence
of P [1..k � 1] in T (if none exists, then no factor of T is k-abelian equivalent
to P). Next, reading P [k..m] letter by letter, and checking the list L, we can
produce #(P, k) in O(m�k) time. Hence the problem is reduced to producing an
index of #(T, k), useful to check e�ciently whether a factor abelian equivalent to
#(P, k) occurs in #(T, k). Clearly, the classical abelian matching approach can
be slightly adapted so we can check whether the length k�1 prefix of P matches
the length k�1 prefix of the factor identified in T . Again, the preprocessing time
depends on the implementation of the su�x tree of T and the list L (see the
discussions in the previous sections); the query time is obtained by adding up

11

the time needed to locate P [1..k�1] in T , then to compute #(P, k), and, finally,
to answer the abelian pattern matching query for the text #(T, k) and pattern
#(P, k). Such an abelian pattern matching query is answered in O(n � k + 1)
time, for #(T, k) and #(P, k) over an integer alphabet. Unfortunately, not much
is known about building indexes for abelian pattern matching when the alphabet
is integer. However, it is our hope that since the letters of #(T, k) or #(P, k) do
not occur in an arbitrary order (the alphabet they are defined on is not a random
integer alphabet), we could solve the indexing problem faster than the naive
approach. It is worth mentioning that #(T, k) and #(P, k) are words over large
alphabets, even if one assumes that ⌃ is constant (the letters of the encodings
are words in ⌃

k, which is not of constant size when k is not a constant).

References

1. Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and
finite automata. In: Rainbow of Computer Science. Springer (2011) 90–101

2. Huova, M., Karhumäki, J., Saarela, A.: Problems in between words and abelian
words: k-abelian avoidability. Theor. Comput. Sci. 454 (2012) 172–177

3. Mercaş, R., Saarela, A.: 3-abelian cubes are avoidable on binary alphabets. In:
DLT 17. LNCS 7907 (2013) 374–383

4. Rao, M.: On some generalizations of abelian power avoidability. Preprint (2013)
5. Karhumäki, J., Puzynina, S., Saarela, A.: Fine and Wilf’s theorem for k-abelian

periods. In: DLT 16. LNCS 7410 (2012) 296–307
6. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of abelian equiv-

alence and complexity of infinite words. J. Combin. Theory Ser. A 120(8) (2013)
2189 – 2206

7. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York (1997)

8. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work su�x array construction.
Journal of the ACM 53 (2006) 918–936

9. Cummings, L.J., Smyth, W.F.: Weak repetitions in strings. J. Combin. Math.
Combin. Comput 24 (1997) 33–48

10. Ružić, M.: Constructing e�cient dictionaries in close to sorting time. In: Automata,
Languages and Programming. LNCS 5125. Springer (2008) 84–95

11. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:
SFCS 16, IEEE Computer Society (1975) 75–84

12. Breslauer, D., Grossi, R., Mignosi, F.: Simple real-time constant-space string
matching. In: CPM 22. LNCS 6661. Springer (2011) 173–183

13. Maaß, M.G.: Computing su�x links for su�x trees and arrays. Inf. Process. Lett.
101(6) (2007) 250–254

14. Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted level ancestors in
su�x trees. Preprint (2014)

15. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press,
Cambridge, New York (2005)

16. Kociumaka, T., Radoszewski, J., Rytter, W.: E�cient indexes for jumbled pattern
matching with constant-sized alphabet. In: ESA 21. LNCS 8125 (2013) 625–636

17. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern
matching on trees and tree-like structures. In: ESA 21. LNCS 8125 (2013) 517–528

12

6 Appendix

Proof of Theorem 1

Say that |P | = m and |T | = n. We define two arrays ⇡

1

and ⇡

2

, each with �

elements. The first array ⇡

1

is the Parikh vector of P , while ⇡

2

is initially the
Parikh vector of T [1..m].

Define � =
P

a2⌃ |⇡
1

[a]�⇡

2

[a]|. If � = 0, then we conclude that P ⌘
1

T [1..m].
Further, we read the word T letter by letter, from left to right, starting with

the m + 1th letter. The variable � is updated as follows when the k

th letter of
T is read, for k > m. If the k

th letter of T is a and the (k � m)th letter of T
was b, then we decrease ⇡

2

[b] by 1 and increase ⇡
2

[a] by 1; thus, the value of � is
updated accordingly (basically, we just have to subtract from � the initial values
of |⇡

1

[a] � ⇡

2

[a]| and |⇡
1

[b] � ⇡

2

[b]| and then add the updated values). Clearly,
if after the k

th letter of T was read and the updates were performed we have
� = 0, then P ⌘

1

T [k �m+ 1..k].
Clearly, this process takes O(n+m) time. ut

Proof of Lemma 2

We compute the su�x array Suf w and the array lcpw for the word w. As a
consequence, we can determine the ranks rank(i) of the corresponding factors
w[i+ 1..i+ k] in the set

S = {w[i+ 1..i+ k] | 0  i  n� k},
as follows.

By Lemma 1, the su�xes of w that begin with the same factor of length k

form a contiguous group in Suf w. Thus, we identify in the su�x array of w the
contiguous groups of su�xes that share a common prefix of length k, and then
assign to each of these groups (as they occur when traversing the su�x array of
w from left to right) consecutive natural numbers, starting with 1; the su�xes
of length less than k are not taken into account.

Formally, we start with r = 0 and i = 1. While |w[Suf [i]..n]| < k we increase
the value of i by 1. Assume we reached a value of i such that |w[Suf [i]..n]| � k.
In this case, we increase r by 1, we define rank(Suf [i]) = r, and, then, increase
i with 1. While lcpw[i] � k, we assign rank(Suf [i]) = r. As soon as we reached
an i such that |w[Suf [i]..n]| < k or lcpw[i] < k, we restart the process with the
current values of r and i. ut

Proof of Lemma 4

We construct the word w = w

1

0w
2

, and we compute its su�x array. Next, we
compute #(w, k); this word has length 2n� k + 2.

We now set
w

0
1

= #(w, k)[1..n� k + 1], and

w

0
2

= #(w, k)[n+ 2..2n� k + 2].

Intuitively, w0
1

is an encoding of w
1

that is very similar to the encoding #(w
1

, k),
only that in assigning ranks to the su�xes of w

1

we took into account also the

13

su�xes of w
2

; similarly, w0
2

is an encoding of w
2

when taking into account also
the su�xes of w

1

; moreover, both encodings disconsider all letters of #(w, k)
that contain a 0. Accordingly, the fact that w0

1

and w

0
2

contain exactly the same
letters is equivalent to them having exactly the same multi-set of factors of length
k. Note that w0

1

and w

0
2

can be computed in linear time, as they only require the
computation of #(w, k).

Finally, we remark that w
1

⌘k w

2

if and only if w
1

[1..k � 1] = w

2

[1..k � 1],
w

1

[n � k + 1..n] = w

2

[n � k + 1..n], and w

0
1

⌘
1

w

0
2

. This last equality can be
clearly tested in linear time, using for example Theorem 1. ut

Proof of Corollary 1

Just as before, we first create the encoding #(w, k) associated to w as well as
the Suf w and LCPw structures.

Next, using the result of [9], we find all abelian powers in #(w, k) in ⇥((n�
k + 1)2). Note that these comprise of all abelian repetitions that have length at
least k. For each abelian repetition u, using LCPw queries, check if in w, for u0,
the factor of w that has been encoded by u, all of the consecutive occurrences
of its abelian root share both the same prefixes, as well as the su�xes of length
k � 1 match. This is done in constant time per query, thus we still need only
O((n � k + 1)2) time. Every time the answer is positive, we add u

0 to a set S

consisting of all k-abelian repetitions. Please note that in fact our prefix and
su�x checks are quite easy as the algorithm proposed in [9] consists in fact of
a linked list of abelian squares. Thus, our check is performed for each of these
abelian squares in constant time, summing up to ⇥((n� k + 1)2).

Finally, we have to take care of all k-abelian powers that have length less
than k. However, these comprise of all the classical powers. In [Crochemore,
An Optimal Algorithm for Computing the Repetitions in a Word. Inf. Process.
Lett., 12 (5), 1981, 244–250], an optimal O(n log(n)) algorithm doing this has
been given. Moreover, since all powers are given in the form (i, p, e), where i

is the position where the repetition occurs, p it’s period, and e its exponent,
choosing the ones that have length less than k is trivial as we only need to check
if k � 1  p · e. Therefore, by adding to S all of those that fulfil this property
proves our result. ut

Proof of Theorem 3

Just like before, we first construct the word w = u0v, its su�x array Suf w, and
LCPw data structures.

Note that, due to Lemma 1, if there exists a positive integer k such that
u ⌘k v, then the su�xes of both u and v that share a common prefix of length
at least k are grouped together (i.e., occur on consecutive positions) in Suf w.
Also, if k is maximum such that u ⌘k v, then the su�xes of length at most k�1
of u and v coincide, and if we truncate the su�xes of u and v to length k, then
we should obtain exactly the same multi-set for each of the two words.

Following this remark, we proceed as follows. We first split the su�x array
of w into two separate new arrays: one of them contains su�xes that correspond
to u and the other one contains the su�xes corresponding to v. Each of the

14

two arrays has exactly n� k + 1 elements. Looking at these two arrays, we can
compute in linear time the maximum `

1

such that the su�xes of length `

1

� 1
of u and v coincide;then we compute, still in linear time, a value `

2

such that
the prefixes of length `

2

� 1 of u and v coincide. We take ` = min{`
1

, `

2

}. The
maximum value k such that u ⌘k v is at most `, by the definition of k-abelian
equivalence. Further, going simultaneously through the sorted su�xes of u and
v we compute the longest common prefix of the i

th su�x of u (in lexicographic
order) and of the i

th su�x of v; the value obtained each time upper bounds,
just like `, the value k that we are looking for. These values can be computed in
linear time, using the two arrays we constructed in order to access in constant
time the lexicographically i

th su�xes of the two words, and LCP queries for
w = u0v to actually compute their longest prefixes.

If the lexicographically i

th su�x of u equals the lexicographically i

th su�x
of v, for all i, then u ⌘n v. For the sake of generality, let us assume this is not
the case. Let `0 be the minimum value for which there exists i such that the i

th

su�x of u shares a common prefix of length exactly `

0 with the i

th su�x of v
(the su�xes are again counted in lexicographical order), but both su�xes have
length at least `0+1. We claim that the value k we were looking for is min{`0, `}.

Indeed, it is not hard to see that u ⌘s v for all positive integers s  min{`0, `}.
If `  `

0, and if s > `, then there exists s0 such that s � 1 � s

0
> ` � 1 and the

su�xes or prefixes of length s

0 of u and v are not equal. This is in contradiction
with the definition of ⌘s. If ` > `

0, and if s > `, then there exists i such that the
prefix of length s of the lexicographically i

th su�x of u does not coincide with
the prefix of same length of the lexicographically i

th su�x of v, so by truncating
the su�xes of u and v to length s, we do not obtain exactly the same multi-set.
This is yet another contradiction to the definition of ⌘s.

An algorithm that solves Problem 2 works, thus, as follows. We first compute
in linear time the values ` and `

0, and then return the value k we were looking
for as min{`, `0}. The whole algorithm takes O(n) time, clearly, and produces
the desired output, by the previous arguments. ut

Proof of Theorem 4

First, note that for k = 1, the result of Theorem 1 holds for the real-time version
of Problem 3, as well (see the proof of Theorem 1 in the Appendix).

The solution for k > 1 is based on the k-encoding strategy used already in
the previous sections. We consider the sets of letters {1, . . . , `

1

} of #(P, k � 1)
and {1, . . . , `

2

} of #(P, k), where `

1

 `

2

+ 1  m � k + 2. Recall that i 2
{1, . . . , `

1

} (respectively, i 2 {1, . . . , `
2

}) is the rank of a factor of length k � 1
(respectively, k) of P , in the lexicographically ordered set of all factors of length
k � 1 (respectively, k) of P . Let f

1

[i] (respectively, f
2

[i]) be the length k � 1
(respectively, k) factor of P , whose position in the lexicographically ordered set
of factors of length k � 1 (respectively, k) of P is i.

Further, we compute the list of triples

L = {(i, a, j) | 1  i  `

1

, 1  j  `

2

, a 2 ⌃, and f

1

[i]a = f

2

[j]}.

15

The su�xes of P that share the same prefix of length k � 1 form a contiguous
subarray of the su�x array of P , according to Lemma 1. Moreover, each of these
groups can be split into several subgroups, that come one after the other in
the su�x array, based on the letter following the common prefix. Accordingly,
these subgroups correspond to the groups of su�xes that share a common prefix
of length k, ordered lexicographically. Computing the subgroups corresponding
to a group of su�xes takes linear time, in the size of the group, thus O(m),
altogether. Therefore, we can compute all elements of L in linear time, as well,
and collect them in a linked list, for instance.

Alternatively, one can see L as the set of the (explicit or implicit) edges that
connect (explicit or implicit) nodes of depth k� 1 to (explicit or implicit) nodes
of depth k in the su�x tree constructed for P .

Now, we discuss several ways of implementing L so we can e�ciently test
whether there is a triple (i, a, ·) in L, and, if so, quickly find its third component.

One way is to implement an m ⇥ � table M [·][·], where M [i][a] = j if and
only if (i, a, j) 2 L. In this case, both operations mentioned above take constant
time, while constructing this data structure takes O(m�) time and space.

As the components of all the triples of L are numbers between 1 and m,
and L has at most m elements, we can also use perfect hashing to construct
a hash table and a dictionary search data structure, useful to do the above
mentioned operations in O(1) time. The construction of these data structures
can be done in O(m log logm) time deterministically (see [10, Theorem 1]) or
in O(m) expected time, while the table itself occupies O(m) space. Basically,
they are used as follows. In the dictionary we store all the pairs (i, a) such that
there is a triple (i, a, j) in L. We also store an m-positions array W [·] such that
W [k] = j if and only if the hash code of (i, a) is k and (i, a, j) 2 L. Using these
structures it is immediate how the two operations mentioned above are executed
in constant time.

Finally, allowing more than constant time for the operations to be performed
on L (which translates in having a near-real-time algorithm solving the k-abelian
pattern matching problem), another implementation can be used. For each i we
keep a data structure in which the pairs (a, j), with (i, a, j) 2 L, are stored.
We can assume that we get these pairs (a, j) ordered by their first component,
namely a. Now, each of the operations to be performed on L can be seen as a
predecessor search among the pairs stored in the data structure associated to i,
where the key on which the sorting/searching is done is the first component of
the stored pairs. As these components are at most �, we can construct a van
Emde Boas tree containing the aforementioned pairs [11]. Since the time needed
to construct such a tree is ti (the number of triples having i on the first position)
for each i, the time needed to construct the trees for all i’s is O(m), and they
can be stored in O(m) space. Further, doing predecessor search in each of these
structures takes O(log log �) time per query.

Once L constructed, we also compute for each j with 1  j  `

2

the positive
values suf [j] and pref [j], both upper bounded by `

1

, such that suf [j] = i if
and only if f

2

[j] = af

1

[i] for some a 2 ⌃, while pref [j] = i if and only if

16

f

2

[j] = f

1

[i]a. All these values are easily computed in linear time, using the
su�x array of P , and the list L.

Now, we explain how the real-time k-abelian pattern matching problem is
solved. As a first step, each time we read a new letter of T we report whether
the prefix of length k � 1 of P , namely P [1..k � 1], is a su�x of the prefix of T
read so far. For this we can use a real-time pattern matching algorithm, e.g., [12].

Next, assume that, before reading the new symbol of T , the longest su�x
of the part of T we already read, with length at most |P | and whose factors of
length k are all factors of P , was P 0 such that #(P 0

, k) = j

1

. . . jm0�kjm0�k+1

, for
some m0  m. Assume that now we read the letter a. We take i = suf [jm0�k+1

],
and check whether a triple (i, a, ·) exists in L.

If so, we return its third component, say j. The su�x of T becomes P 00, with

#(P 00
, k) =

⇢
j

1

. . . jm0�kjm0�k+1

j, if m0
< m, or

j

2

. . . jm0�kjm0�k+1

j, otherwise.

Using real-time abelian pattern matching we check whether #(P 00
, k) is

abelian equivalent to #(P, k) or not. If yes, we can decide in O(1) time whether
the prefixes of length k� 1 of P and P

00 coincide, and, hence whether P 00 ⌘k P .
When no (i, a, ·) is in L, we restart the procedure above when we find a new

occurrence of P [1..k�1], by reading the next letter and taking i = #(P, k�1)[1],
where [1] is the next read letter.

Therefore, the time we spend for each read letter is upper bounded by the
time needed to find a triple in L. ut

Results obtained in Section 4

We first give an online algorithm that needs O(|P |) space, and takes O(|T |)
time to read the entire text T 2 ⌃

n and report the occurrences of factors that
are extended-k-abelian equivalent to P 2 ⌃

m, thus having constant amortised
query time. The preprocessing time is either O(m log logm) in a deterministic
framework, or expected O(m) in a randomised setting. This algorithm is nei-
ther real-time nor near-real-time. We then present a real-time algorithm, with a
slightly increased preprocessing time but with the same O(m) space complexity.

We emphasise that the approach used to solve Problem 3 cannot be used
directly to solve this new problem, as the restriction that each of the factors of
T we are looking for starts with P [1..k � 1] does not hold anymore. However,
the general idea stays the same: we identify the longest su�x of the part of
the text T read so far that can be encoded using the letters of #(P, k), and
use a real-time abelian pattern matching algorithm to tell whether this su�x
is extended-k-abelian equivalent to P . To obtain this, we maintain, and update
for each letter of T we read, a succinct representation of the longest factor of P ,
with length at most k, that is a su�x of the prefix of T read so far. In addition
to the data structures we constructed for P in the previous sections, we now also
construct in O(m) time the su�x-tree of P together with the su�x links (see,
e.g., [13]). Intuitively, the main data-structure of the algorithm becomes now the
su�x-tree of P (with the nodes of depth more than k trimmed), replacing the

17

set L, that only consisted in a stripe of edges of the respective su�x tree (the
edges connecting nodes of depth k � 1 to the ones of depth k).

We say that a node of the su�x tree of P corresponds to the factor P [i..j]
i↵ the path from the root to that node is labelled with P [i..j]. For the succinct
representation of the longest factor of P with length at most k, that is a su�x of
the prefix of T read so far, we use the (explicit or implicit) node of the su�x-tree
of P that corresponds to this factor, together with its length; when that node
is implicit, we store the lowest explicit ancestor of this node. The main part of
our algorithm is to maintain this information e�ciently.

For simplicity, assume that we store the edges of the su�x tree of P using
perfect hashing, so we can check in constant time whether a node is the source
of an edge labelled with a certain letter, and simultaneously get the target node
of that edge (when it really exists). Also, the longest factor of P with length at
most k, that is a su�x of the prefix of T read so far is called, in the following,
the P -su�x of that prefix of T , or the current P -su�x.

Theorem 5. Given a pattern P 2 ⌃

m for |⌃| = �, and a positive integer k,
the online extended-k-abelian pattern matching problem can be solved in:

– O(m�) preprocessing time, O(m�) space, and O(1) amortised query time.
– O(m log logm) preprocessing time, O(m) space, and O(1) amortised query time.
– O(m) expected preprocessing time, O(m) space, and O(1) amortised query time.
– O(m) preprocessing time, O(m) space, and O(log log �) amortised query time.

Proof. The first remark we make is that if P [i..i+`�1] is the P -su�x of T [1..j],
then the P -su�x of T [1..j+1] has length at most `+1. Therefore, when updating
the representation of the current P -su�x, we just have to find the longest su�x
of the previous P -su�x that can be extended by the letter T [j + 1].

We show in the following how to compute the P -su�x of T [1..j + 1] when
we know the succinct representation defined above of the P -su�x of T [1..j]. Say
that the latter factor is P [i..i + ` � 1] with ` < k, and let a = T [j + 1]; when
` = k we can essentially use the approach in the previous section. We first try to
extend P [i..i+`�1] with the letter a, and see whether the newly obtained string
P [i..i+ `� 1]a is a factor of P ; this is done by checking whether there is an edge
whose label starts with a leaving the node corresponding to P [i..i+ `� 1] in the
su�x tree of P . If yes, then P [i..i+ `� 1] becomes the current P -su�x and we
just update the succinct representation of the factor of P , according to the node
where the aforementioned edge leads. If not, then we have to try extending the
factor P [i+1..i+ `� 1] with a. But first, we have to compute its corresponding
node in the su�x tree. For this, we take the lowest explicit ancestor N

1

of the
node N corresponding to P [i..i+`�1], and follow its su�x link. This takes us to
an explicit node N

2

that corresponds to a prefix of P [i+1..i+ `�1] which is not
necessarily the lowest explicit ancestor of the node corresponding to that factor.
Thus, we use the letters that labelled the path from N

1

to N (so, basically, the
remaining su�x of P [i + 1..i + ` � 1]) to advance in the su�x tree from N

2

,
until we reach the node N

3

corresponding to P [i+ 1..i+ `� 1]; we also find the
lowest explicit ancestor of N

3

. Then we check again if this node is the source of

18

an edge whose label starts with a. If yes, then we found the current P -su�x;
this is P [i+1..i+ `� 1]a, and we, therefore, also have its representation. If not,
we repeat the procedure for the factor P [i + 2..i + ` � 1], which is now a su�x
of P [i+ 1..i+ `� 1], and so on.

We can summarise our approach in the following meta-steps (when ` < k):

1. Let N be the node of the su�x tree corresponding to P [i..i+ `� 1], let N
1

be the lowest explicit ancestor of N .
2. If there is an implicit or explicit node M such that the (explicit of implicit)

edge from N to M has the label starting with a = T [j + 1], then T [1..j + 1]
has the su�x P [i..i+`�1]a which is a factor of P , whose corresponding node
in the su�x tree is M . Moreover, the lowest explicit ancestor of M is either
M itself (if it is explicit) or the lowest explicit ancestor of N , otherwise.

3. Otherwise, let N

2

be the target-node of the su�x link of N
1

. Assume that
the path from root to N

2

is labelled with P [i+ 1..s]. While the (explicit or
implicit) edge leaving N

2

and labelled with P [s + 1]Y , for some word Y ,
is of length at most (` � 1) � (s � i + 2), we advance along that edge, set
N

2

to be the implicit node we reach, update s in order to have P [i + 1..s]
the label of the path from root to N

2

, and repeat the procedure. When this
is no longer possible, the current N

2

is the lowest explicit ancestor of the
node corresponding to P [i+ 1..i+ `� 1]; this latter node, called N

3

can be
immediately discovered, by selecting the appropriate edge from those leaving
N

2

and returning the implicit node found at the right length along that edge.
4. After updating i = i+ 1 and N = N

3

, we restart the process from step 2.

It is rather hard to put a precise upper bound on the time needed to perform
the four meta-steps described above. However, it is simpler to compute the total
time spent executing all these steps (during the entire computation). The third
step of the above is the only one that cannot be executed in constant time.
Thus let us see how much time we spend executing the third step in the entire
computation. We notice that, actually, each symbol of T is used only once to go
through an edge of the tree: indeed, if P [i+1..s] labels the path from root to N

2

,
then the path from root to N

1

was labelled with P [i..s]. So, the total time spent
by our algorithm executing the operations in step 3 is O(n). Now, the rest of the
meta-steps are executed at most O(n) times. Indeed, assume that T [j� `+1..j]
is the su�x of T equal to P [i..i + ` � 1], and T [j + 2 � `

0
..j + 1] is the longest

su�x of T [1..j+1] that equals a factor of P of length `

0  k; we have `0  `+1,
so the following holds:

n� (j � `+ 1) + n� j > n� (j + 2� `

0) + n� (j + 1).

This value is maximal at the beginning of the algorithm, when it equals 2n� 1;
then it decreases in every execution of the meta-steps 2�4. This shows that these
steps are executed O(n) times. Thus, the overall complexity of maintaining the
succinct representation of the longest su�x of T that is a factor of P with length
at most k, is O(n). Using this, together with the approach in the previous section
(when ` = k), we get that Problem 4 can be solved in time O(n) and space O(m),

19

to which the time and space needed to preprocess the pattern P should be added
(and this time is either O(m log logm) in a deterministic implementation of the
perfect hashing used to store the edges of the su�x tree of P or, alternatively,
expected linear time O(m)). The space needed by our algorithm remains O(m).

Other implementations of the set of edges of the su�x tree lead, as discussed
in the previous section, to other time complexities. With preprocessing time and
space O(m�), in which the incidence matrix of the tree is constructed and stored,
the time needed to maintain the representation of the current su�x and to do
the pattern matching stays O(n). With preprocessing time and space O(m), in
which the edges are stored using van Emde Boas trees, the matching algorithm
runs in O(n log log �) time. Both these results show that for constant alphabets,
Problem 4 can be solved in linear time O(n+m) and space O(m). ut

The above algorithm was not even a near-real-time algorithm, as we could
not bound the time needed to update the succinct representation of the current
su�x of T . Now we propose a slightly di↵erent implementation of the strategy
above, that leads to a real-time algorithm.

Theorem 6. Given a pattern P 2 ⌃

m for |⌃| = �, and an integer k > 0, the
(near-) real-time extended-k-abelian pattern matching problem can be solved in:

– O(m(� + log k)) preprocessing time, O(m�) space, and O(1) query time.
– O(m(log logm+ log k)) preprocessing time, O(m) space, and O(1) query time.
– O(m log k) expected preprocessing time, O(m) space, and O(1) query time.
– O(m log k) preprocessing time, O(m) space, and O(log log k) query time.

Proof. The main idea is to only report the factors of T that are extended-k-
abelian equivalent to P . Therefore, we will not have the information we wanted
to maintain updated at each step anymore (that is, immediately after a new
letter of T is read), but we will have it (and be able to check it) whenever it is
really needed: when a factor of length k of P is found (that is, a desired factor
of T might appear).

We can easily see that the data structures constructed in Lemma 5 help
us get rid of the part where we search the tree for nodes corresponding to the
su�xes of the current P -su�x. Now we get this information in constant time,
by one query. However, this is not enough to get a constant upper bound on the
time needed to perform the update of the representation of the P -su�x that we
try to maintain. When reading a letter T [j + 1] we still have to go through an
unknown number of su�xes of the current P -su�x of T [1..j], to determine the
P -su�x of T [1..j + 1]. Just like before, the time needed to check these prefixes
amortises to constant time when the entire text is read. However, here we are
interested in the worst case behaviour.

Fortunately, we can employ now a simple idea. We do not need to have always
an updated representation of the current P -su�x. We only want to have it up to
date when we reached the case when the current P -su�x has length exactly k,
so we can use the ideas from real-time k-abelian matching. We further explain
how this can be achieved.

20

We keep a queue of the letters read from T . Also, we memorise the node in
the su�x tree corresponding to factor X of P (which is supposed to match the
current P -su�x when there are no more letters in the queue); initially (that is,
before any letter of T was read), X corresponds to the empty string. In each
step when a new letter of T is read, we put it at the end of the queue, and
also perform exactly two other checks (which can be implemented in constant or
near-constant time, see the discussion below). First, we check whether X can be
extended by the first letter from the queue (as previously described, this means
checking whether there is an edge labelled with the respective letter leaving the
node corresponding to X in the su�x tree). If yes, we update both X and the
P -su�x and their representation accordingly (i.e., save the node corresponding
to the respective factor of P extended with a), delete the first letter from the
queue, and do another similar check with the current content of the queue and
the current X and its representation. Otherwise, we get the node corresponding
to X[2..|X|] (obviously this is a factor of P , hence we can use the data structures
in Lemma 5); this su�x becomes then the current su�x of T that we want to
extend with the first letter of the queue, so it will be saved under the name X;
we check whether this can be done or not. After these two checks, we can move
on and read the next letter of T .

A special case is when we have that the X and the current P -su�x have
length k. To see this, just note that if at some point we had that X (the longest
factor of P which was a su�x of the prefix of T read till that point) had length `,
and X could not be extended, then the number of su�xes of factors of P (more
precisely, su�xes of the di↵erent words X we produce in our search) we had to
check until reaching again a situation where the current X has length ` equals
the number of letter of T read between these two moments.

Therefore, we use the lazy update algorithm we described above to update
the succinct representation of the P -su�x of the part of T we just read, and
output that we did not find a factor of T that is extended-k-abelian equivalent
to P as long as the current P -su�x does not have length k; when we reached a
factor of length k, the queue will be empty and the succinct representation will
be exactly that of the current P -su�x of the prefix of T we read so far. Then
we can proceed exactly as in the case of the real-time algorithm used for the
conventional k-abelian equivalence. When we reach again the case of a su�x of
length less than k � 1, we have to repeat the procedure.

As we do only a constant number of checks for each letter of T we read, the
algorithm is real-time if we can check in constant time whether a given edge
exists in the su�x tree or near-real-time if this check is done in near-constant
time. Again, the discussion regarding the implementation of the su�x tree from
the previous section applies. We stress that in the case of a real-time algorithm,
the preprocessing takes either O(m log k +m log logm) time in a deterministic
setting, or O(m log k) expected time. In both cases, the space used is O(m). ut

21

