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Abstract. In this paper we investigate local to global phenomena for
a new family of complexity functions of infinite words indexed by k ∈
N1∪{+∞} where N1 denotes the set of positive integers. Two finite words
u and v in A

∗ are said to be k-Abelian equivalent if for all x ∈ A
∗ of length

less than or equal to k, the number of occurrences of x in u is equal to
the number of occurrences of x in v. This defines a family of equivalence
relations ∼k on A

∗, bridging the gap between the usual notion of Abelian
equivalence (when k = 1) and equality (when k = +∞). Given an infinite

word w ∈ A
ω, we consider the associated complexity function P

(k)
w :

N1 → N1 which counts the number of k-Abelian equivalence classes of
factors of w of length n. As a whole, these complexity functions have a
number of common features: Each gives a characterization of periodicity
in the context of bi-infinite words, and each can be used to characterize
Sturmian words in the framework of aperiodic one-sided infinite words.
Nevertheless, they also exhibit a number of striking differences, the study
of which is one of the main topics of our paper.

1 Introduction

A fundamental problem in both mathematics and computer science is to de-
scribe local constraints which imply global regularities. A splendid example of
this phenomena may be found in the framework of combinatorics on words. In
their seminal papers [13,14], G. A. Hedlund and M. Morse proved that a bi-
infinite word w is periodic if and only if for some positive integer n, w contains
at most n distinct factors of length n. In other words, it describes the exact
borderline between periodicity and aperiodicity of words in terms of the factor
complexity function which counts the number of distinct factors of each length
n. An analogous result was established some thirty years later by E. Coven and
G.A. Hedlund in the framework of Abelian equivalence. They show that a bi-
infinite word is periodic if and only if for some positive integer n all factors of
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w are Abelian equivalent. Thus once again it is possible to distinguish between
periodic and aperiodic words on a local level by counting the number of Abelian
equivalence classes of factors of length n.

In this paper we study the local to global behavior for a new family of

complexity functions P
(k)
w of infinite words indexed by k ∈ N1 ∪ {+∞} where

N1 = {1, 2, 3, . . .} denotes the set of positive integers. Let k ∈ N1 ∪ {+∞} and
A be a finite non-empty set. Two finite words u and v in A∗ are said to be
k-Abelian equivalent if for all x ∈ A∗ of length less than or equal to k, the num-
ber of occurrences of x in u is equal to the number of occurrences of x in v.
This defines a family of equivalence relations ∼k on A∗, bridging the gap be-
tween the usual notion of Abelian equivalence (when k = 1) and equality (when
k = +∞). Abelian equivalence of words has long been a subject of great interest
(see for instance Erdös problem, [1,2,3,5,11,15,16,17,18]). Although the notion of
k-Abelian equivalence is quite new, there are already a number of recent papers
on the topic [8,6,7,9,12,10].

Given an infinite word w ∈ Aω, we consider the associated complexity func-

tion P
(k)
w : N1 → N1 which counts the number of k-Abelian equivalence classes of

factors of w of length n. Thus P
(∞)
w corresponds to the usual factor complexity

while P
(1)
w corresponds to Abelian complexity. As it turns out, each intermediary

complexity function P
(k)
w for 2 ≤ k < +∞ can be used to detect periodicity of

words. In order to describe this connection, we will make use of the following
auxiliary function first discovered in [10]:

q(k)(n) =

{

n+ 1 if n ≤ 2k − 1

2k if n ≥ 2k
.

As a starting point of our research, we list two classical results on factor and
Abelian complexity in connection with periodicity, and their k-Abelian coun-
terparts proved by the authors in [10]. We note that in each case, the first two
items are included in the third.

Theorem 1. Let w be a bi-infinite word over a finite alphabet. Then the follow-
ing properties hold:

– (M. Morse, G.A. Hedlund, [13]) The word w is periodic if and only if

P
(∞)
w (n) ≤ n for some n ≥ 1.

– (E.M. Coven, G.A. Hedlund, [2]) The word w is periodic if and only if

P
(1)
w (n) = 1 for some n ≥ 1.

– The word w is periodic if and only if P
(k)
w (n) < q(k)(n) for some k ∈ N1 ∪

{+∞} and n ≥ 1.

Also, each complexity provides a characterization for an important class of binary
words, the so-called Sturmian words:

Theorem 2. Let w be an aperiodic one-sided infinite word. Then the following
properties hold:



– (M. Morse, G.A. Hedlund, [14]). The word w is Sturmian if and only if

P
(∞)
w (n) = n+ 1 for all n ≥ 1.

– (E.M. Coven, G.A. Hedlund, [2]). The word w is Sturmian if and only if

P
(1)
w (n) = 2 for all n ≥ 1.

– The word w is Sturmian if and only if P
(k)
w (n) = q(k)(n) for all k ∈ N1 ∪

{+∞} and n ≥ 1.

However, in other respects, these various complexities exhibit radically dif-
ferent behaviors. For instance, in the context of one-sided infinite words, the first
item in Theorem 1 gives rise to a characterization of ultimately periodic words,

while for the other two, the result holds in only one direction: If P
(k)
w (n) < q(k)(n)

for some k ∈ N1 and n ≥ 1 then w is ultimately periodic, but not conversely
(see [10]). For instance in the simplest case when k = 1, it is easy to see that if
w is the ultimately periodic word 01ω, then for each positive integer n there are
precisely two Abelian classes of factors of w of length n. However, the same is
true of the (aperiodic) Fibonacci infinite word

w = 010010100100101001 . . .

defined as the fixed point of the morphism 0 7→ 01, 1 7→ 0. Analogously, in
Theorem 2 the first item holds true without the added assumption that w be
aperiodic, while the other two items do not. Another striking difference between
them is in their rate of growth. Consider for instance the binary Champernowne
word

C = 01101110010111011110001001 . . .

obtained by concatenating the binary representation of the consecutive natural
numbers. Let w denote the morphic image of C under the Thue-Morse morphism

τ defined by 0 7→ 01 and 1 7→ 10. Then while P
(∞)
w (n) has exponential growth,

it can be shown that P
(1)
w (n) ≤ 3 for all n. Yet another fundamental disparity

concerns the difference P
(k)
w (n + 1) − P

(k)
w (n). For the factor complexity, one

always has P
(∞)
w (n+ 1)−P

(∞)
w (n) ≥ 0, while for general k this inequality is far

from being true.
A primary objective in this paper is to study the asymptotic lower and upper

complexities defined by

L(k)
w (n) = min

m≥n
P(k)
w (m) and U (k)

w (n) = max
m≤n

P(k)
w (m).

Surprisingly these quantities might deviate from one another quite drasti-
cally. Indeed, one of our main results is to compute these values for the famous
Thue-Morse word. We show that the upper limit is logarithmic, while the lower
limit is just constant, in fact at most 8 in the case k = 2. This is quite un-
expected considering the Thue-Morse word is both pure morphic and Abelian
periodic (of period 2). If we however allow more general words, then we obtain
much stronger evidence of the non-existence of gaps in low k-Abelian complexity
classes. We construct uniformly recurrent infinite words having arbitrarily low



upper limit and just constant lower limit. The concept of k-Abelian complexity
also leads to many interesting open questions. We conclude the paper in Sect. 6
by mentioning some of these problems.

2 Preliminaries

Let Σ be a finite non-empty set called the alphabet. The set of all finite words
over Σ is denoted by Σ∗ and the set of all (right) infinite words is denoted by
Σω. The set of positive integers is denoted by N1.

Let w ∈ Σω. The word w is periodic if there is u ∈ Σ∗ such that w = uω, and
ultimately periodic if there are u, v ∈ Σ∗ such that w = vuω. If w is not ultimately
periodic, then it is aperiodic. Let u = a0 . . . am−1 and a0, . . . , am−1 ∈ Σ. The
prefix of length n of u is prefn(u) = a0 . . . an−1 and the suffix of length n of
u is suffn(u) = am−n . . . am−1. If 0 ≤ i ≤ m, then the notation rfactin(u) =
ai . . . ai+n−1 is used. The length of a word u is denoted by |u| and the number
of occurrences of another word x as a factor of u by |u|x. Two words u, v ∈ Σ∗

are Abelian equivalent if |u|a = |v|a for all a ∈ Σ.
Let k ∈ N1. Two words u, v ∈ Σ∗ are k-Abelian equivalent if |u|x = |v|x for

all words x of length at most k. k-Abelian equivalence is denoted by ∼k. If the
length of u and v is at least k − 1, then u ∼k v if and only if |u|x = |v|x for all
words x of length k and prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v).

Let w ∈ Σω. The set of factors of w of length n is denoted by Fw(n). The

factor complexity of w is the function P
(∞)
w : N1 → N1 defined by

P(∞)
w (n) = #Fw(n).

Let k ∈ N1. The k-Abelian complexity of w is the function P
(k)
w : N1 → N1

defined by
P(k)
w (n) = #(Fw(n)/ ∼k).

Factor complexity functions are always increasing, and even strictly increas-
ing for aperiodic words. For k-Abelian complexity this is not true. This is why

we define upper k-Abelian complexity U
(k)
w and lower k-Abelian complexity L

(k)
w

by
U (k)
w (n) = max

m≤n
P(k)
w (m) and L(k)

w (n) = min
m≥n

P(k)
w (m).

These two functions can be significantly different. For example, if w is the Thue-

Morse word and k ≥ 2, then U
(k)
w (n) = Θ(log n) and L

(k)
w (n) = Θ(1). This will

be proved in Sect. 4.
The Abelian complexity of a binary word w ∈ {0, 1}ω can be determined

using the formula

P(1)
w (n) = max {|u|1 | u ∈ Fn(w)} −min {|u|1 | u ∈ Fn(w)} + 1. (1)

For k ∈ N1 ∪ {∞}, let q(k) : N1 → N1 be the function defined by

q(k)(n) =

{

n+ 1 if n ≤ 2k − 1

2k if n ≥ 2k
.



The significance of this function is that if w is Sturmian, then P
(k)
w = q(k). This

is further discussed in Sect. 3.
There are large classes of words for which the k-Abelian complexities are of

the same order for many values of k. This is shown in the next two lemmas.
Thus when analyzing the growth rate of the k-Abelian complexity of a word, it
may be sufficient to analyze the Abelian or 2-Abelian complexity.

Lemma 3. Let w ∈ {0, 1}ω be such that every factor of w of length k contains

at most one occurrence of 1. Then P
(k)
w (n) = Θ(P

(1)
w (n)).

Proof. Two factors of w are k-Abelian equivalent if and only if they are Abelian
equivalent and have the same prefixes and suffixes of length k − 1. ⊓⊔

Lemma 4. Let k,m ≥ 2 and let w be a fixed point of an m-uniform morphism

h. Let i be such that mi ≥ k − 1. Then P
(k)
w (mi(n+ 1)) = O(P

(2)
w (n)).

Proof. Every factor of w of length mi(n + 1) can be written as phi(u)q, where
u is a factor of w of length n and |pq| = mi. The k-Abelian equivalence class of
phi(u)q is determined by p, q and the 2-Abelian equivalence class of u. ⊓⊔

In particular, Lemma 4 can be applied to the Thue-Morse word to analyze its
k-Abelian complexity once the behavior of its 2-Abelian complexity is known.

It has been shown that there are many words for which the k-Abelian and
(k + 1)-Abelian complexities are similar, but there are also many words for
which they are very different. For example, there are words having bounded k-
Abelian complexity but linear (k+1)-Abelian complexity. These words can even
be assumed to be k-Abelian periodic. This is shown in the next lemma.

Lemma 5. For every k ≥ 1 there is a k-Abelian periodic word w such that

P
(k+1)
w (n) = Θ(n).

Proof. Let w ∈ {0, 1}ω and let h be the morphism defined by

0 7→ 0k+110k−11, 1 7→ 0k10k1.

Then h(w) is k-Abelian periodic and P
(k+1)
h(w) ((2k+2)n) = Θ(P

(1)
w (n)). The claim

follows because there are words w with linear Abelian complexity. ⊓⊔

3 Minimal k-Abelian Complexities

In this section classes of words with small k-Abelian complexity are studied.
Some well-known results about factor complexity are compared to results on k-
Abelian complexity proved in [10]. It should be expected that ultimately periodic
words have low complexity, and this is indeed true for k-Abelian complexity,
although the k-Abelian complexity of some ultimately periodic words is higher
that the k-Abelian complexity of some aperiodic words. For many complexity



measures, Sturmian words have the lowest complexity among aperiodic words.
This is also true for k-Abelian complexity.

We recall the famous theorem of Morse and Hedlund [13] characterizing ul-
timately periodic words in terms of factor complexity. This theorem can be

generalized for k-Abelian complexity: If P
(k)
w (n) < q(k)(n) for some n, then w is

ultimately periodic, and if w is ultimately periodic, then P
(∞)
w (n) is bounded.

This was proved in [10].
If k is finite, then this generalization does not give a characterization of

ultimately periodic words, because the function q(k) is bounded. In fact, it is
impossible to characterize ultimately periodic words in terms of k-Abelian com-
plexity. For example, the word 02k−11ω has the same k-Abelian complexity as
every Sturmian word. On the other hand, for every ultimately periodic word w

there is a finite k such that P
(k)
w (n) < q(k)(n) for all sufficiently large n.

The theorem of Morse and Hedlund has a couple of immediate consequences.

The words w with P
(∞)
w (n) = n+1 for all n are, by definition, Sturmian words.

Thus the following classification is obtained:

– w is ultimately periodic ⇔ P
(∞)
w is bounded.

– w is Sturmian ⇔ P
(∞)
w (n) = n+ 1 for all n.

– w is aperiodic and not Sturmian ⇔ P
(∞)
w (n) ≥ n+1 for all n and P

(∞)
w (n) >

n+ 1 for some n.

This can be generalized for k-Abelian complexity if the equivalences are replaced
with implications:

– w is ultimately periodic ⇒ P
(k)
w is bounded.

– w is Sturmian ⇒ P
(k)
w = q(k).

– w is aperiodic and not Sturmian ⇒ P
(k)
w (n) ≥ q(k)(n) for all n and P

(k)
w (n) >

q(k)(n) for some n.

For k = 1 this follows from the theorem of Coven and Hedlund [2]. For k ≥ 2 it
follows from a theorem in [10].

The above result means that one similarity between factor complexity and
k-Abelian complexity is that Sturmian words have the lowest complexity among
aperiodic words. Another similarity is that ultimately periodic words have bounded
complexity, but the largest values can be arbitrarily high: For every n, there is a

finite word u having every possible factor of length n. Then P
(k)
uω (n) is as high as

it can be for any word, i.e. the number of k-Abelian equivalence classes of words
of length n.

Another direct consequence of the theorem of Morse and Hedlund is that
there is a gap between constant complexity and the complexity of Sturmian
words. For k-Abelian complexity there cannot be a gap between bounded com-
plexities and q(k), because the function q(k) itself is bounded. However, the ques-
tion whether there is a gap above bounded complexity is more difficult. The
answer is that there is no such gap, even if only uniformly recurrent words are
considered. This is proved in Sect. 5.



4 k-Abelian Complexity of the Thue-Morse Word

In this section the k-Abelian complexity of the Thue-Morse word is analyzed.
Before that, the Abelian complexity of a closely related word is determined.

Let σ be the morphism defined by σ(0) = 01, σ(1) = 00. Let

S = 0100010101000100 . . .

be the period-doubling word, which is the fixed point of σ, see [4].
The Abelian complexity of S is completely determined by the recurrence

relations in the following lemma and by the first two values P
(1)
S (1) = P

(1)
S (2) =

2.

Lemma 6. For n ≥ 1,

P
(1)
S (4n− 1) = P

(1)
S (n) + 1, P

(1)
S (4n) = P

(1)
S (n),

P
(1)
S (4n+ 1) = P

(1)
S (n) + 1, P

(1)
S (4n+ 2) = P

(1)
S (n) + 1.

Proof. Let pn = min {|u|1 | u ∈ Fn(S)} and qn = max {|u|1 | u ∈ Fn(S)} . For
a ∈ {0, 1}, σ2(a) = 010a. Because

F4n−1(S) =
{

σ2(a1 . . . an−1)010 | a1 . . . an−1 ∈ Fn−1(S)
}

∪
{

10a1σ
2(a2 . . . an) | a1 . . . an ∈ Fn(S)

}

∪
{

0a1σ
2(a2 . . . an)0 | a1 . . . an ∈ Fn(S)

}

∪
{

a1σ
2(a2 . . . an)01 | a1 . . . an ∈ Fn(S)

}

,

F4n(S) =
{

σ2(a1 . . . an) | a1 . . . an ∈ Fn(S)
}

∪
{

10a1σ
2(a2 . . . an)0 | a1 . . . an ∈ Fn(S)

}

∪
{

0a1σ
2(a2 . . . an)01 | a1 . . . an ∈ Fn(S)

}

∪
{

a1σ
2(a2 . . . an)010 | a1 . . . an ∈ Fn(S)

}

,

F4n+1(S) =
{

σ2(a1 . . . an)0 | a1 . . . an ∈ Fn(S)
}

∪
{

10a1σ
2(a2 . . . an)01 | a1 . . . an ∈ Fn(S)

}

∪
{

0a1σ
2(a2 . . . an)010 | a1 . . . an ∈ Fn(S)

}

∪
{

a1σ
2(a2 . . . an+1) | a1 . . . an+1 ∈ Fn+1(S)

}

,

F4n+2(S) =
{

σ2(a1 . . . an)01 | a1 . . . an ∈ Fn(S)
}

∪
{

10a1σ
2(a2 . . . an)010 | a1 . . . an ∈ Fn(S)

}

∪
{

0a1σ
2(a2 . . . an+1) | a1 . . . an+1 ∈ Fn+1(S)

}

∪
{

a1σ
2(a2 . . . an+1)0 | a1 . . . an+1 ∈ Fn+1(S)

}

,



it can be seen that

p4n−1 = pn + n− 1, q4n−1 = qn + n,

p4n = pn + n, q4n = qn + n,

p4n+1 = pn + n, q4n+1 = qn + n+ 1,

p4n+2 = pn + n, q4n+2 = qn + n+ 1.

The claim follows because P
(1)
S (n) = qn − pn + 1 for all n. ⊓⊔

Lemma 7. For n ≥ 1 and m ≥ 0,

P
(1)
S (n) = O(log n), P

(1)
S ((2 · 4m + 1)/3) = m+ 2, P

(1)
S (2m) = 2.

Proof. Follows from Lemma 6 by induction. ⊓⊔

The Abelian complexity of S has a logarithmic upper bound and a constant
lower bound. These bounds are the best possible increasing bounds.

Theorem 8. U
(1)
S (m) = Θ(log n) and L

(1)
S (m) = 2.

Proof. Follows from Lemma 7. ⊓⊔

Now, let τ be the Thue-Morse morphism defined by τ(0) = 01, τ(1) = 10.
Let

T = 0110100110010110 . . .

be the Thue-Morse word, which is a fixed point of τ . The first few values of P
(2)
T

are
2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, 10, 8, 8, 6, 8, 10, 10.

The 2-Abelian equivalence of factors of T can be determined with the help
of the following lemma.

Lemma 9. Words u, v ∈ {0, 1}∗ are 2-Abelian equivalent if and only if

|u| = |v|, |u|00 = |v|00, |u|11 = |v|11 and pref1(u) = pref1(v).

Proof. The “only if” direction follows immediately from the definition of 2-
Abelian equivalence. For the other direction, it follows from the assumptions
that |u|01 + |u|10 = |v|01 + |v|10. In any word w ∈ {0, 1}∗, |w|01 and |w|10 can
differ by at most one. If |w|01 + |w|10 is even, then |w|01 = |w|10. If it is odd
and pref1(w) = 0, then |w|01 = |w|10 + 1. If it is odd and pref1(w) = 1, then
|w|01 + 1 = |w|10. This means that |u|01 = |v|01 and |u|10 = |v|10 and u and v
are 2-Abelian equivalent. ⊓⊔

The following lemma states that if u is a factor of T , then the numbers |u|00
and |u|11 can differ by at most one.

Lemma 10. In the image of any word under τ , between any two occurrences of
00 there is an occurrence of 11 and vice versa.



Proof. 00 can only occur in the middle of τ(10) and 11 can only occur in the
middle of τ(01). The claim follows because 10’s and 01’s alternate in all binary
words. ⊓⊔

Let u be a factor of T . If |u| and |u|00 + |u|11 are given, then there are at
most 4 possibilities for the 2-Abelian equivalence class of u. This is stated in a
different way in the next lemma. First we define a function φ as follows. If w =
a1 . . . an, then φ(w) = b1 . . . bn−1, where bi = 0 if aiai+1 ∈ {01, 10} and bi = 1
if aiai+1 ∈ {00, 11}. If w = a1a2 . . . is an infinite word, then φ(w) = b1b2 . . . is
defined in an analogous way.

Lemma 11. Let u1, . . . , un be factors of T . If φ(u1), . . . , φ(un) are Abelian
equivalent, then u1, . . . , un are in at most 4 different 2-Abelian equivalence classes.

Proof. The numbers |ui|00 + |ui|11 = |φ(ui)|1 are equal for all i; let this number
be m. By Lemma 10, {|ui|00, |ui|11} = {⌊m/2⌋, ⌈m/2⌉}. There are at most four
different possible values for the triples (|ui|00, |ui|11, pref1(ui)). The claim follows
from Lemma 9. ⊓⊔

Now it can be proved that the 2-Abelian complexity of T is of the same
order as the Abelian complexity of φ(T ). It is known that φ(T ) is actually the
period-doubling word S.

Lemma 12. For n ≥ 2, P
(1)
S (n− 1) ≤ P

(2)
T (n) ≤ 4P

(1)
S (n− 1).

Proof. If the factors of T of length n are u1, . . . , um, then the factors of φ(T ) of
length n − 1 are φ(u1), . . . , φ(um). If ui and uj are 2-Abelian equivalent, then
φ(ui) and φ(uj) are Abelian equivalent, so the first inequality follows. The second
inequality follows from Lemma 11 ⊓⊔

Lemma 13. For n ≥ 1 and m ≥ 0,

P
(2)
T (n) = O(log n), P

(2)
T ((2 · 4m + 4)/3) = Θ(m), P

(2)
T (2m + 1) ≤ 8.

Proof. Follows from Lemmas 12 and 8. ⊓⊔

The k-Abelian complexity of T behaves in a similar way as the Abelian
complexity of S.

Theorem 14. Let k ≥ 2. Then

U
(k)
T (m) = Θ(log n) and L

(k)
T (m) = Θ(1).

Proof. Follows from Lemmas 13 and 4. ⊓⊔



5 Arbitrarily Slowly Growing k-Abelian Complexities

In this section it is studied whether there is a gap above bounded k-Abelian
complexity. This question can be formalized in two ways:

– Does there exists an increasing unbounded function f : N1 → N1 such that

for every infinite word w either P
(k)
w is bounded or P

(k)
w = Ω(f)?

– Does there exists an increasing unbounded function f : N1 → N1 such that

for every infinite word w either P
(k)
w is bounded or P

(k)
w 6= O(f)?

The first question has already been answered negatively in Sect. 4. The answer
to the second question is also negative, even if only uniformly recurrent words
are considered. A construction proving this is given below.

Let n1, n2, . . . be a sequence of integers greater than 1. Let mj = n1 . . . nj

for j = 0, 1, 2, . . . . Let ai = 0 if the greatest j such that mj |i is even and ai = 1
otherwise. Let U = a1a2a3 . . . .

Lemma 15. The word U is uniformly recurrent.

Proof. For every factor u of U , there is a j such that u is a factor of prefmj−1(U).
Because U ∈ {prefmj−1(U)0, prefmj−1(U)1}ω, every factor of U of length mj +
|u| − 1 contains u. ⊓⊔

Lemma 16. For every n, let n′ be such that mn′−1 < n ≤ mn′ . Then

P
(1)
U (n) ≤ n′ + 1.

For all J ≥ 1, if n = 2
∑J

j=1(m2j −m2j−1), then

P
(1)
U (n) ≥

n′ + 1

2
.

For all j ≥ 1,

P
(1)
U (mj) = 2.

Proof. Formula (1) will be used repeatedly in this proof. Another important
simple fact is that if a, b, c are integers and c divides a, then ⌊(a+ b)/c⌋ =
a/c+ ⌊b/c⌋ .

For all n ≥ 1,

|prefn(U)|1 =

∞
∑

i=1

(−1)i+1

⌊

n

mi

⌋

,

and for all n ≥ 1 and l ≥ 0,

|rfactln(U)|1 = |prefn+l(U)|1 − |pref l(U)|1 =
∞
∑

i=1

(−1)i+1

(⌊

n+ l

mi

⌋

−

⌊

l

mi

⌋)

.

For all i,
⌊

n+ l

mi

⌋

−

⌊

l

mi

⌋

∈

{⌊

n

mi

⌋

,

⌈

n

mi

⌉}

.



Moreover, for every l there is an i′ such that

⌊

n+ l

mi

⌋

−

⌊

l

mi

⌋

=

{

1 if n′ ≤ i ≤ i′

0 if i ≥ i′
,

so
∞
∑

i=n′

(−1)i+1

(⌊

n+ l

mi

⌋

−

⌊

l

mi

⌋)

∈
{

0, (−1)n
′+1

}

.

Thus there are at most n′+1 possible values for |rfactln(U)|1 and P
(1)
U (n) ≤ n′+1.

Consider the second claim. Let n = 2
∑J

j=1(m2j −m2j−1) and l = m2J+1 −
n/2. Then

|rfactln(U)|1 − |prefn(U)|1 =

∞
∑

i=1

(−1)i+1

(⌊

n+ l

mi

⌋

−

⌊

l

mi

⌋

−

⌊

n

mi

⌋)

and for i ≤ 2J

⌊

n+ l

mi

⌋

−

⌊

l

mi

⌋

−

⌊

n

mi

⌋

=
m2J+1 +

∑

(i+1)/2≤j≤J (m2j −m2j−1)

mi
+

⌊
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

−
m2J+1 −

∑

(i+1)/2≤j≤J (m2j −m2j−1)

mi
−

⌊

−

∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

−
2
∑

(i+1)/2≤j≤J (m2j −m2j−1)

mi
−

⌊

2
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

=

⌊

s

mi

⌋

−

⌊

−
s

mi

⌋

−

⌊

2s

mi

⌋

,

where s =
∑

1≤j<(i+1)/2(m2j −m2j−1). If i is even, then mi/2 ≤ s < mi, and if

i is odd and i > 1, then mi−1/2 ≤ s < mi−1. Thus

⌊

s

mi

⌋

−

⌊

−
s

mi

⌋

−

⌊

2s

mi

⌋

=

{

0 if i is even or i = 1

1 if i is odd and i > 1

and

P
(1)
U (n) ≥ |rfactln(U)|1 − |prefn(U)|1 + 1

=

J
∑

i′=2

(−1)(2i
′−1)+1 +

∞
∑

i=2J+1

(−1)i+1

(⌊

n+ l

mi

⌋

−

⌊

l

mi

⌋

−

⌊

n

mi

⌋)

+ 1

= J + 1 =
n′ + 1

2
.



Consider the third claim. Let n = mj . Then

|rfactln(U)|1 =

∞
∑

i=1

(−1)i+1

(⌊

mj + l

mi

⌋

−

⌊

l

mi

⌋)

=

j
∑

i=1

(−1)i+1mj

mi
+

∞
∑

i=j+1

(−1)i+1

(⌊

mj + l

mi

⌋

−

⌊

l

mi

⌋)

and
∞
∑

i=j+1

(−1)i+1

(⌊

mj + l

mi

⌋

−

⌊

l

mi

⌋)

∈ {0, (−1)j},

so P
(1)
U (n) = 2. ⊓⊔

If ni = 2 for all i, then the word U is the period-doubling word S. Thus
Lemma 16 gives an alternative proof for Theorem 8.

Theorem 17. For every increasing unbounded function f : N1 → N1 there is a

uniformly recurrent word w ∈ {0, 1}ω such that P
(k)
w (n) = O(f(n)) but P

(k)
w (n)

is not bounded.

Proof. Follows from Lemmas 3, 15 and 16. ⊓⊔

6 Conclusion

In this paper we have investigated some generalizations of the results of Morse
and Hedlund and those of Coven and Hedlund for k-Abelian complexity. We have
pointed out many similarities but also many differences. We have studied the k-
Abelian complexity of the Thue-Morse word and proved that there are uniformly
recurrent words with arbitrarily slowly growing k-Abelian complexities.

There are many open question and possible directions for future work. One
open problem related to Lemma 5 is to determine the maximal (k + 1)-Abelian
complexity of a k-Abelian periodic word. Another interesting topic would be
the k-Abelian complexities of morphic words. For example, Theorem 17 does
not hold if morphic words are considered instead of uniformly recurrent words,
because the k-Abelian complexity of a morphic word is always a computable

function. But for a morphic (or pure morphic) word w, how slowly can U
(k)
w (n)

grow without being bounded? Can it grow slower than logarithmically? More
generally, can the possible k-Abelian complexities of some subclass of morphic
words be classified?
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