
ar
X

iv
:1

31
0.

05
04

v4
 [

cs
.F

L
]

 4
 A

pr
 2

01
4

A Note on Pushdown Automata Systems

Holger Petersen

Reinsburgstr. 75

70197 Stuttgart

Germany

September 8, 2018

Abstract

In (Csuhaj-Varjú et. al. 2000) Parallel Communicating Systems of
Pushdown Automata (PCPA) were introduced and shown to be able to
simulate nondeterministic one-way multi-head pushdown automata in re-
turning mode, even if communication is restricted to be one-way having
a single target component. A simulation of such centralized PCPA by
one-way multi-head pushdown automata (Balan 2009) turned out to be
incomplete (Otto 2012). Subsequently it was shown that centralized re-
turning PCPA are universal even if the number of components is two (Pe-
tersen 2013) and thus are separated from one-way multi-head pushdown
automata. Another line of research modified the definition of PCPA such
that communication is asynchronous (Otto 2013). While the simulation
of one-way multi-head pushdown automata is still possible, now a con-
verse construction shows this model in returning mode to be equivalent
to the one-way multi-head pushdown automaton in a very precise sense.
It was left open, whether non-centralized returning PCPA of degree two
are universal. In the first part of the paper we show this to be the case.

Then we turn our attention to Uniform Distributed Pushdown Au-
tomata Systems (UDPAS). These systems of automata work in turn on
a single tape. We show that UPDAS accepting with empty stack do not
form a hierarchy depending on the number of components and that the
membership problem is complete in NP, answering two open problems
from (Arroyo et. al. 2012).

1 Introduction

Growing interest in distributed computing has lead to generalizations of classi-
cal concepts of Formal Language Theory including context-free grammars and
pushdown automata. Several components each consisting of a grammar or au-
tomaton communicate and together decide about the acceptance of an input.

Parallel Communicating Systems of Pushdown Automata (PCPA) were in-
troduced in [4] as systems of automata communicating by transferring their
pushdown contents following several different protocols. In [4] it was shown
that all recursively enumerable languages can be accepted by general PCPA of
degree two (number of components) and returning mode PCPA of degree three
(the source pushdown is emptied after a transfer).

1

http://arxiv.org/abs/1310.0504v4

In [2] it was claimed that centralized PCPA (having a single target automa-
ton) of degree k working in returning mode can be simulated by nondeterministic
one-way k-head automata. It had been shown previously in [4] that PCPA of
degree k can simulate nondeterministic one-way k-head automata, which would
complement the universal power of other variants of non-centralized or non-
returning PCPA.

Otto [6] pointed out a flaw in the construction from [2]. Thus the power of
centralized PCPA working in returning mode was open. In [8] it was shown that
centralized PCPA of degree two working in returning mode are universal, a result
that is optimal since PCPA of degree one accept the context-free languages.

In another line of research, Otto [7] modified the definition of communica-
tion of PCPA leading to the model of asynchronous PCPA. He could show that
centralized asynchronous PCPA working in returning mode can be simulated by
nondeterministic one-way k-head automata. Non-centralized and non-returning
asynchronous PCPA were shown to be universal, with the exception of non-
centralized returning asynchronous PCPA of degree two. Here we show these
PCPA to be universal even if the pushdown automata are deterministic. The
technique is novel in this area, being based on a simulation of a computational
model equipped with a queue storage. In contrast the results of [8] were shown
with the help of counter automata and the constructions of [7] use two-pushdown
automata. The specific computational model we use is the Post machine intro-
duced in the textbook [5]. While the universality of a queue storage is implied
by Post’s work and is sometimes considered to be folklore, references [9, 5] ap-
pear to give the earliest formal definitions of machines with a finite control and
a queue as their storage.

While a PCPA transfers information via pushdown contents, in Distributed
Pushdown Automata Systems (DPAS) several automata work on the same input
string and communication takes place by activating components.

2 Preliminaries

Several variants of PCPA were defined in [4, 2, 7]. A PCPA of degree k consists
of k nondeterministic pushdown automata defined in the standard way. These
automata (called components) work in parallel reading the same input string.
The components communicate using special pushdown store symbols. In the
asynchronous mode a communication symbol has to be on top of the pushdown
store of the target component and a response symbol is required on top of
the pushdown store of the source component. Then the contents of the source
pushdown store are copied onto the target pushdown store replacing the topmost
symbol. The source pushdown store is emptied if the PCPA is working in
returning mode. An input is accepted if all components reach final states when
they have read the entire input string.

Formally a PCPA of degree k is a tuple

A = (V,∆, A1, A2, . . . , Ak,K,R)

where

• V is a finite input alphabet,

• ∆ is a finite alphabet of pushdown symbols,

2

• Ai is a component as defined below for 1 ≤ i ≤ k,

• K = {K1, . . . ,Kk} ⊆ ∆ is a set of query symbols.

• R ∈ V \K is a response symbol (different from all bottom symbols of the
component pushdown automata).

Each component Ai = (Qi, V,∆, fi, qi, Zi, Fi) is a pushdown automaton
where

• Qi is a finite set of states,

• fi is a function from Qi × (V ∪ ε)×∆ to the finite subsets of Qi ×∆∗,

• qi ∈ Qi is the initial state,

• Zi ∈ ∆ is the bottom symbol,

• Fi ⊆ Qi is the set of final states.

If only function f1 of the first component maps to sets with members containing
query symbols, the system is called centralized.

A configuration of a PCPA of degree k is a 3k-tuple

(s1, x1, α1, . . . , sk, xk, αk)

where

• si ∈ Qi is the state of component Ai,

• xi ∈ V ∗ is the part of the input not yet processed by Ai,

• αi ∈ ∆∗ is the word on the pushdown store of Ai with its topmost symbol
on the left.

In returning mode the step relation ⊢r between configurations is defined by:

(s1, x1, B1α1, . . . , sk, xk, Bkαk) ⊢r (s
′

1
, x′

1
, α′

1
, . . . , s′k, x

′

k, α
′

k),

if one of the following conditions holds:

Communication step: There are 1 ≤ i, j ≤ k such that Bi = Kji and Bji =
R we have α′

i = αjiαi, α
′

ji
= Zji , and α′

m = Bmαm for all other indices
m. States and input are not modified: s′i = si and x′

i = xi for 1 ≤ i ≤ k.

Internal step: If there is no pair as defined above an internal step is carried
out:

• If xi = aix
′

i with ai ∈ K ∪ {R} then α′

i = αi, x
′

i = xi, and s′i = si.

• If xi = aix
′

i with ai ∈ (V \K \ {R})∪ {ε} then (s′i, β) ∈ fi(si, ai, Bi)
with α′

i = βαi.

The PCPA accepts exactly those words w that admit a sequence of steps from
the initial configuration

(q1, w, Z1, . . . , qk, w, Zk)

to a final configuration
(s1, ε, α1, . . . , sk, ε, αk)

with si ∈ Fi for some 1 ≤ i ≤ k.
A Post machine M [5, p. 24] can be described by a program1 with a single

1In [5] the program takes the form of a directed graph, which is obviously equivalent.

3

variable x having as its value a string over a finite alphabet Σ ∪ {#}, where Σ
is the input alphabet and # is an auxiliary symbol. The program consists of
instructions of the following types:

HALT statements: ACCEPT and REJECT with the obvious meaning.

TEST statements: conditional statements of the form

if x = ǫ then goto i0 else

case head(x) of
σ1: then x := tail(x); goto i1;
...
σn: then x := tail(x); goto in;

where n = |Σ|+1, σ1, . . . , σn ∈ Σ∪{#}, and and i0, . . . , in are instructions
of M .

ASSIGNMENT statements: x := xσk for σk ∈ Σ ∪ {#}.

Execution of the program starts with x holding the input at the first instruction.
The input is accepted if the ACCEPT instruction is reached.

A Distributed Pushdown Automata System (DPAS) of degree n consists of n
pushdown automata (components) working in turn on a common input string.
At each point in time one of the pushdown automata is active and may perform a
transition. If the active automaton has no transition (blocks), another pushdown
automaton becomes active. If all components are equal, we call the DPAS
uniform (UDPAS). Formal definitions can be found in [1].

For words over an alphabet Σ we define their shuffle of words w, x in the
following way:

w ⊔⊔ ε = ε ⊔⊔ w = {w}

aw ⊔⊔ bx = a(w ⊔⊔ bx) ∪ b(aw ⊔⊔ x)

For languages L1, L2 we define

L1 ⊔⊔ L2 =
⋃

w1∈L1,w2∈L2

w1 ⊔⊔ w2

3 Universality of Non-centralized Deterministic

PCPA of Degree two in Returning Mode

Theorem 1 Every recursively enumerable language can be accepted by a non-

centralized deterministic PCPA of degree two working in returning mode.

Proof. We make use of the fact that every recursively enumerable language can
be accepted by a Post machine [5, Theorem 1-3] and that recursively enumerable
languages are closed under reversal.

Let L be a recursively enumerable language and M a Post machine accepting
L. We will describe a system A simulating M and accepting LR. The main task
of the simulation is carried out by component 1. It first reads the input and
puts it onto its pushdown store. Then it starts a cycle simulating a single step
of M consisting of the following tasks:

4

1. It checks if M has reached a HALT statement and accepts resp. rejects
accordingly.

2. It pops the topmost symbol of the pushdown (if the store is non-empty).

3. It puts the response symbol R on top of its pushdown store.

4. By having the response symbol on its pushdown store, component 1 of
A stops until the contents of its pushdown store have been transferred to
component 2.

5. After having resumed its operation, component 1 of A puts a string (pos-
sibly empty) on its (now empty) pushdown store, depending on the sim-
ulated state of M and the information from step 2.

6. Component 1 puts the communication symbol for a communication from
component 2 on top of the pushdown store.

7. After having resumed its operation, component 1 starts the next cycle.

Component 2 first reads the input string and then repeatedly executes the
following steps:

1. It puts the communication symbol from component 1 on top of the push-
down store.

2. It puts the response symbol on top of the pushdown store.

All states of component 2 are accepting, such that acceptance depends on
component 1 only. By construction component 1 simulates M on the reversal
of its input.

✷

4 Results for Uniform Distributed Pushdown Au-

tomata Systems

In this section we address two of the three open problems mentioned in the
final remarks of [1]. The answers show that the classes of languages accepted
by UDPAS have a complex structure (they do not form a hierarchy) and the
computational complexity of the non-uniform word-problem is the same as for
the shuffle of two context-free languages, namely complete in NP.

Theorem 2 There is no hierarchy of languages accepted by UDPAS depending

on the number of components.

Proof. Let M ⊆ a∗ be a finite, non-empty language over the single letter
alphabet {a} with M 6= {ǫ}. Clearly, M is a context-free language and can
thus be accepted by a UDPAS with one component. Take a w such that ∀x ∈
M : |w| ≥ |x|. Suppose that M is accepted by UPDAS A with n = |w| + 1
components. By Lemma 1 of [1] there is a language L such that Ln = M . If u ∈
L is any non-empty word, then un is accepted by A. But |un| > w and therefore
A cannot accept M . We conclude that L ⊆ {ǫ} and M = Ln =⊆ {ǫ}n = {ǫ},
contradicting the choice of M . ✷

5

Theorem 3 The non-uniform word-problem for languages accepted by UDPAS

is complete in NP.

Proof. The problem is in NP, since for n copies of a given pushdown automaton
A a nondeterministic Turing-machine can guess a distribution of all symbols of
an input word among the copies of A and check membership in L(A) for each
of the interleaved subwords.

For NP-hardness we reduce the NP-complete membership-problem for the
shuffle of two context-free languages [3] to the problem at hand. Let A and B

be two pushdown-automata. Without loss of generality, A and B are over a
common input alphabet Σ and pushdown alphabet ∆. Let #, $ 6∈ Σ be two new
symbols. We define A′ and B′ as automata having the finite controls of A and
B with self-loops on # added to every state. In A′ we duplicate every state and
its transitions originally in A (thus omitting the self-loops on #), while in B′

we duplicate every state and add a transition on # to the original state. We
finally add ε-transitions from every state in A or B to its copy. The automata
obtained will be called A′′ and B′′. Notice that L(A′) = L(A′′) = L(A)⊔⊔{#}∗

and L(B′) = L(B′′) = L(B)⊔⊔{#}∗, since the additional transitions in A′′ and
B′′ do not inluence the accepted languages.

Formally let
A = (QA,Σ,∆A, fA, qA, ZA, FA)

and
B = (QB,Σ,∆B , fB, qB, ZB, FB)

be the initial pushdown-automata. Then

A′ = (QA,Σ ∪ {#},∆A, fA ∪ {(q,#, d, {(q, d)}) | q ∈ QA, d ∈ ∆}, qA, ZA, FA)

and

B′ = (QB,Σ ∪ {#},∆B, fB ∪ {(q,#, d, {(q, d)}) | q ∈ QB, d ∈ ∆}, qB, ZB, FB)

. Further

A′′ = (QA ∪ {q̂ | q ∈ QA},Σ ∪ {#},∆A,

fA ∪ {(q,#, d, {(q, d)}) | q ∈ QA, d ∈ ∆} ∪

{(q̂, σ, d, S) | (q, σ, d, S) ∈ fA} ∪ {(q, ε, d, {q̂}) | q ∈ QA, d ∈ ∆},

qA, ZA, FA)

and

B′′ = (QB ∪ {q̂ | q ∈ QB},Σ ∪ {#},∆B,

fA ∪ {(q,#, d, {(q, d)}) | q ∈ QA, d ∈ ∆} ∪

{(q̂,#, d, {q}) | q ∈ QB} ∪ {(q, ε, d, {q̂}) | q ∈ QB, d ∈ ∆},

qB, ZB, FB).

We now form a new pushdown-automaton C consisting of the union of the
finite controls of A′′ and B′′ plus a new state qC , which is the initial state of
C. On # there is a transition from q to the initial state of A′′, on $ there is a
transition from q to B′′. All new transitions (not in do A or B) not affect the
pushdown-store.

6

For a given word w = w1w2 · · ·wn with wi ∈ Σ for which the membership-
problem of the shuffle of the languages accepted by A and B has to be decided,
we form the word w′ = #$#w1#w2# · · ·#wn and ask whether a system of two
copies of C accepts w′.

Suppose w is a member of the shuffle of L(A) and L(B). We fix a distribution
of the symbols of w among A and B. On the prefix #$ of w′ the initial states
of A′′ and B′′ are reached in the copies of C with the initial state of B′′ being
active. Let us call these two copies CA and CB depending on the initial state.
Notice that all states reachable in CA (CB) will be from A′′ (B′′). Now the
system is repeatedly about to read the symbols #wi. If the symbol wi is part
of the input of A and CA is active in a state from A′, then using the self-loop C

reads # and then wi. If wi is part of the input of B and CA is active, then CA

jumps into the corresponding state without the self-loop and blocks since there
is no transition on #. Then CB becomes active and can skip # either by the
self-loop or by a transition from the copy of a state to the state from B. The
computation of CB continues on wi. If wi is part of the input of B and C is in
a state from B′′, then CB reads # either by a self-loop or by a transition to a
state from B and processes wi. If wi is part of the input of A and CB is active,
the # is skipped by a self-loop and then CB blocks using an ε-transition to the
copy of the current state. This strategy shows, that for every word w in the
shuffle of L(A) and L(B) the modified input w′ = #$#w1#w2# · · ·#wn can
be accepted by C.

If conversely an input w′ = #$#w1#w2# · · ·#wn is accepted by C, we can
identify two words from L(A) and L(B) forming w′ by recording the sequence
of states from CA and CB. ✷

5 Conclusion

We have shown that non-centralized returning asynchronous PCPA of degree
two are universal. Uniform Distributed Pushdown Automata Systems have a
membership problem that is complete in NP, The technique from the proof of
Theorem 3 of letting an automaton block by nondeterministically moving to
a copy of a state having only a subset of the original transitions seem sto be
promising for solving Open Problem 1 of [1] asking for conditions that a context-
free language L should satisfy such that ⊔⊔p(L) is accepted by a UPDAS with
empty stacks.

References

[1] F. Arroyo, J. Castellanos, and V. Mitrana. Uniform distributed pushdown
automata systems. In M. Kutrib, N. Moreira, and R. Reis, editors, Descrip-

tional Complexity of Formal Systems, 14th International Workshop, DCFS

2012, volume 7386 of LNCS, pages 64–75. Springer-Verlag, 2012.

[2] M. S. Balan. Serializing the parallelism in parallel communicating pushdown
automata systems. In J. Dassow, G. Pighizzini, and B. Truthe, editors,
Descriptional Complexity of Formal Systems, 11th International Workshop,

DCFS 2009, pages 59–68, 2009. http://dx.doi.org/10.4204/EPTCS.3.5.

7

http://dx.doi.org/10.4204/EPTCS.3.5

[3] M. Berglund, H. Björklund, and J. Högberg. Recognizing shuffled languages.
In A. H. Dediu, S. Inenaga, and C. Mart́ın-Vide, editors, Language and

Automata Theory and Applications, 5th International Conference, LATA

2011, volume 6638 of LNCS, pages 142–154. Springer-Verlag, 2011.

[4] E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana, and G. Vaszil. Parallel com-
municating pushdown automata systems. Int. J. Found. Comput. Sci.,
11(4):633–650, 2000.

[5] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York,
1974.

[6] F. Otto. Centralized PC systems of pushdown automata versus multi-head
pushdown automata. In M. Kutrib, N. Moreira, and R. Reis, editors, De-

scriptional Complexity of Formal Systems, 14th International Workshop,

DCFS 2012, volume 7386 of LNCS, pages 244–251. Springer-Verlag, 2012.

[7] F. Otto. Asynchronous PC systems of pushdown automata. In A. H. Dediu,
C. Mart́ın-Vide, and B. Truthe, editors, Language and Automata Theory

and Applications, 7th International Conference, LATA 2013, volume 7810
of LNCS, pages 456–467. Springer-Verlag, 2013.

[8] H. Petersen. The power of centralized PC systems of pushdown automata.
In H. Jürgensen and R. Reis, editors, Descriptional Complexity of Formal

Systems, 15th International Workshop, DCFS 2013, volume 8031 of LNCS.
Springer-Verlag, 2013.

[9] R. Vollmar. Über einen Automaten mit Pufferspeicherung (On an automaton
with buffer-tape). Computing, 5:57–70, 1970. In German.

8

	1 Introduction
	2 Preliminaries
	3 Universality of Non-centralized Deterministic PCPA of Degree two in Returning Mode
	4 Results for Uniform Distributed Pushdown Automata Systems
	5 Conclusion

