
How to Build Input/Output Logic

Xin Sun

Individual and Collective Reasoning Group, University of Luxembourg

Abstract. In this paper we anatomize input/output logic. We analyze various
derivation rules in isolation and define the corresponding semantics. We thus cre-
ate a toolbox to build input/output logic. We use this toolbox to correct a mistake
appeared in the work of applying input/output logic to constitutive norms. We fur-
ther develop fixed point characterizations for input/output logic involving rules of
cumulative transitivity and present new completeness proofs.

Key words: input/ouput logic, fixed point, deontic logic

1 Introduction

In the first volume of the handbook of deontic logic [10], input/output logic [18–
20, 22] appears as one of the new achievement in deontic logic in this century. In-
put/output logic takes its origin in the study of conditional norms. Unlike the modal
logic framework [29], which usually uses possible world semantics, input/output logic
adopts mainly operational semantics: a normative system is conceived in input/output
logic as a deductive machine, like a black box which produces normative statement as
output, when we feed it descriptive statements as input.

Such an operational treatment can be traced back to Alchourron and Bulygin [1].
Boella and van der Torre [3] extended input/output logic to reasoning about constitutive
norms. Tosatto et al. [8] adapted it to represent and reason about abstract normative
systems. For a comprehensive introduction of input/output logic, see Parent and van der
Torre [22].

The procedure of operational semantics is divided to three stages. In the first stage,
we have in hand a set of propositions (call it the input) as a description of the current
state. We can then apply logical operators to this set, say close the set by logical conse-
quence. Then we pass this set to the deductive machine and we reach the second stage.
In the second stage, the machine accepts the input and produces a set of propositions as
output. In the third stage, we accept the output and apply logical operators to it.

On the proof-theoretical side, input/output logics are characterized by derivation
rules about norms, which is represented by an ordered pair of formulas. Given a set
of norms N , a derivation system is the smallest set of norms which contains N and is
closed under certain derivation rules.

One feature of the existing work of input/output logic is: the derivation rules always
work in bundles. For example in simple-minded input/output logic of Makinson and
van der Torre [18], the derivation system is decided by three rules: strengthening the
input (SI), weakening the output (WO) and conjunction in the output (AND). When

several derivation rules work together, the corresponding operational semantics will be
rather complex, and insights of the machinery will therefore be concealed. To achieve a
deeper understanding on input/output logic, it is helpful to isolate every single rule and
study them separately. This is the motivation of this paper.

In this paper we anatomize input/output logic. We take a close look at various rules
in isolation and define the corresponding semantics. Not surprisingly, as long as we
have semantics for single rule, we can use it as a toolbox to construct semantics for
systems decided by multiple rules.

The structure of this paper is as following: we first review input/output logic in
Section 2. Then we study a number of rules from Section 3 to 6. In Section 7 we use
the result of this paper to correct a mistake of Boella and van der Torre [3]. We then
discuss related work in Section 8. We conclude this paper with future work in Section
9. For the sake of readability, all complex proof are given in the appendix.

2 Background

In this section we review input/output logic. Let P = {p0, p1, . . .} be a countable set of
propositional letters and L be the propositional language built upon P. Let N ⊆ L× L
be a set of ordered pairs of formulas of L. We call N a normative system. A pair
(a, x) ∈ N , call it a norm, is read as “given a, it ought to be x”. N can be viewed
as a function from 2L to 2L such that for a set A of formulas, N(A) = {x : (a, x) ∈ N
for some a ∈ A}.

Makison and van der Torre define the operations from out1 to out4 as follows:

– out1(N,A) = Cn(N(Cn(A)))
– out2(N,A) =

⋂
{Cn(N(V)) : A ⊂ V, V is complete}

– out3(N,A) =
⋂
{Cn(N(B)) : A ⊆ B = Cn(B) ⊇ N(B)}

– out4(N,A) =
⋂
{Cn(N(V) : A ⊆ V ⊇ N(V)), V is complete}

Here Cn is the classical consequence operator of propositional logic, and a set of for-
mulas is complete if it is either maxi-consistent or equal to L. For each of these four
operations, a throughput version that allows inputs to reappear as outputs is defined as
out+n (N,A) = out(Nid, A), where Nid = N ∪ {(a, a) | a ∈ L}.

Input/output logics are given a proof theoretic characterization. We say that an or-
dered pair of formulas is derivable from a set N iff (a, x) is in the least set that includes
N and is closed under a number of rules. The following are the rules we use:

– SI (strengthening the input): from (a, x) to (b, x) whenever b ` a
– WO (weakening the output): from (a, x) to (a, y) whenever x ` y
– AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y)
– OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x)
– CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y)
– ID (identity): from nothing to (a, a), for every a ∈ L.

The derivation system based on the rules SI, WO and AND is called deriv1. Adding
OR to deriv1 gives deriv2. Adding CT to deriv1 gives deriv3. The five rules together

give deriv4. Adding ID to derivi gives deriv+i for i ∈ {1, . . . , 4}. We use (a, x) ∈
deriv(N) to denote the norm (a, x) is derivable fromN using rules of derivation system
deriv. In Makinson and van der Torre [18], the following completeness theorems are
given:

Theorem 1 ([18]). Given an arbitrary normative system N and a formula a,

– x ∈ outi(N, a) iff (a, x) ∈ derivi(N), for i ∈ {1, 2, 3, 4}
– x ∈ out+i (N, a) iff (a, x) ∈ deriv+i (N), for i ∈ {1, 2, 3, 4}

3 Rules of input

In this section we investigate the following rules regulating the input:

– input equivalence (IEQ): from (a, x) and a a` b to (b, x).1

– strengthening the input (SI): from (a, x) to (b, x) whenever b ` a.
– disjunction of input (OR): from (a, x) and (b, x) to (a ∨ b, x).

IEQ is a basic rule in the logic of constitutive norms [15]. SI is involved in all
input/output logics of Makinson and van der Torre. OR is valid in out2 and out4. OR is
in some sense problematic and can cause paradoxes. But it is heavily used in daily life
and on the technical side, it is the most interesting rule among those rules of input. The
derivation systems decided by rules of input are defined as follows:

Definition 1. Let Die(N), Dsi(N), Dor(N) be the derivation system decided by the
rule IEQ, SI, OR respectively. That is, Die(N) is the smallest set of norms such that
N ⊆ Die(N) and Die(N) is closed under the IEQ rule, and similarly for Dsi(N) and
Dor(N).

Now our task is to construct the semantics corresponding to those derivation sys-
tems. For the convenience of notation, we let Ce(A) = {b ∈ L|∃a ∈ A, a a` b}, for
a set A ⊆ L. Moreover, we call a set A disjunctive iff it satisfies the following: for
all x ∨ y ∈ A, either x ∈ A or y ∈ A. The following is the definition of semantics
corresponding to the rules of input.

Definition 2. For a set of normsN and a formula a, we defineOie(N, a) = N(Ce({a})),
Osi(N, a) = N(Cn(a)), Oor(N, a) =

⋂
{N(B)|a ∈ B,B is disjunctive}.

Theorem 2.

1. (a, x) ∈ Die(N) iff x ∈ Oie(N, a).
2. (a, x) ∈ Dsi(N) iff x ∈ Osi(N, a).
3. (a, x) ∈ Dor(N) iff x ∈ Oor(N, a).

Remark 1 The above result reveals that rules of input correspond to operations in the
first stage: SI means close the input by logical consequence; IEQ mean close the input
by logical equivalence; OR ensures the input has to be extend to satisfy disjunctive
property.

1 Here a a` b means a ` b and b ` a

4 Rules of output

In this section we investigate the following rules regulating the output:

– output equivalence (OEQ): from (a, x) and x a` y to (a, y).
– weakening the output (WO): from (a, x) to (a, y) whenever x ` y.
– conjunction of output (AND): from (a, x) and (a, y) to (a, x ∧ y).

OEQ is a basic rule in the of logic constitutive norms [15]. WO and AND are in-
volved in all input/output logics of Makinson and van der Torre. The derivation systems
decided by rules of output are defined as follows:

Definition 3. Let Doe(N), Dwo(N), Dan(N) be the derivation system decided by the
rule OEQ, WO, AND respectively. That is,Doe(N) is the smallest set of norms such that
N ⊆ Doe(N) and Doe(N) is closed under the OEQ rule, and similarly for Dwo(N)
and Dan(N).

For a set of propositional formula A ⊆ L, let Cs(A) = {b ∈ L|∃a ∈ A, a ` b},
Ca(A) = {x ∈ L : there exist x1, . . . , xn ∈ A, x is x1∧ . . .∧xn}. The following is the
definition of semantics corresponding to the rules of output. For simplicity of notation,
N(a) is short for N({a}).

Definition 4. For every set of normsN and formula a, we defineOoe(N, a) = Ce(N(a)),
Owo(N, a) = Cs(N(a)), Oan(N, a) = Ca(N(a)).

Theorem 3.

1. (a, x) ∈ Doe(N) iff x ∈ Ooe(N, a).
2. (a, x) ∈ Dwo(N) iff x ∈ Owo(N, a).
3. (a, x) ∈ Dan(N) iff x ∈ Oan(N, a).

Proof. The prove is straightforward and left to readers.

Remark 2 The above result reveals that rules of output correspond to operations in the
third stage: WO means close the input by logical consequence; OEQ means close the
input by logical equivalence; AND ensures the output is closed under conjunction.

5 Rules of normative system

While rules of input and output affects first stage and third stage respectively, rules
of normative system affects the second stage. We investigate three three rules of the
normative system:

– zero premise (Z): from nothing to (>,>)
– identity (ID): from nothing to (a, a), for every a ∈ L.
– conditioning (CD) from nothing to (a, b), for every a, b ∈ L such that a ` b

Definition 5. Dz(N), Did(N), Dcd(N) is the derivation system decided by the rule Z,
ID and CD respectively.

Definition 6. For every set of norms N , let Nz = N ∪ {(>,>)}, Nid = N ∪ {(a, a) |
a ∈ L}, Ncd = N ∪ {(a, b) | a, b ∈ L, a ` b}. We define Oz(N, a) = Nz(a),
Oid(N, a) = Nid(a), Ocd(N, a) = Ncd(a).

Theorem 4. For every set of norms N and a norm (a, x),

1. (a, x) ∈ Dz(N) iff x ∈ Oz(N, a).
2. (a, x) ∈ Did(N) iff x ∈ Oid(N, a).
3. (a, x) ∈ Dcd(N) iff x ∈ Ocd(N, a).

Proof. The proof is trivial and safely left to the readers.

6 Cross-stage Rules

In this section we investigate cross-stage rules, which affects more than one stages.
Such rules typically have the form of transitivity. We discuss the following rules:

– plain transitivity (T): from (a, x) and (x, y) to (a, y)
– cumulative transitivity (CT): from (a, x),(a ∧ x, y) to (a, y)
– mediated cumulative transitivity (MCT): from (a, x′), x′ ` x and (a∧x, y) to (a, y)
– aggregative cumulative transitivity (ACT): from (a, x),(a ∧ x, y) to (a, x ∧ y)

T is used in the input/output logic for constitutive norms [3]. CT is involved in deriv3
and deriv4. MCT and ACT are introduced by Stolpe [25] and Parent and van der Torre
[23] respectively.

Definition 7. Dt(N) is the smallest set of norms such that N ⊆ Dt(N) and Dt(N) is
closed under the T rule.

The corresponding semantics for Dt(N) is defined in an inductive manner.

Definition 8. For every set of normsN and formula a, we defineOt(N, a) =
⋃∞

i=1N
i
t ({a}).

Here for a set A, N i
t (A) is defined as follows:

– N1
t (A) = N(A)

– N i+1
t (A) = N(N i(A))

The semantics defined above is sound and complete with respect to Dt(N).

Theorem 5. (a, x) ∈ Dt(N) iff x ∈ Ot(N, a).

6.1 Fixed point approach

Concerning other cross-stage rules, on the one hand, it is difficult to define their cor-
responding semantics. On the other hand, we can use a fixed point approach to define
systems containing cross-stage rules together with other rules. We start by giving a
fixed point theoretic semantics for out3 and out+3 . Then we extend to Stople’s mediated
reusable input/output logic [25] and Parent and van der Torre’s aggregative input/output
logic [23].

Out3 and out+3 Given a set N of norms and a set A of formulas, we define a function
fNA : 2L → 2L such that fNA (X) = Cn(A ∪ N(X)). It can be proved that fNA is
monotonic with respect to the set theoretical ⊆ relation, and (2L,⊆) is a complete
lattice. Then by Tarski’s fixed point theorem [27] there exist a least fixed point of fNA .
The following proposition shows that the least fixed point can be constructed in an
inductive manner.

Proposition 1. LetBN
A be the least fixed point of the function fNA . ThenBN

A =
⋃∞

i=0B
N
A,i,

where BN
A,0 = Cn(A), BN

A,i+1 = Cn(A ∪N(BN
A,i)).

Using the least fixed point, the semantics of out3 and out+3 are reformulated as follows:

Theorem 6. For a set of norms N and a formula a,

1. (a, x) ∈ deriv3(N) iff x ∈ Cn(N(BN
a)).

2. (a, x) ∈ deriv+3 (N) iff x ∈ Cn(Nid(B
Nid

A)).

Mediated reusable input/output logic Input/output logic containing the rule of WO
is not free from Ross paradox [24]. Stolpe [25] develops the mediated reusable in-
put/output logic such that Ross paradox is avoided without damage the power of WO.
Stolpe achieve this by replacing WO and CT in deriv3 by OEQ and MCT respectively.

Definition 9. (Proof system of mediated reusable input/output logic [25]) Dmr(N)
is the smallest set of norms such that Nz ⊆ Dmr(N) and Dmr(N) is closed under the
following rules: SI, OEQ, AND and MCT.

The semantics of mediated reusable input/output logic is given by an inductive defini-
tion.

Definition 10. (Semantics of mediated reusable input/output logic [25]) For every
N ⊆ L× L, A ⊆ L, x ∈ Omr(N,A) iff x is equivalent to a subset of

⋃∞
i=0Ai where

– A0 = G(Cn(a)), and
– An+1 = An ∪G(Cn(An ∪ {a}))

Theorem 7. (Completeness of mediated reusable input/output logic [25]) (a, x) ∈
Dmr(N) iff x ∈ Omr(N, a).

Applying the fixed point approach and the previous result about the rule AND,
OEQ and Z, we have the following equivalence result:

Theorem 8. (a, x) ∈ Dmr(N) iff x ∈ Cae(Nz(B
Nz
a))

Proof. Using other results in this paper as a toolbox, the proof is routine.

Aggregative input/output logic Parent and van der Torre [23] introduce aggregative
input/output logic based on the following ideas: on one hand, deontic detachment or cu-
mulative transitivity is fully in line with the tradition of deontic logic. For instance, the
Danielsson-Hansson-Lewis semantics [9, 12, 17] for conditional obligation validates
such a law. On the other hand, they also observe that potential counterexamples to
deontic detachment may be found in the literature. Parent and van der Torre illustrate
this with the following example, due to Broome [5, §7.4]:

You ought to exercise hard everyday
If you exercise hard everyday, you ought to eat heartily
?? You ought to eat heartily

Intuitively, the obligation to eat heartily no longer holds, if you take no exercise.
Like the others, Parent and van der Torre claim that this counterexample suggests an al-
ternative form of detachment, which keeps track of what has been previously detached.
They therefore reject the CT rule, and they accept a weaker rule ACT. As a conse-
quence, and following an established tradition in the literature [13, 11, 28, 25], WO is
no longer accepted either.

Definition 11. (Proof system of aggregative input/output logic [23]) Dag(N) is the
smallest set of norms such thatN ⊆ Dag(N) andDag(N) is closed under the following
rules: SI, OEQ and ACT.

Definition 12. (Semantics of aggregative input/output logic [23]) For every N ⊆
L × L, A ⊆ L, x ∈ Oag(N,A) iff there is finite N ′ ⊆ N with N ′(A) 6= ∅ such that
∀B = Cn(B), if A ∪N ′(B) ⊆ B then x a`

∧
N ′(B).

Parent and van der Torre define x ∈ Dag(N,A) iff there exist a1, . . . , an ∈ A such
that (a1 ∧ . . . ∧ an, x) ∈ Dag(N). The following completeness result is proved [23].

Theorem 9. (Completeness of aggregative input/output logic [23]) Given an arbi-
trary normative system N and a set A of formulas, Dag(N,A) = Oag(N,A).

Applying the fixed point approach, we reformulate the semantics of aggregative
input/output logic as follows:

Theorem 10. (a, x) ∈ Dag(N) iff there exist finite N ′ ⊆ N , such that N ′(A) 6= ∅,
x a`

∧
N ′(BN ′

A).

Proof. Having those lemmas on BN
a in the appendix, the proof is routine.

7 Application: input/output logic for constitutive norms

Constitutive norms are one of the traditional developments of normative reasoning dis-
cussed in the handbook of deontic logic. Boella and van der Torre [3] uses a weak
input/output logic, decided by rules of IEQ, OEQ, AND and T to reason about consti-
tutive norms. However, we discover the semantics defined in Boella and van der Torre
[3] is not sound with respect to the derivation system. In what follows, we first state the
mistake of Boella and van der Torre [3], then we use the previous result as a toolbox to
build a sound and complete semantics.

Let DBT (N) be the smallest set of norms such that N ⊆ DBT (N), and DBT (N)
is closed under the rules of IEQ, OEQ, AND and T. In Boella and van der Torre [3], the
semantics for DBT (N) is defined as follows: given be a set A of formulas, O(N,A) =
{∧Y |Y ⊆

⋃∞
i=0O

i(N,A)} is calculated as follows, assuming the replacements by
logical equivalence:

– O0(N,A) = ∅
– Oi+1(N,A) = Oi(N,A) ∪ {y|(∧X ′, y) ∈ N,X ′ ⊆ Oi(N,A)}.

This semantics is not sound with respect to DBT (N). For an illustration, let N =
{(p, q)}, where p and q are distinct propositional letters. Then (p, q) ∈ DBT (N).
Following the definition of O(N,A), we have O0(N, {p}) = ∅. O1(N, {p}) = ∅ ∪
{y|(∧X ′, y) ∈ N,X ′ ⊆ ∅} = {y|(∧∅, y) ∈ N} = {y|(>, y) ∈ N} = ∅. And
similarly, O2(N, {p}) = O3(N, {p}) = . . . = ∅. Therefore O(N, {p}) = ∅ and
q /∈ O(N, {p}). This shows that the semantics O(N,A) is not sound for DBT (N).
Using the results in this paper, a sound and complete semantics for DBT (N) is defined
as follows.

Definition 13. For every set of normsN and formula a, letOBT (N, a) =
⋃∞

i=1N
i
BT ({a}).

Here for a set of formulas A,

– N1
BT (A) = Cae(N(Ce(A)))

– N i+1
BT (A) = Cae(N

i
BT (A) ∪N(N i

BT (A))).

with Cae(A) = {b|∃a1, . . . , an ∈ A, a1 ∧ . . . ∧ an a` b}.

Cae, read as“closed under aggregation and equivalence”, is a combination of Ce

defined in Section 3 and Ca defined in Section 4. For convenience we will use N i
BT (a)

to represent N i({a}). The following two theorems show that our semantics is sound
and complete.

Theorem 11. (a, x) ∈ DBT (N) iff x ∈ OBT (N, a).

8 Related work

Input/output logic is reformulated by Bochman [2] to model production and causal rea-
soning. Bochman uses bimodel, which is an order pair of logically closed and consistent
set of formulas, to interpret an ordered pair of formulas (a, x). 2 A production semantics
is a set of bimodels. An ordered pair (a, x) is valid in a production semantics B iff for
all (U, V) ∈ B, if a ∈ U then x ∈ V .

Restrictions are imposed to production semantics. A production semantics B is in-
clusive if for all (U, V) ∈ B, V ⊆ U . B is a possible worlds semantics if for all
(U, V) ∈ B, U, V are maximal consistent sets. For a set N of ordered pairs of for-
mulas which contains (>,>) and (⊥,⊥), Bochman’s production semantics is sound
and complete for deriv1(N , inclusive production semantics is sound and complete for
deriv3(N) and possible worlds semantics is sound and complete for deriv2(N).

2 Bochman uses a ⇒ x instead of (a, x). a ⇒ x is read as “If a is true, then x is caused”.

All of Bochman’s production semantics validates at the same time IEQ, OEQ, SI,
WO, and AND. Use the technical result of this paper, we can anatomize production
semantics. For example, if we define weak bimodel as a consistent set of formulas
which is closed under logical equivalence, and a weak production semantics is a set of
weak bimodels. Then weak production semantics validates IEQ and OEQ, but neither SI
nor WO. Things will get interesting for the weak production semantics which validate
cross-stage rules. We leave this as a future work.

9 Conclusion and future work

In this paper we anatomize input/output logic. We analyze various derivation rules in
isolation and define the corresponding semantics. We thus create a toolbox to build
input/output logic. We use this toolbox to correct a mistake appeared in the work of ap-
plying input/output logic to constitutive norms. We further develop fixed point charac-
terizations for input/output logics involving rules of cumulative transitivity and present
new completeness proofs.

Concerning future works, except the problem mentioned in the end of the related
work section, we consider the follows:

– all the input/output logics in this paper are based on propositional logic. Parent et
al. [21] build input/output logic on intuitionistic logic. STIT logic is a tool pre-
ferred for many deontic logicians [14, 16, 4, 26]. It is worthy studying how to build
input/output logic based on STIT logic.

– Norms, and more generally conditionals, can be interpreted using neighborhood se-
mantics [6, 15]. How to compare the operational semantics of this paper to neigh-
borhood semantics?

References

1. Carlos Alchourron and Eugenio Bulygin. Normative Systems. Springer-Verlag, Wien New
York, 1971.

2. Alexander Bochman. A causal approach to nonmonotonic reasoning. Artificial intelligence,
160(1-2):105–143, 2004.

3. Guido Boella and Leendert van der Torre. A logical architecture of a normative system.
In Lou Goble and John-Jules Ch. Meyer, editors, Deontic Logic and Artificial Normative
Systems, volume 4048 of Lecture Notes in Computer Science, pages 24–35, Utrecht, The
Netherlands, 2006. Springer.

4. Jan Broersen. The Encyclopedia of Philosophy and the Social Sciences, chapter Deontic
Logic and Agency. SAGE publications, 2013.

5. John Broome. Rationality Through Reasoning. Wiley-Blackwell, West Sussex, UK, 2013.
6. Brian Chellas. Modal logic: an introduction. Cambridge University Press, Cambridge, 1980.
7. Ian Chiswell and Wilfrid Hodges. Mathematical logic. Oxford University Press, 2007.
8. Silvano Colombo Tosatto, Guido Boella, Leendert van der Torre, and Serena Villata. Ab-

stract normative systems: Semantics and proof theory. In Proceedings of the Thirteenth
International Conference on Principles of Knowledge Representation and Reasoning, pages
358–368, 2012.

9. Sven Danielsson. Preference and Obligation: Studies in the Logic of Ethics. Filosofiska
freningen, Uppsala, 1968.

10. Dov Gabbay, John Horty, Xavier Parent, Ron van der Meyden, and Leendert van der Torre,
editors. Handbook of Deontic Logic and Normative Systems. College Publications, London,
2013.

11. Lou Goble. Murder most gentle: the paradox: deepens. Philosophical Studies, 64:217–227,
1991.

12. Bengt Hansson. An analysis of some deontic logics. Noûs, pages 373–398, 1969.
13. S. O. Hansson. Preference-based deontic logic (PDL). Journal of Philosophical Logic,

19:75–93, 1990.
14. John Horty. Agency and Deontic Logic. Oxford University Press, New York, 2001.
15. Andrew Jones and Marek Sergot. A formal characterization of institutionalised power. Logic

journal of the IGPL, 3:427–443, 1996.
16. Barteld Kooi and Allard Tamminga. Moral conflicts between groups of agents. Journal of

Philosophical Logic, 37:1–21, 2008.
17. David Lewis. Counterfactuals. Blackwell, Oxford, 1973.
18. David Makinson and Leendert van der Torre. Input-output logics. Journal of Philosophical

Logic, 29:383–408, 2000.
19. David Makinson and Leendert van der Torre. Constraints for input/output logics. Journal of

Philosophical Logic, 30(2):155–185, 2001.
20. David Makinson and Leendert van der Torre. Permission from an input/output perspective.

Journal of Philosophical Logic, 32:391–416, 2003.
21. Xavier Parent, Dov Gabbay, and Leendert van der Torre. An intuitionistic basis for in-

put/output logic. In S.O. Hasson, editor, David Makinson on Classical Methods for Non-
Classical Problems. Springer, 2012.

22. Xavier Parent and Leendert van der Torre. I/O logic. In John Horty, Dov Gabbay, Xavier
Parent, Ron van der Meyden, and Leendert van der Torre, editors, Handbook of Deontic
Logic and Normative Systems. College Publications, 2013.

23. Xavier Parent and Leendert van der Torre. Put your parachute on, and jump out! Technical
report, 2014. to appear in Proceedings of DEON 2014.

24. Alfred Ross. Imperatives and logic. Theoria, 7(5371), 1941.
25. Audun Stolpe. Normative consequence: The problem of keeping it whilst giving it up. In

Ron van der Meyden and Leendert van der Torre, editors, Proceedings of the 9th interna-
tional conference on Deontic Logic in Computer Science, DEON ’08, pages 174–188, Berlin,
Heidelberg, 2008. Springer-Verlag.

26. Xin Sun. Conditional ought, a game theoretical perspective. In J. Lang H. van Ditmarsch
and S. Ju, editors, Logic, Rationality, and Interaction: Proceedings of the Thire International
Workshop, pages 356–369, Guangzhou, China, October 2011.

27. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

28. Leendert van der Torre and Yaohua Tan. Contrary-to-duty reasoning with preference-based
dyadic obligations. Ann. Math. Artif. Intell., 27(1-4):49–78, 1999.

29. Georg von Wright. Deontic logic. Mind, 60:1–15, 1952.

Appendix

Theorem 2

1. (a, x) ∈ Die(N) iff x ∈ Oie(N, a).

2. (a, x) ∈ Dsi(N) iff x ∈ Osi(N, a).
3. (a, x) ∈ Dor(N) iff x ∈ Oor(N, a).

Proof. The case for the first two items are easy and left to the reader. Here we focus on
the third item.

(left-to-right) Assume (a, x) ∈ Dor(N), then either (a, x) ∈ N or (a, x) is derived
by the OR rule. The first case is easy to prove. Here we focus on the second case. If
(a, x) is derived by the OR rule, then there exist(b, x) ∈ Dor(N), (c, x) ∈ Dor(N) and
a is b ∨ c. By induction hypothesis we know x ∈ Oor(N, b) and x ∈ Oor(N, c). Now
for everyB∗ such that a ∈ B∗ andB∗ is disjunctive, we have b∨c ∈ B∗ since a is b∨c.
Note thatB∗ is disjunctive, so we further have either b ∈ B∗ or c ∈ B∗. If b ∈ B∗, then
B∗ is a disjunctive set contains b. So we have x ∈ Oor(N, b) =

⋂
{N(B) : b ∈ B,B

is a disjunctive set } ⊆ N(B∗). Hence x ∈ N(B∗). If c ∈ B∗, we can similarly deduce
x ∈ N(B∗). Therefore no matter b ∈ B∗ or c ∈ B∗, we have x ∈ N(B∗). Therefore
x ∈ Oor(N, a).

(right-to-left) We will give a constructive proof for this theorem. To achieve, we
need to introduce the concept of disjunctive parsing tree for formulas. Here we adopt
the definition of tree and parsing from Chiswell and Hodges [7].

Definition 14 ([7]). A tree is an ordered pair (N,D) where

(a) N is a finite non-empty set whose elements are called nodes;
(b) D is function that takes each node µ ∈ N to a sequence (possibly empty) of distince

nodes: D(µ) = (ν1, . . . , νn). The nodes ν1, . . . , νn are called the daughters of µ,
and µ is called the mother of ν1, . . . , νn.

(c) Every node except one has exactly one mother; the exception is a node called the
root.

(d) There are no cycles, that is, sequences ν1, . . . , νk (k > 1), where νk = ν1 and each
νi with 1 ≤ i < k has mother νi+1.

Definition 15 ([7]). Given a tree (N,D),

(a) The number of daughters of a node is called its arity.
(b) A node of arity 0 is called a leaf.
(c) A path from node ν to node µ is a set of nodes {ν0, . . . , νk} where ν0 is ν, νk is

µ, and fore each i ≤ k, νi is the mother of νi+1. A path from the root to a leaf is
called a branch.

Now we are ready to defint disjunctive parsing tree for every formula.

Definition 16 (disjunctive parsing tree). Given a formula ϕ ∈ L, the disjunctive pars-
ing tree P (ϕ) is a tree such that:

(a) ϕ is the root of P (ϕ).
(b) Every node which is not a leaf has arity 2.
(c) A node ψ has daughters ψ1 and ψ2 iff ψ is ψ1 ∨ ψ2.
(d) We define the height for each node as follows: every leaf has height 0. If µ is a node

with daughters ν1, ν2, then the height of µ is max{height(ν1), height(ν2)}+ 1.

Lemma 1. For every formula ϕ, every branch of P (ϕ) is a disjunctive set.

Proof. Let B be an arbitrary branch of P (ϕ). For every ϕ1 ∨ϕ2 ∈ B, we know ϕ1 and
ϕ2 are the only daughters of ϕ1 ∨ ϕ2. Therefore B contains either ϕ1 or ϕ2. Hence B
is disjunctive. �

Lemma 2. Let (a, x) be a norm and N a normative system. If for every Bi which is a
branch of P (A), there exist ai ∈ Bi such that (ai, x) ∈ N , then (a, x) ∈ Dor(N).

Proof. Since the length of a is always finite, we know P (a) is also finite. So we assume
{B1, . . . , Bn} is the set of all branches of P (a).

Here we just consider the worst case, other cases are easier. In the worst case we
have for every Bi, the element ai ∈ Bi such that (ai, x) ∈ N is of height 0. Then
by applying the OR rule finitely many times we know that for every a′i ∈ Bi with
height(a′i) = 1, (a′i, x) ∈ Dor(N). Similarly we can deduce that for every a′′i ∈ Bi

with height(a′′i) = 2, (a′′i , x) ∈ Dor(N). This progress can go on and on and we will
eventually have (a, x) ∈ Dor(N) since the height of a is finite. �

Now we finish the third item of theorem 2. Suppose x ∈ Oor(N, a), then x ∈⋂
{N(B) : a ∈ B,B is a disjunctive set }. Let {B1, . . . , Bn} be the set of all branches

of P (a). For every such Bi we know a ∈ Bi and Bi is disjunctive by Lemma 1.
Therefore we have x ∈ N(Bi). That is, there exist ai ∈ Bi such that (ai, x) ∈ N . Now
by Lemma 2 we know (a, x) ∈ Dor(N). �

To prove the left to right direction of Theorem 5, we need the following lemmas:

Lemma 3. For all i ≥ 1, if A ⊆ B the N i
t (A) ⊆ N i

t (B).

Proof. We prove by induction. If i = 1, then N1
t (A) = N(A) ⊆ N(B) ⊆ N1

t (B).
Assume the statement is true for k, consider k + 1. Nk+1

t (A) = N(Nk
t (A)),

Nk+1
t (B) = N(Nk

t (B)). By induction hypothesis we have Nk
t (A) ⊆ Nk

t (B). There-
fore N(Nk

t (A)) ⊆ N(Nk
t (B)), Nk+1

t (A) ⊆ Nk+1
t (B). �

Lemma 4. For all i, j ≥ 1, if x ∈ N i
t (a) and y ∈ N j

t (x), then for some k, y ∈ Nk
t (a)

Proof. Suppose x ∈ N i
t (a) and y ∈ N j

t (x). Let k = i + j, then by the above lemma
we have y ∈ N j

t (N
i
t (a)) = N i+j

t (a). �

Theorem 5 (a, x) ∈ Dt(N) iff x ∈ Ot(N, a).

Proof. (left to right) Assume (a, x) ∈ Dt(N), then either (a, x) ∈ N or (a, x) is
derived by the T rule. The first case is easy to prove. Here we just focus on the second
case.

Assume (a, y) ∈ Dt(N) and it is deduced by the T rule. Then there exist (a, x) ∈
Dt(N) and (x, y) ∈ Dt(N). By induction hypothesis we have x ∈ Ot(N, a) and
y ∈ O(N, x). That is, x ∈

⋃∞
i=1N

i
t (a) and y ∈

⋃∞
i=1N

i
t (x). Therefore there exist

some i, j such that x ∈ N i
t (a) and y ∈ N j

t (x). Therefore we have y ∈ N i+j
t (x) by the

Lemma 4. Hence y ∈
⋃∞

i=1N
i
t (a). (a, y) ∈ Dt(N).

(right to left) Assume x ∈ Ot(N, a), then x ∈
⋃∞

i=1N
i
t (a). Then there exist some

i, x ∈ N i
t (a). Now by Lemma 5 below we have (a, x) ∈ Dt(N). �

Lemma 5. For all i ≥ 1, if x ∈ N i
t (a) then (a, x) ∈ Dt(N).

Proof. We prove by induction. If i = 1, then from x ∈ N1
t (a) = N(a) we can deduce

(a, x) ∈ N ⊆ Dt(N). Now for i = k + 1, if x ∈ Nk+1
t (a), then x ∈ N(N i

t (a)).
Therefore there exist y ∈ N i

t (a), (y, x) ∈ N . By I.H. we have (a, y) ∈ Dt(N) and
then use the rule of T we have (a, x) ∈ Dt(N). �

Proposition 1 LetBN
A be the least fixed point of the function fNA . ThenBN

A =
⋃∞

i=0B
N
A,i,

where BN
A,0 = Cn(A), BN

A,i+1 = Cn(A ∪N(BN
A,i)).

Proof. We first prove that
⋃∞

i=0B
N
A,i is a fixed point of fNA . We prove by showing the

following:

1. A ⊆
⋃∞

i=0B
N
A,i: this is because A ⊆ Cn(A) = BN

A,0 ⊆
⋃∞

i=0B
N
A,i

2. N(
⋃∞

i=0B
N
A,i) ⊆

⋃∞
i=0B

N
A,i: For every x ∈ N(

⋃∞
i=0B

N
A,i), there exist k such that

x ∈ N(BN
A,k) ⊆ BN

A,k+1 ⊆
⋃∞

i=0B
N
A,i.

3. Cn(
⋃∞

i=0B
N
A,i) =

⋃∞
i=0B

N
A,i: the right-to-left direction is obvious; for the other

direction: assume x ∈ Cn(
⋃∞

i=0B
N
A,i), then there exist x1, . . . xn ∈

⋃∞
i=0B

N
A,i

such that x1 ∧ . . . ∧ xn ` x. Therefore there exist k such that x1, . . . xn ∈ BN
A,k.

Hence x ∈ BN
A,k+1 ⊆

⋃∞
i=0B

N
A,i.

With the above four clauses in hand, we can prove that fNA (
⋃∞

i=0B
N
A,i) ⊆

⋃∞
i=0B

N
A,i.

For the other direction, we prove by induction on i that for every i,BN
A,i ⊆ fNA (

⋃∞
i=0B

N
A,i).

Here we omit the details.
So we have proved that

⋃∞
i=0B

N
A,i is a fixed point of fNA . To prove that it is the least

fixed point, we can again prove by induction that for every i, BN
A,i ⊆ fNA (B), where B

is a fixed point of fNA . Here we omit the details. �

The following lemmas are needed to prove the left to right direction of Theorem 6.

Lemma 6. For every A ⊆ L,N ⊆ L× L, A ⊆ BN
A

Proof. By Lemma 1, the proof is trivial. �

Lemma 7. For every a ∈ L,N ⊆ L×L,BN
a = Cn(BN

a). HereBN
a is short forBN

{a}.

Proof. By the compactness of propositional logic and Lemma 1, the proof is easy. �

Lemma 8. For every a, b ∈ L,N ⊆ L× L, if a ` b then BN
b ⊆ BN

a .

Proof. We will prove that for every i, BN
b,i ⊆ BN

a,i.
We prove by induction on i.
If i = 0, then BN

b,0 = Cn(b) ⊆ Cn(a) ⊆ BN
a,0. Assume i = k + 1 and BN

b,k ⊆
BN

a,k. Then BN
b,k+1 = Cn({b} ∪N(BN

b,k)). From BN
b,k ⊆ BN

a,k we deduce N(BN
b,k) ⊆

N(BN
a,k). Now by the monotony of Cn(•) we know Cn({b} ∪N(BN

b,k)) ⊆ Cn({a} ∪
N(BN

a,k)). Hence BN
b,k+1 ⊆ BN

a,k+1.
So we have proved for every i, BN

b,i ⊆ BN
a,i. With this result in hand, we can easily

deduce that BN
b ⊆ BN

a . �

Lemma 9. If x ∈ Cn(N(BN
a)), then x ∈ BN

a .

Proof. By Lemma 1, it is easy to verify that N(BN
a) ⊆ BN

a and Cn(BN
a) ⊆ BN

a . The
result then follows. �

Lemma 10. If x ∈ Cn(N(BN
a)), then BN

a = BN
a∧x.

Proof. It’s easy to prove that BN
a ⊆ BN

a∧x. For the other direction, we need to prove
that for every i, BN

a∧x,i ⊆ BN
a . We prove this by induction on i.

– Base step: Let i = 0, we then have BN
a∧x,i = Cn(a ∧ x). By Lemma 6 we have

a ∈ BN
a . By Lemma 9 we have x ∈ BN

a . Then by Lemma 7 we have a ∧ x ∈ BN
a .

– Inductive step: Assume for i = k, BN
a∧x,k ⊆ BN

a . Then BN
a∧x,k+1 = Cn({a ∧

x} ∪N(BN
a∧x,k)). From BN

a∧x,k ⊆ BN
a we know there exist j such that BN

a∧x,k ⊆⋃j
i=0B

N
a,i. Therefore N(BN

a∧x,k)) ⊆ N(
⋃j

i=0B
N
a,i) ⊆

⋃j+1
i=0 B

N
a,i ⊆ BN

a . So we
have proved N(BN

a∧x,k)) ⊆ BN
a . By the base step we have a ∧ x ∈ BN

a . Then by
Lemma 7 we know Cn({a ∧ x} ∪N(BN

a∧x,k)) ⊆ BN
a . That is, BN

a∧x,k+1 ⊆ BN
a .

�

Theorem 6 For a set of norms N and a formula a,

1. (a, x) ∈ deriv3(N) iff x ∈ Cn(N(BN
a)).

2. (a, x) ∈ deriv+3 (N) iff x ∈ Cn(Nid(B
Nid

A)).

Proof. Here we focus on the case for deriv3, the other case is similar. (left to right)
Assume (a, x) ∈ deriv3(N), we prove by induction on the length of derivation.

– (Base step) Assume (a, x) ∈ N , then by Lemma 6 we have a ∈ BN
a . Hence

x ∈ N(BN
a) ⊆ Cn(N(BN

a)).
– Assume (b, x) ∈ deriv3 and it is derived at the last step by using SI from (a, x) ∈
deriv3 and b ` a. Then by inductive hypothesis we have x ∈ Cn(N(BN

a)). By
Lemma 8 we know BN

a ⊆ BN
b . Therefore we further have N(BN

a) ⊆ N(BN
b),

Cn(N(BN
a)) ⊆ Cn(N(BN

b)). Hence x ∈ Cn(N(BN
b)).

– Assume (a, x ∧ y) ∈ deriv3(N) and it is derived at the last step by using AND
from (a, x) and (a, y). Then by inductive hypothesis we have x ∈ Cn(N(BN

a))
and y ∈ Cn(N(BN

a)). Therefore x ∧ y ∈ Cn(N(BN
a)).

– Assume (a, y) ∈ deriv3(N) and it is derived by using WO form (a, x) ∈ deriv3(N)
and x ` y. Then by inductive hypothesis we have x ∈ Cn(N(BN

a)). Since x ` y,
we can prove that y ∈ Cn(N(BN

a)).
– Assume (a, y) ∈ deriv3(N) and it is derived by using CT form (a, x) ∈ deriv3(N)

and (a∧x, y) ∈ deriv3(N). Then by inductive hypothesis we have x ∈ Cn(N(BN
a))

and y ∈ Cn(N(BN
a∧x)). Then by Lemma 10 we have BN

a = BN
a∧x. Therefore

y ∈ Cn(N(BN
a)).

(right to left) Assume x ∈ Cn(N(BN
a)), then there exist x1, . . . , xn ∈ N(BN

a) such
that x1 ∧ . . . ∧ xn ` x. For each i ∈ {1, . . . , n}, from xi ∈ N(BN

a) we know there
is ai ∈ BN

a such that (ai, xi) ∈ N . From ai ∈ BN
a we know there exist k such

that ai ∈ BN
a,k. Now by Lemma 11 we know (a, xi) ∈ deriv3(N). Then applying

the AND rule we have (a, x1 ∧ . . . xn) ∈ deriv3(N). Then by the WO rule we have
(a, x) ∈ deriv3(N). �

Lemma 11. For all i, if b ∈ BN
a,i and (b, x) ∈ N , then (a, x) ∈ deriv3(N)

Proof. We prove by induction on i.

– Base step: Let i = 0. Then b ∈ BN
a,0 = Cn(a). Hence a ` b. Therefore we can

apply SI to a ` b and (b, x) to derive (a, x).
– Inductive step: Assume for i = k, if b ∈ BN

a,k and (b, x) ∈ N , then (a, x) ∈
deriv3(N). Now let b ∈ BN

a,k+1. Then b ∈ Cn({a} ∪ N(BN
a,k)), and there exist

b1 . . . bn ∈ N(BN
a,k) such that a ∧ b1 ∧ . . . ∧ bn ` b. Then apply SI to (b, x) ∈ N

and a ∧ b1 ∧ . . . ∧ bn ` b we have (a ∧ b1 ∧ . . . ∧ bn, x) ∈ deriv3(N). Note that
for each i ∈ {1, . . . , n}, from bi ∈ N(BN

a,k) we know there is ai ∈ BN
a,k such that

(ai, bi) ∈ N . Now by inductive hypothesis we have (a, bi) ∈ deriv3(N). Then
applying the AND rule we have (a, b1∧ . . .∧bn) ∈ deriv3(N). From (a, b1∧ . . .∧
bn) ∈ deriv3(N) and (a ∧ b1 ∧ . . . ∧ bn, x) ∈ D3(N) we can adopt the CT rule to
derive (a, x) ∈ deriv3(N).

To prove the left to right direction of Theorem 11, we need the following lemmas:

Lemma 12. For all A, if i ≤ j then N i
BT (A) ⊆ N

j
BT (A)

Proof. The proof is trivial and left to the readers. �

Lemma 13. For all i ≥ 1, if A ⊆ B the N i
BT (A) ⊆ N i

BT (B).

Proof. We prove by induction. And we focus on the inductive step. AssumeN i
BT (A) ⊆

N i
BT (B), consider N i+1

BT (A) and N i+1
BT (B). Note that N i+1

BT (A) = Cae(N
i
BT (A) ∪

N(N i
BT (A))). By I.H. we haveN i

BT (A) ⊆ N i
BT (B). By the monotonicity ofN(•) we

have N(N i
BT (A)) ⊆ N(N i

BT (B)). Therefore N i
BT (A) ∪N(N i

BT (A)) ⊆ N i
BT (B) ∪

N(N i
BT (B)). ThereforeCae(N

i
BT (A)∪N(N i

BT (A))) ⊆ Cae(N
i
BT (B)∪N(N i

BT (B)))
by the monotonicity of Cae. That is, N i+1

BT (A) ⊆ N i+1
BT (B). �

Lemma 14. For all i, j ≥ 1, for all set A, N i
BT (N

j
BT (A)) ⊆ N

i+j
BT (A).

Proof. We prove by induction on i.
If i = 1, then N1

BT (N
j
BT (A)) = Cae(N(Ce(N

j
BT (A)))) = Cae(N(N j

BT (A))).
N1+j

BT (A) = Cae(N
j
BT (A) ∪ N(N j

BT (A))). By monotonicity of Cae we have that
Cae(N(N j

BT (A))) ⊆ Cae(N
j
BT (A) ∪ N(N j

BT (A))). Therefore N1
BT (N

j
BT (A)) ⊆

N1+j
BT (A).

Now for the inductive step. Consider N i+1
BT (N j

BT (A)) and N i+1+j
BT (A). Note that

N i+1
BT (N j

BT (A)) = Cae(N
i
BT (N

j
BT (A)) ∪ N(N i

BT (N
j(A)))). And N i+1+j

BT (A) =

Cae (N
i+j
BT (A)∪N(N i+j

BT (A))). By I.H. we have N i
BT (N

j
BT (A)) ⊆ N

i+j
BT (A), and by

the monotonicity of N we have N(N i
BT (N

j
BT (A))) ⊆ N(N i+j

BT (A)). Then we have
Cae(N

i
BT (N

j
BT (A)) ∪ N(N i

BT (N
j
BT (A)))) ⊆ Cae(N

i+j
BT (A) ∪ N(N i+j

BT (A))). That
is, N i+1

BT (N j
BT (A)) ⊆ N

i+1+j
BT (A). �

Lemma 15. For all i, j ≥ 1, if x ∈ N i
BT (a) and y ∈ N j

BT (x), then there exist some k
such that y ∈ Nk

BT (a)

Proof. Assume x ∈ N i
BT (a) and y ∈ N j

BT (x), then by Lemma 13 we have y ∈
N j

BT (N
i
BT (a)). Now by the lemma above we have y ∈ N i+j

BT (a). �

Lemma 16. For all i ≥ 1, if x ∈ N i
BT (a) and y ∈ N i

BT (a), then x ∧ y ∈ N i
BT (a)

Proof. Trivial. Here we skip the details. �

To prove the right to left direction of Theorem 11, we need the following lemma.

Lemma 17. For all i ≥ 1, if x ∈ N i
BT (a) then (a, x) ∈ DBT (N).

Proof. We prove by induction. If i = 1, from x ∈ N1
BT (a) we know x ∈ Cae(N(Ce(a))).

Therefore there exist x1 . . . xm ∈ N(Ce(a)) such that x a` x1 ∧ . . . ∧ xm. From
x1 . . . xm ∈ N(Ce(a)) we can deduce that there exist (a1, x1), . . . , (an, xm) ∈ N
such that a1, . . . , am ∈ Ce(a). Therefore a a` a1, . . . , a a` am. Now we use IEQ
we have (a, x1), . . . , (a, xm) ∈ DBT (N). And use the AND rule finite times we have
(a, x1 ∧ . . . ∧ xm) ∈ DBT (N). Then by OEQ we know (a, x) ∈ DBT (N).

Now for the inductive step. Assume x ∈ N i+1
BT (a),then x ∈ Cae(N

i
BT (a)∪N(N i

BT (A))).
Therefore there exist x1, . . . , xm ∈ N i

BT (a) and y1, . . . , yn ∈ N(N i
BT (a)) such that

x a` x1 ∧ . . . ∧ xm ∧ y1 ∧ . . . ∧ yn. By I.H. we can deduce (a, x1), . . . , (a, xm) ∈
DBT (N) from x1, . . . , xm ∈ N i

BT (a). And from y1, . . . , yn ∈ N(N i
BT (a)) know

there exist a1, . . . , an ∈ N i
BT (a) such that (a1, y1), . . . , (an, yn) ∈ N . By I.H. we can

deduce (a, a1), . . . , (a, an) ∈ DBT (N) from a1, . . . , an ∈ N i
BT (a). Now by using

the T rule n times we have (a, y1), . . . , (a, yn) ∈ DBT (N). Then by using the AND
rule we have (a, x1 ∧ . . . ∧ xm ∧ y1 ∧ . . . yn) ∈ DBT (N). Then use OEQ we have
(a, x) ∈ DBT (N). �

Theorem 11 (a, x) ∈ DBT (N) iff x ∈ OBT (N, a).

Proof. (left to right) Assume (a, x) ∈ DBT (N), then either (a, x) ∈ N , or (a, x) is
derived by using at the last step one of the rules IEQ, OEQ, T and AND. Here we only
deal with the last two cases. Other cases are easy.

Assume (a, x) ∈ DBT (N) and it is deduced by the T rule at the last step. Then
there exist (a, y) ∈ DBT (N) and (y, x) ∈ DBT (N). By I.H. we have y ∈ OBT (N, a)
and x ∈ OBT (N, y). That is, y ∈

⋃∞
i=1N

i
BT (a) and x ∈

⋃∞
i=1N

i
BT (y). Therefore

there exist some i, j such that y ∈ N i
BT (a) and x ∈ N j

BT (y). Therefore we have
x ∈ Nk

BT (a) for some k by Lemma 15. Hence x ∈
⋃∞

i=1N
i
BT (a). , x ∈ OBT (N).

Assume (a, x) ∈ DBT (N) and it is deduced by the AND rule at the last step.
Then there exist x1, x2 such that x is x1 ∧ x2 and (a, x1), (a, x2) ∈ DBT (N). By I.H.
we have x1 ∈

⋃∞
i=1N

i
BT (a) and x2 ∈

⋃∞
i=1N

i
BT (a). Therefore for some m,n we

have x1 ∈ Nm
BT (a) and x2 ∈ Nn

BT (a). Let k = max{m,n}, then by Lemma 12 we
have x1, x2 ∈ Nk

BT (a). Then by Lemma 16 we have x1 ∧ x2 ∈ Nk
BT (a). That is,

x ∈ Nk
BT (a), x ∈

⋃∞
i=1N

i
BT (a) and x ∈ OBT (N, a).

(right to left) Assume x ∈ OBT (N, a), then x ∈
⋃∞

i=1N
i
BT (a). Then there exist

some k, x ∈ Nk
BT (a). Now by Lemma 17 we have (a, x) ∈ DBT (N). �

