
Towards Symmetric Functional Encryption for
Regular Languages with Predicate Privacy

Fu-Kuo Tseng, Rong-Jaye Chen, and Bao-Shuh Paul Lin

National Chiao-Tung University,
No.1001, Daxue Road, Hsinchu City 300, Taiwan

{fktseng,rjchen)@cs.nctu.edu.tw; bplin@mail.nctu.edu.tw

Abstract. We present a symmetric-key predicate-only functional en-
cryption system, SP-FE, which supports functionality for regular lan-
guages described by deterministic finite automata. In SP-FE, a data
owner can encrypt a string of symbols as encrypted symbols for match-
ing. Later, the data owner can generate predicate tokens of the transi-
tions in a deterministic finite automaton (DFA). The server with these
tokens can decrypt a sequence of encrypted symbols correctly and trans-
fer from one state to another accordingly. If the final state belongs to the
set of accept states, the server takes assigned operations or returns the
corresponding encrypted data. We have proven SP-FE preserves both
keyword privacy and predicate privacy through security analysis and se-
curity games. However, to achieve predicate privacy, we put bounds on
the length of a string and the number of states of a DFA. Due to these
restrictions, SP-FE can only capture finite languages. Finally, we present
the performance analysis of SP-FE and mention possible future work.

Keywords: symmetric functional encryption, deterministic finite au-
tomaton, regular language, predicate-only scheme, predicate privacy

1 Introduction

Functional public-key encryption schemes [1] and many of their instances like
attribute-based encryption schemes [2, 3, 4] and predicate encryption schemes
[5, 6, 7] were devised to support expressive search predicates on encrypted data.
However, in all of these schemes, search predicates involve only a fixed number of
keywords from the predefined keyword universe. Processing a string of encrypted
symbols representing a keyword is essential for the predicates of certain regular
languages for lexical analysis and pattern matching.

However, the predicate tokens in functional encryption schemes reveal the
content of the search predicates because encryption does not require a private
key in the public-key setting. Adversaries may encrypt the keywords of their
choices and check the ciphertexts with the delegated predicate token to learn
whether the chosen keywords satisfy the search predicate encoded in the pred-
icate token. Therefore, predicate privacy is inherently impossible to achieve in
the public-key setting. Researchers started focusing on the symmetric-key setting

for predicate privacy with keyword-based search predicates [8, 9, 10]. Functional
encryption for regular languages, a type of symbol-based search predicates, was
considered in [11] and [12], while functional encryption for regular languages
with additional keyword and predicate privacy is still an open problem.

Our Contributions. We propose a symmetric-key predicate-only functional en-
cryption scheme, SP-FE, supporting predicates of deterministic finite automata
(DFA). We make use of Yoshino et al. scheme [10] by encrypting each symbol in
the plaintext as an encrypted symbol and each symbol set of a transition as a
predicate token. However, direct transformation cannot achieve both plaintext
and predicate privacy because some information may reveal to the adversary:
(1) The length of a plaintext, nw, (2) the number of states of a DFA, nQ, (3)
the number of accept states, |F |, (4) the number of transitions, |δ|, and (5) the
path of the transition. Thus, we systematically add special symbols among or-
dinary symbols in the plaintext, while inserting dummy states, transitions and
shuffling states of a DFA. These designs guarantee the adversaries cannot gain
extra advantages in the challenge games. However, to achieve predicate privacy,
we put bounds on the length of a string and the number of (accept) states of a
DFA, thus SP-FE can only capture finite languages.

Related Works. Functional encryption schemes [1] are non-interactive public-
key encryption schemes where anyone possessing a secret key skf can compute
a function f(x) of a value x from the encryption Enc(x) without learning any
other information about x. However, the predicate tokens in these functional
encryption schemes may reveal the content of the underlying search predicates
because encryption does not require a private key in the public-key setting. Thus
predicate privacy is inherently impossible to achieve in the public-key setting.
Shen et al. [9] was the first to consider predicate privacy in the symmetric-
key setting. Blundo et al. [8] used the assumptions related to linear split secret
sharing, while Yoshino et al. [10] further enhanced the efficiency by prime-order
group instantiation. However, in all of these schemes, search predicates involve
only a fixed number of keywords in the keyword univserse. Processing a string
of searchable symbols, is essential for the search predicates of regular languages.
The functional encryption for regular languages was devised in the public-key
setting with message privacy only [11]. The functional encryption for regular
languages with extra keyword and predicate privacy is still an open problem.

2 Background and Preliminary

This section presents the background and preliminary of SP-FE.

2.1 Deterministic Finite Automata and Regular Languages

A deterministic finite automaton (DFA) is a finite state machine that accepts or
rejects finite strings of symbols. A DFA M is a quintuple (Q,Σ, δ, q0, F) where
(1) Q is a finite set of states, (2) Σ is the input alphabet, a finite set of symbols,
(3) δ : Q×Σ → Q is the transition function, where (q, q′, σ) ∈ δ iff δ(q, σ) = q′,
(4) q0 is an initial state, and (5) F is the set of final states, a subset of Q. �

Given a DFA M = (Q,Σ, δ, q0, F), if M accepts an string w = w1w2, · · · , wn
∈ Σn, there exists a sequence of states, a transition path, r = r0, r1, ..., rn ∈ Qn,
where (1) r0 = q0, (2) δ(ri, wi+1) = ri+1, for 0 ≤ i ≤ n − 1, and (3) rn ∈ F . A
regular language is also defined as a language recognized by a DFA.

2.2 Definitions and Security Model

A symmetric-key predicate-only functional encryption scheme for DFA-based
predicates consists of four algorithms: Setup, Encrypt, KeyGen, and Decrypt.
In addition to a security parameter, the setup algorithm takes as input a alpha-
bet Σ and a special alphabet Σ′. The algorithms are described as follows.

- Setup(1λ, Σ,Σ′): It takes a security parameter 1λ as input and outputs public
parameters and a secret key SK. Public parameters include two parameters to
decide the maximum length of an input string, Nw, the maximum number of
states, NQ, and the maximum number of transitions in a DFA, Nδ = N2

Q.

- Encrypt(SK,w): It takes a secret key SK and a string (of symbols) w, where
|w| ≤ Nw/2, and outputs a ciphertext CT , a string of encrypted symbols.

- KeyGen(SK,M=(Q,Σ, δ, q0, F)): It takes a secret key SK and a DFA M as
input, where |Q| ≤ NQ/2 and outputs a TK, a string of encrypted transitions.

- Decrypt(TK,CT): It takes a token TK and a ciphertext CT as input, and
outputs either ‘1’ (’Accept’) or ‘0’ (’Reject’) indicating that the result of the
DFA M encoded in TK on the input w encrypted in CT . �
Security Model. The selective game-based security is considered in SK-FE.

- Setup: The challenger C runs the setup algorithm and gives public parameters
to the adversary A. A outputs a bit d ∈ {0, 1}: if d = 0, A takes up a ciphertext
challenge and outputs two plaintext w0 and w1. Otherwise, A takes up a token
challenge and outputs two description of DFA M0 and M1.

- Phase 1: A adaptively outputs one of the following two queries. In a ciphertext
challenge, A issues ith ciphertext query by requesting for the ciphertext CT i of
wi. C responds with CT i ← Encrypt(SK,wi). Also, A issues jth token query by
requesting a DFA M j with the restriction that M j accepts or rejects both w0 and
w1 with the same number of accept states in the transition paths. C responds
with TKj ← KeyGen(SK,M j). In a token challenge, A issues ith ciphertext
query by requesting for a string of ciphertext CT i of wi with the restriction that
wi is accepted or rejected by both M0 and M1 with the same number of accept
states in the transition paths. C responds with CT i ← Encrypt(SK,wi). Also,
A issues jth token query by requesting for a DFA M j . C responds with TKj ←
KeyGen(SK,M j). The restrictions is to ensure the challenge is not trivial.

- Challenge: The challenger C flips a random coin b ∈ {0, 1}. If A has chosen
the ciphertext challenge, C gives CTb← Encrypt(SK,wb) to A; otherwise (A
has chosen the token challenge), C gives TKb← KeyGen(SK,Mb) to A.

- Phase 2: A continues to query CT i and TKj as in Phase 1.

- Guess: A outputs a guess b′ ∈ {0, 1} of b. The advantage of an adversary A
in this game is defined as Pr[b′ = b]− 1

2 .

Definition 1. A symmetric-key predicate-only functional encryption scheme for
DFA-type predicates is token indistinguishable if all polynomial-time adversaries
have at most a negligible advantage in winning the token challenge game. This
property guarantees predicate privacy.

Definition 2. A symmetric-key predicate-only functional encryption scheme for
DFA-type predicates is ciphertext indistinguishable if all polynomial-time adver-
saries have at most a negligible advantage in winning the ciphertext challenge
game. This property guarantees keyword privacy.

2.3 Notation

Σ is a set of ordinary symbols used to form a keyword/plaintext w, while Σ′ is
a set of special symbols randomly added into w to form w′. The special symbols
cannot be specified in w. The union of these two sets forms Σ′′. Each symbol
wi ∈ Σ′′ has a unique index si. The sizes of these three sets are σ, σ′, and σ′′

respectively. nw denotes the length of w, while Nw denotes the maximum length
of w′, where nw ≤ 1

2Nw. In addition, there are d 12Nwe groups of special symbols,
whose size is from 1 to d 12Nwe. A group of special symbols are added as a set in
a predefined circular order starting with any one of the symbols in this group.

A predicate DFA M is denoted as (Σ,Q, δ, q0, F). Redundant states are cho-
sen from Q to form Q′ and from F to form F ′, while duplicated transitions are
included in δ to form δ′. Q′ and δ′ are randomized to form Q′′ and δ′′. The sizes
of Q, Q′ and Q′′ are nQ, n′Q and n′′Q = NQ respectively, where NQ ≥ 2nQ. The
states in Q are marked from 0 to nQ − 1, thus the number of transition in δ
is nδ = n2Q. NQ denotes the maximum number of states, thus the maximum

number of transitions Nδ is N2
Q. Note that we further require |F | ≤ NQ/4 and

|Q| ≤ NQ/2. q0 and F ′ are randomized into q′0 and F ′′. δ and its matrix repre-
sentation Aδ can be converted. If Aδ[x][y] is a symbol set W , where W ⊆ Σ′′

and x, y ∈ Q′′, there are (x, y, wi) transitions in δ, where wi ∈W .

2.4 Complexity Assumption

Given a bilinear 3-factor-based composite-order group generator G, output three
groups Gi of distinct prime order pi for i = 1, 2, 3 by the experiment:

1. (p1, p2, p3,G,GT , ê)← G(1λ),

2. N ← p1p2p3, g1
R← G1, g2

R← G2, g3
R← G3,

3. P ← (N,G,GT , ê),
4. D ← (g1, g

a1
1 , g2, g

b1
2 , g

c1
3 , g

c2d
3 , gd3 , g

d2

3 , g
a2
1 gc1d3), where a1, a2

R← Zp1 ,

b1
R← Zp2 , and c1, c,d

R← Zp3 , and

5. T0 ← ga31 gc23 , T1 ← ga31 gb22 g
c2
3 , where a3

R← Zp1 and b2
R← Zp2 .

The advantage of an adversary A in distinguishing T0 from T1 with the param-
eters (P,D) is defined as AdvA := |Pr[A(P,D, T0) = 1]-Pr[A(P,D, T1) = 1]|.
Definition 3. The above complexity assumption holds for any polynomial-time
adversary A if AdvA is negligible [10].

Procedure: SymbolSetToVector(W , mode) [6]
Input: W , where W ⊆ Σ′′, |Σ′′| = σ′′; mode =0: TK, mode =1: CT ;

Each symbol wi ∈ Σ′′ has a unique index si
Output: vW

if (W is ∅) then vW = (aσ′′ , aσ′′−1, . . . , a0) = (0, 0, · · · , 0)
else if (mode is 0) then

vW = (aσ′′ , aσ′′−1, . . . , ad+1, ad, ad−1, . . . , a0), where

f(x) =
∏d

1(x− si) = adx
d + ad−1x

d−1 + . . .+ a0 and aσ′′ = . . . = ad+1 = 0.
else (mode is 1) then

vW = (sσ
′′

i mod N, . . . , s0i mod N) = (aσ′′ , aσ′′−1, . . . , a0), where N is the
order of the groups G and GT

return vW

Fig. 1. The procedure ‘SymbolSetToVector’

2.5 The Building Block

The scheme by Yoshino et al. [10] provides a good starting point to construct
SP-FE. It is a keyword-based predicate-only predicate encryption scheme.

- IPE.Setup(1λ): It takes a security parameter 1λ as input and outputs public
parameters and a secret key SK.
- IPE.Encrypt(SK, x): It takes a secret key SK and a plaintext x ∈ Σ and
outputs a ciphertext CT .
- IPE.GenToken(SK, y): It takes a secret key SK and a description of predicate
y as input and outputs a token TK.
- IPE.Check(TK,CT): It takes a token TK and a ciphertext CT as input and
outputs either ‘1’ (’Accept’) or ‘0’ (’Reject’) indicating the result of the predicate
y encoded in TK on the input x encrypted into CT . �

Note that disjunctive predicates are used to protect the input symbols of a
transition in SK-FE. The procedure SymbolSetToVector is to generate the
vector of a input string and that of a symbol set for a transaction (See Fig. 1).

3 SP-FE Construction

We provide main procedures of SP-FE construction. Following that, we present
detailed algorithms with comprehensive explanation.

3.1 Main Procedures

We make use of Yoshino et al. scheme [10] by encrypting each symbol in the
plaintext as an encrypted symbol and each symbol set for a transition as a pred-
icate token. However, direct transformation cannot achieve both keyword and
predicate privacy because the information can be revealed to the adversary: (1)
The length of a plaintext, (2) the number of states in a DFA, (3) the number of
accept states, (4) the number of transitions, and (5) the transition path. Thus,
addSpecialSymbols adds special symbols to the plaintext, while addStat-
esTransitions inserts dummy states, transitions and shuffs states of a DFA
accordingly to make sure the same language is accepted (See Fig. 2 and Fig. 4).

Procedure: addSpecialSymbols(w)
Input: w, where w = (w1, . . . , wnw), wi ∈ Σ,nw ≤ ℓ
Output: w′, where w′ = (w′1, . . . , w

′
Nw

), w′i ∈ Σ′′, Nw = 2ℓ

Repeat 1. and 2. until nw = Nw.

1. Set pos
R← Znw+1 and k

R← ZNw−nw

2. Insert the (k+1)th symbol group at position pos with a pre-defined circular
ordering starting from one of the symbols in the group. Set nw = nw+(k+1).

return w′ = (w1, w2, . . . , wNw
)

Fig. 2. The procedure ‘addSpecialSymbol’

a >< ∧ a ⊣⊢ a ♯ a a x p q y a a a <⊢⊣ ∧ > a a a y x p ♯ q a a ⊣⊢ a >< ∧ a a a ♯ < ∧ ♯ > a ♯ a a ⊢⊣ ♯ ♯ a

Fig. 3. The procedure ‘addSpecialSymbol’(‘aaa’) and its seven possible outputs

Procedure: addStatesTransitions(M)
Input: M=(Q,Σ, δ, q0, F), nQ ≤ ℓ, where

|δ| = nδ,δ = {(uj , vj , wk)}nδ
j=1;u

j , vj ∈ Q and wk ∈ Σ

Output: M ′′=(Q′′, Σ′′, δ′′, q′0, F
′′), where NQ = 2ℓ and |δ′′| = Nδ = N2

Q

1. Add Random Symbols: For each row i in a DFA, each of the symbols in
Σ′′ should appear once and only once. If a symbol wi of a group of special
symbols of size d does not appear in the row i,
(a) Prepare the sequence wi, w

′
1, w

′
2, · · · , w′

d starting with wi and a sequence
of states i, t1, t2, · · · , td, where wi does not appear in row i and w′

j does
not appear in row tj for 1 ≤ j ≤ d and tj ∈ Q

(b) Include the transitions (i, t1, wi), (tj , tj+1, w
′
j) for 1 ≤ j ≤ d − 1, and

(td, i, w
′
d) into δ to form δ′.

2. Add Random States, Add Final States and Transitions :
(a) Randomly duplicate (ℓ2 − |F |) states from F to form F ′. The new state

creates a new column and copies the row of its original state as its row.
(b) Randomly duplicate ℓ

2 states from the ℓ
2 states in 1. together with F ′ to

form Q′. Denote Si as the set of equivalent states of the state i, where

Si ⊆ Q′, ∪|Q|
i=1Si = Q′, and Si ∩ Sj = ∅ for any two sets.

There are extra ℓ2 − n2
q transitions added into δ to form δ′.

3. Shuffle Symbols within Equivalent Set : For each row i, the transition symbols
are shuffled among the columns of the equivalent states to form δ′′.

4. Shuffle States: Randomly choose two states Qi, Qj . Exchange ith row with
jth row, and ith column with jth column to form Q′′ and δ′′. Set one state
in Sq0 as a starting state q′0, while set F ′′ as the final states after exchange.

return M ′′=(Q′′, Σ′′, δ′′, q′0, F
′′), where δ′′={(uj , vj , wk)}Nδ

j=1

Fig. 4. The procedure ‘addStatesTransitions’

Example. In Fig. 1, ` is set as four. There are four groups of special symbols
denoted as (1)‘]’, (2)‘`’ and ‘a’, (3)‘<’, ‘∧’ and ‘>’, and (4) ‘p’, ‘q’, ‘y’ and ‘x’.
We have d ordered sequences of a group of size d. For example, to insert the
symbols in the third group, one of the three sequences can be chosen: ‘< ∧ >’,
‘∧ ><’, and ‘>< ∧’. In addition, one group of symbols can be nested in the
other group of symbols like in the third, fourth and sixth column in Fig. 1. After
a group of symbols are consumed by a DFA, their effects will be canceled out.




q0 q1 q2

q0 bcd a ∅
q1 cd a b

q2 ∅ ∅ abcd


 1.

=⇒




q0 q1 q2

q0 bcd >yx♯ a ⊣ ∧p ⊢<q
q1 cd ⊢<qp a > x♯ b ⊣ ∨x
q2 ⊣ ∧ ⊢< xq abcd >yp♯


 2.

=⇒




q0 q1 q2 q3 q4 q5 q6 q7

q0 bcd >yx♯ a ⊣ ∧p ⊢<q ∅ ∅ ∅ ∅ ∅
q1 cd ⊢<qp a > x♯ b ⊣ ∨x ∅ ∅ ∅ ∅ ∅
q2 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅
q3 bcd >yx♯ a ⊣ ∧p ⊢, <, q ∅ ∅ ∅ ∅ ∅
q4 cd ⊢<qp a > x♯ b ⊣ ∨x ∅ ∅ ∅ ∅ ∅
q5 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅
q6 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅
q7 ⊣ ∧ ⊢< xq abcd >yp♯ ∅ ∅ ∅ ∅ ∅




3.
=⇒




q0 q1 q2 q3 q4 q5 q6 q7
q0 bd♯x ∧ ⊣ ∅ c >y ap q ∅ <⊢
q1 c <⊢ a♯ ∧ dpq y > ∅ ⊣ bx
q2 ∧ ⊢q c > ⊣ x< by a♯ dp
q3 b > x ap ∅ cd♯y ⊣ ∧ ∅ ∅ q <⊢
q4 d ⊢< ∅ ∧ ⊣ cpq a♯ >y ∅ bx ∅
q5 ∧ ⊢q > ⊣ < x cd♯ p aby
q6 ⊣ ∧ q ay ∅ <⊢ x d b > p c♯
q7 ⊣ ⊢qx acpy ∧ < ∅ d♯ b >




4.
=⇒




q′0 q1
′ q2

′ q′3 q4
′ q5

′ q′6 q7
′

q′0 a♯ >y bx ∧ ⊣ cpq d ⊢< ∅ ∅ ∅
q′1 <⊢ x b > p ay ∅ ⊣ ∧ d q c♯
q′2 x< a♯ c > ⊣ ∧ by ⊢q dp
q′3 ⊣ ∧ ∅ ∅ cd♯y b > x ∅ ap q <⊢
q′4 ap ∅ ∅ c >y bd♯x q ∧ ⊣ <⊢
q′5 < x p > ⊣ ∧ cd♯ ⊢q aby
q′6 y > ⊣ ∧ dpq c <⊢ ∅ a♯ bx
q′7 < d♯ acpy ∧ ⊣ ∅ ⊢qx b >




Fig. 5. The procedure ‘addStatesTransitions’ processing ‘containing substring ab’

Example. In Fig. 5, ` is set as four and Σ = {a, b, c, d}. For each row, every
symbols in Σ′′ should appear once and only once. In addition, the input DFA
has specified all the symbols in Σ for each row. To fill in a special symbol
of a group, there is a transition path from state i back to state i again after
consuming the ordered circular sequence starting from this symbol. Take symbol
’>’ as example, the sequence is ’>’, ’<’ and then ’∧’. There is a transition path:

q0
>⇒ q0

<⇒ q2
∧⇒ q0 and there are (q0, q0, >), (q0, q2, <), and (q2, q0,∧) transitions

in δ. The next step is to duplicate the set of accept states so that F ′ = ` and
duplicate the other states so that Q′′ = 2`. Therefore, there are three equivalent
sets: Sq0 = {q0, q3}, Sq1 = {q1, q4}, and Sq2 = {q2, q5, q6, q7}. For the third step,
the symbols of one equivalent set in one row can be redistributed. Take q2 row as
example. ‘a’ is moved from q0-column into q3-column, while ‘x’ is moved from q1-
column, into q4-column. Finally, exchange state 0 with state 4 and state 1 with
6 by interchanging q0-row with q4-row, q0-column with q4-column, q1-row with
q6-row, and q1-column with q6-column. Set the start state q′0 from S′q0 = {q′3, q′4}
as q′4 and hide the others. Set the set of final states F ′′ as {q′1, q′2, q′5, q′7}.

3.2 Main Algorithms

SP-FE consists of four probabilistic polynomial-time algorithms (See Fig. 6). In
SP-FE.Setup, the user executes IPE.Setup to obtain a SK and system param-
eters. In SP-FE.Encrypt, the user executes addSpecialSymbols on input w
to produce w′. Then the user calls to symbolSetToVector and IPE.Encrypt

for each of the symbols in w′ to produce a CT . In SP-FE.GenToken, the user
executes addStatesTransitions on the search predicate M to produce M ′′.
Then the user calls to symbolSetToVector and IPE.GenToken for each of the
transitions in δ′′ to produce a token TK. In SP-FE.Decrypt, the server executes
IPE.Check on input CTi and TKqc,j to test a transition (qc, j, TKqc,j) in δ′′. The
server obtains the next state j if IPE.Check(CTi, TKqc,j) returns ‘1’ and set the
current state qc as j. The server continues to check CTi+1 with the transitions
in δ′′ starting with qc. If the final state qc is in F ′′ after checking CTNw , the
plaintext w′ satisfies the DFA in M ′′.

SP-FE.Setup(1λ): SP-FE.Encrypt(SK,w = w1, . . . , wnw):

SK ← IPE.Setup(1λ, Σ,Σ′) w′ ← addSpecialSymbols(w), where |w′| = Nw

Set ℓ, where Nw = 2ℓ,NQ = 2ℓ,Nδ = N2
Q for (i = 1 to Nw) do

return SK xi ← symbolSetToVector(w′
i, 1)

CT = CT ∪ CTi = IPE.Encrypt(xi)

end of for

return CT = {CTi}Nw
i=1

SP-FE.GenToken(SK, M=(Σ,Q, δ, q0, F)): SP-FE.Decrypt(CT , M ′′=(Q′′, Σ′′, δ′′, q′0, F
′′)):

M ′′ ← addStatesTransitions(M), where qc = q′0, where qc is current state

M ′′=(Σ′′, Q′′, δ′′, q′0, F
′′), |Q′′| = NQ, |δ′′| = N2

Q for (i = 1 to Nw) do

for(r = 1 to NQ) do for all (qc, j, TKqc,j) ∈ δ′′, where j ∈ Q′′ do

for(c = 1 to NQ) do if (IPE.Check(CTi, TKqc,j) == 1) then

(r, c,yr,c)← symbolSetToVector(Aδ′′ [r][c],0) qc = j, break inner for-loop

TK = TK ∪ TKr,c, where end of if

TKr,c = (r, c,IPE.GenToken(SK, yj)) end of for

end of for end of for

end of for if (qc ∈ F ′′) then return 1

return TK else return 0

Fig. 6. The main construction SK-FE

3.3 Correctness

If a keyword w is accepted (or rejected) by a DFA M , the corresponding w′

is accepted (rejected)by the DFA M ′′. In addSpecialSymbols, one group of
special symbols (with predefined order) can be nested in the other group of
symbols. On the other hand, a group of special symbols are filled in a DFA
is the same order. After a group of the special symbols between two ordinary
symbols are consumed by a DFA, their effects are canceled out, namely, the same
state is reached as if no special symbols are inserted.

4 Analysis

We describe a sequence of hybrid security games to demonstrate that SP-FE
achieves both keyword privacy and predicate privacy.

4.1 Security Analysis

Proof Sketch. The proof uses a sequence of hybrid games where a challenge
token is encrypted with one vector in the first subsystem and with another vector
in the second subsystem. Let (w, z) denote a token encrypted by vector w in
the first subsystem and by vector z in the second subsystem. Try to prove the
challenge token associated with w corresponding to (w,w) is indistinguishable
from that associated with z corresponding to (z, z). A sequence of hybrid games
demonstrates (w,w) ' (w,0) ' (w, z) ' (0, z) ' (z, z) (See Fig. 7). As the
space is limited, we give these proofs in the full version of our paper [13]. In
addition, nw, nQ, F and δ are hidden from the adversary. The distribution of
two paths of the transition is computationally indistinguishable because there
are at least Nw/2 symbols added into the input string of length at most Nw/2.

Game 1. The token encrypted by vector (w,w).

{TKj}Nδ
j=1 =





(uj , vj), {gV1,i

1 gβ1wi

2 g
Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2wi

2 g
Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 2. The token encrypted by vector (w,0).

{TKj}Nδ
j=1 =





(uj , vj), {gV1,i

1 gβ1wi

2 g
Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 g
Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 3. The token encrypted by vector (w, z).

{TKj}Nδ
j=1 =





(uj , vj), {gV1,i

1 gβ1wi

2 g
Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 4. The token encrypted by vector (0, z).

{TKj}Nδ
j=1 =





(uj , vj), {gV1,i

1 g
Trj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Game 5. The token encrypted by vector (z, z).

{TKj}Nδ
j=1 =





(uj , vj), {gV1,i

1 gTβ1zi
2 g

rj1,i
3 }σ′′+1

i=1 ,

{gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1 , Πσ′′+1
i=1 g

−V1,iq
j
1,i−V2,iq

j
1,i

1 gV1
2 gV2

3 , gT3





Nδ

j=1

Fig. 7. The procedure ‘a sequence of hybrid games’

Theorem 1. If G satisfies Assumption 1, SP-FE is token indistinguishable.

Theorem 2. If G satisfies Assumption 1, SP-FE is ciphertext indistinguishable.

Corollary 1. If G satisfies Assumption 1, SP-FE is selective secure, namely,
SP-FE achieves both keyword privacy and predicate privacy.

4.2 Performance Analysis

The performance of SP-FE is as follows: SP-FE.Encrypt requires Nw number of
SK-PE.Encrypt. SP-FE.GenToken costs N2

Q number of SK-PE.GenToken. SP-

FE.Decrypt takes 1
2NQ number of SK-PE.Check in average for each transition.

For the performance of SK-PE, SK-PE.Encrypt (8σ′′+2) · Tadd+(13σ′′+3) · Tsm,
while SK-PE.GenToken takes (8σ′′+2)·Tadd+(13σ′′+3)·Tsm. SK-PE.Check takes
(2σ′′+2) ·Tpairing. Tadd, Tsm and Tpairing denote the time for the point addition
in G, the scaler multiplication in G and the embedded pairing function. On the
other hand, a plaintext w of length nw is encrypted as Nw symbols. The size of
the ciphertext is Nw · (2σ′′+2) · |G|, while that of the token is Nδ · (2σ′′+2) · |G|
plus the description of the DFA, where |G| is the size of the element in G.

5 Conclusions

In this paper, we proposed a symmetric-key predicate-only functional encryption
scheme SP-FE, which supports functionality for regular languages. SP-FE is

proven to guarantee keyword privacy and predicate privacy. In addition, SP-FE
can be extended to a full-fledged functional encryption scheme by the technique
from [6] to further manage messages. For future work, we would like to relax the
restrictions in SP-FE to support predicates of more expressive languages.

References

[1] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and chal-
lenges. In Ishai, Y., ed.: Theory of Cryptography. Volume 6597 of LNCS. Springer
Berlin Heidelberg (2011) 253–273

[2] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy. SP
’07, Washington, DC, USA, IEEE Computer Society (2007) 321–334

[3] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for
fine-grained access control of encrypted data. In: Proceedings of the 13th ACM
conference on Computer and communications security. CCS ’06, New York, NY,
USA, ACM (2006) 89–98

[4] Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM conference on
Computer and communications security. CCS ’07, New York, NY, USA, ACM
(2007) 195–203

[5] Caro, A., Iovino, V., Persiano, G.: Fully secure hidden vector encryption. In
Abdalla, M., Lange, T., eds.: Pairing-Based Cryptography Pairing 2012. Volume
7708 of LNCS. Springer Berlin Heidelberg (2013) 102–121

[6] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. Advances in Cryptology–
EUROCRYPT 2008 (2008) 146–162

[7] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In Gilbert, H., ed.: Advances in Cryptology EUROCRYPT 2010.
Volume 6110 of LNCS. Springer Berlin Heidelberg (2010) 62–91

[8] Blundo, C., Iovino, V., Persiano, G.: Predicate encryption with partial public
keys. In Heng, S.H., Wright, R., Goi, B.M., eds.: Cryptology and Network Security.
Volume 6467 of LNCS. Springer Berlin Heidelberg (2010) 298–313

[9] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In Rein-
gold, O., ed.: Theory of Cryptography. Volume 5444 of LNCS. Springer Berlin
Heidelberg (2009) 457–473

[10] Yoshino, M., Kunihiro, N., Naganuma, K., Sato, H.: Symmetric inner-product
predicate encryption based on three groups. In Takagi, T., Wang, G., Qin, Z.,
Jiang, S., Yu, Y., eds.: Provable Security. Volume 7496 of LNCS. Springer Berlin
Heidelberg (2012) 215–234

[11] Waters, B.: Functional encryption for regular languages. In Safavi-Naini, R.,
Canetti, R., eds.: Advances in Cryptology CRYPTO 2012. Volume 7417 of LNCS.
Springer Berlin Heidelberg (2012) 218–235

[12] Goldwasser, S., Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: How to
run turing machines on encrypted data. In Canetti, R., Garay, J., eds.: Advances
in Cryptology CRYPTO 2013. Volume 8043 of LNCS. Springer Berlin Heidelberg
(2013) 536–553

[13] Tseng, F.K., Chen, R.J., Lin, B.S.P.: Towards symmetric functional encryption
for regular languages with predicate privacy. Cryptology ePrint Archive, Report
2014/407 (2014) http://eprint.iacr.org/.

http://eprint.iacr.org/

6 Sequence of Hybrid Games

This section proves the proposed SP-FE satisfies Definition 2 (token indistin-
guishable) by a sequence of hybrid games from Game 1 to Game 5. Due to space
limit, we give these proofs in the full version of our paper [13].

Lemma 1. If G satisfies Assumption 1, Game 1 and Game 2 are computation-
ally indistinguishable.

Proof: Simulator B tries to break Assumption 1 by an adversary A trying to dis-
tinguish Game 1 from Game 2. Simulator B is given an instance of Assumption
1: the public parameters (N,G,GT , ê), (g1, g

a1
1 , g2, g

b1
2 , g

c1
3 , g

c2d
3 , gd3 , g

d2

3 , g
a2
1 , gc1d3)

and a1, a2, a3
R← Zp1 , b1, b2

R← Zp2 , c1, c2, d
R← Zp3 , g1

R← G1, g2
R← G2 and

g3
R← G3. Also, generate a random bit b ∈ {0, 1}, and set Tb = ga31 gbb22 gc23 .

- Setup: A is given the public parameters and outputs two challenges M1 =
(Σ,Q1, δ1 = {(uj , vj ,W)}nδj=1, q0,1, F1) and M2 = (Σ,Q2, δ2 = {(uj , vj),W}nδj=1,
q0,2, F2). B converts M1 into M ′1 by addStatesTransitions and transforms δ′

into {(uj , vj), (wj)}Nδj=1 by symbolSetToVector. B performs the same proce-

dures on M2 to obtain {(uj , vj), (zj)}Nδj=1. B sends {wj}Nδj=1 and {zj}Nδj=1 to the

challenger C. Set {{qj1,i, qj2,i}σ
′′+1
i=1 , {rj1,i}σ

′′+1
i=1 {r′j2,i}σ

′′+1
i=1 }Nδj=1 randomly from ZN .

- Phase 1: A adaptively outputs one of the two queries.

(1) Token Query. B receives a predicate M=(Σ,Q, δ={(uj , vj ,W)}nδj=1, q0, F)

fromA. B turnsM intoM ′′=(Σ′′, Q′′, δ′′={(uj , vj),W}Nδj=1, q
′
0, F

′′) by addStat-

esTransitions and turns δ′ into {(uj , vj), (yj)}Nδj=1 by symbolSetToVector.

B randomly sets T ′, β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , V

′
2 from ZN and outputs

TKj . Denote TKj={(uj , vj), ({Kj
1,i,K

j
2,i}σ

′′+1
i=1 ,Kj

1 ,K
j
2)}Nδj=1, where




{Kj
1,i}σ

′′+1
i=1 ={gV

′
1,i

1 (ga11 g2)β1yi(gd
2

3)T
′rj1,i}σ′′+1

i=1 ={gV1,i

1 gβ1yi
2 g

Trj1,i
3 }σ′′+1

i=1

{Kj
2,i}σ

′′+1
i=1 ={gV

′
2,i

1 (ga11 g2)β2,yi(gd3)T
′wi · (gd23)T

′r′j2,i}σ′′+1
i=1 ={gV2,i

1 gβ2yi
2 g

Trj2,i
3 }σ′′+1

i=1

Kj
1=

∏σ′′+1
i=1 (K

−qj1,i
1,i K

−qj2,i
2,i)(gb12 g

c1d
3)V

′
1 (gd3)V

′
2 =g

−Σσ′′+1
i=1 (V1,iq

j
1,i+V2,iq

j
1,i)

1 gV1
2 gV2

3

Kj
2=(gd23)T

′
=gT3





Nδ

j=1

with (uj
R← Z|NQ|, vj

R← Z|NQ|), T=d2T ′, {V1,i=β1a1yi+V ′1,i}σ
′′+1
i=1 , {V2,i=β2a1yi+

V ′2,i}σ
′′+1
i=1 , {rj2,i = d−1wi+r′j2,i}σ

′′+1
i=1 , V1 = b1V

′
1−β1Σσ′′+1

i=1 qj1,iyi−β2Σσ′′+1
i=1 qj2,iyi,

and V2 = c1dV
′
1 +dV ′2 −T (Σσ′′+1

i=1 qj1,i)r
j
1,i+Σσ′′+1

i=1 qj2,ir
j
2,i). The tokens generated

in Phase 1 has the same distribution as that by SP-FE.GenToken because

V ′1 , V
′
2
R← ZN .

(2) Ciphertext Query. B receives a plaintext w = (w1, . . . , wnw) from A. B
transforms w into w′ = (w1, . . . , wNw) by addSpecialSymbols and transforms

w′ into {xj}Nwj=1 by symbolSetToVector. B randomly sets S, α′1, α
′
2, {U ′1,i}σ

′′+1
i=1 ,

{U ′2,i}σ
′′+1
i=1 , U ′1, U

′
2 from ZN and outputs CTj forA. Denote CTj={{Cj1,i, Cj2,i}σ

′′+1
i=1 ,

Cj1 , C
j
2}Nδj=1, where





{Cj1,i}σ
′′+1
i=1 = {(g1)Sq

j
1,i(gb12 g

c1
3)α

′
1xi(gd

2

3)U
′
1,i}σ′′+1

i=1 {g
Sqj1,i
1 gα1xi

2 g
U1,i

3 }σ′′+1
i=1

{Cj2,i}σ
′′+1
i=1 = {(g1)Sq

j
2,i(gb12 g

c1
3)α2,xi(gd

2

3)U
′
2,i}σ′′+1

i=1 {g
Sqj2,i
1 g

α′
2xi

2 g
U2,i

3 }σ′′+1
i=1

Cj1 = gS1

Cj2 =
∏σ′′+1
i=1 [(gd

2

3)−U
′
1,ir

j
1,i−U ′

2,ir
′j
2,i(gc13)α

′
1xi+α

′
1xi]·

∏σ′′+1
i=1 (gd3)−U

′
2,iwi · (ga11 g2)U

′
1g
U ′

2
1 = gU1

1 gU2
2 g
−Σσ′′+1

i=1 (U1,ir
j
1,i+U2,ir

j
2,i)

3





Nδ

j=1

with α1=b1α
′
1, α2=b1α

′
2, {U1,i=d

2U ′1,i+c1α
′
1xi}σ

′′+1
i=1 , {U2,i=d

2U ′2,i+c1α
′
2xi}σ

′′+1
i=1 ,

{rj2,i=d−1wi + r′j2,i}σ
′′+1
i=1 , U1 = a1U

′
1 + U ′2, and U2 = U ′1. The ciphertexts gener-

ated in Phase 1 has the same distribution as that by SP-FE.Encrypt because

U ′1, U
′
2
R← ZN .

- Challenge: B receives query of challenge token from A. B is given the chal-

lenge query for Assumption 1 as Tb = ga31 gbb22 gc23 with b ∈{0, 1} and a3
R← Zp1 ,

b2
R← Zp2 , c2, d

R← Zp3 . B randomly sets β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , and

V ′2 from ZN and generates corresponding tokens for A as follows.




{Kj
1,i}σ

′′+1
i=1 = {gV

′
1,i

1 (ga11 g2)β1wi(gc2d3)r
j
1,i}σ′′+1

i=1 = {gV1,i

1 gβ1wi
2 g

Trj1,i
3 }σ′′+1

i=1

{Kj
2,i}σ

′′+1
i=1 = {(Tb)wig

V ′
2,i

1 (gc2d3)r
′j
2,i}σ′′+1

i=1 = {gV2,i

1 gβ2wi
2 g

Trj2,i
3 }σ′′+1

i=1

Kj
1 = gc2d3 = gT3

Kj
2 = Πσ′′+1

i=1 (K
−qj1,i
1,i K

−qj2,i
2,i)(gc2d3 gb12)V

′
1 g
V ′
2

3 = g
−Σσ′′+1

i=1 (V1,iq
j
1,i+V2,iq

j
1,i)

1 gV1
2 gV2

3





Nδ

j=1

with (uj
R← Z|Q′′|, vj

R← Z|Q′′|), T = c2d, β2=bb2, {V1,i=d2V ′1,i + a1β1wi}σ
′′+1
i=1 ,

{V2,i = V ′2,i + a3wi}σ
′′+1
i=1 , V1 = b1V

′
1 −Σσ′′+1

i=1 (β1q
j
1,i + β2q

j
1,i)wi, and V2=TV ′1 +

V ′2 − TΣσ′′+1
i=1 (qj1,i · rj1,i + qj1,ir

j
2,i). The distribution of the ciphertexts generated

when T1 = ga31 gb22 g
c2
3 is given is exactly the same as the one in Game 1. Simi-

larly, The distribution of the ciphertexts generated when T0 = ga31 gc23 is given is
exactly the same as the one in Game 2.

- Phase 2: B continues to adaptively query as in Phase 1.

- Guess: A outputs a guess b′ of b and sends it to B.

If the adversary A has the advantage ε in distinguishing Game 1 from Game 2,
then the simulator B has the same ε advantage in breaking Assumption 1. This
completes the proof of the Lemma 1. �
Lemma 2. If G satisfies Assumption 1, Game 2 and Game 3 are computation-
ally indistinguishable.

Proof: Simulator B tries to break Assumption 1. by an adversary A trying to dis-
tinguish Game 2 from Game 3. Simulator B is given an instance of Assumption
1: the public parameter (N,G,GT , ê), (g1, g

a1
1 , g2, g

b1
2 , g

c1
3 , g

c2d
3 , gd3 , g

d2

3 , g
a2
1 , gc1d3)

and a1, a2, a3
R← Zp1 , b1, b2

R← Zp2 , c1, c2, d
R← Zp3 , g1

R← G1, g2
R← G2 and

g3
R← G3. Also, generate a random bit b ∈ {0, 1}, and set Tb = ga31 gbb22 gc23 . -

Setup: A is given public parameters and outputs the descriptions of two chal-
lenges M1 = (Σ,Q1, δ1 = {(uj , vj ,W)}nδj=1, q0,1, F1) and M2 = (Σ,Q2, δ2 =

{(uj , vj),W}nδj=1, q0,2, F2). B converts M1 into M ′1 by addStatesTransitions

and transforms δ′ into {(uj , vj), (wj)}Nδj=1 by symbolSetToVector. B performs

the same procedures on M2 to obtain {(uj , vj), (zj)}Nδj=1. B sends {wj}Nδj=1 and

{zj}Nδj=1 to the challenger C and sets {{qj1,i, qj2,i}σ
′′+1
i=1 , {rj1,i}σ

′′+1
i=1 , {r′j2,i}σ

′′+1
i=1 }Nδj=1

from ZN , where |Σ′′| = σ′′.

- Phase 1: A adaptively outputs one of the two queries.

(1) Token Query. B receives a predicate M=(Σ,Q, δ={(uj , vj ,W)}nδj=1, q0, F)

from A. B transforms M into M ′′ = (Σ′′, Q′′, δ′′ = {(uj , vj),W}Nδj=1, q
′
0, F

′′)

by addStatesTransitions and transforms δ′ into {(uj , vj), (yj)}Nδj=1 by sym-

bolSetToVector. B randomly sets T ′, β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , V

′
2 from

ZN and outputs TKj . Denote TKj={(uj , vj), ({Kj
1,i,K

j
2,i}σ

′′+1
i=1 ,Kj

1 ,K
j
2)}Nδj=1.

The only difference between Lemma 1 and Lemma 2 is that Lemma 2 implicitly

sets {rj2,i = d−1zi+r′2,i}σ
′′+1
i=1 in {Kj

2,i}σ
′′+1
i=1 . The tokens in Phase 1 has the same

distribution as that by SP-FE.GenToken because V ′1 , V
′
2
R← ZN .

(2) Ciphertext Query. B receives a plaintext w=(w1, . . . , wnw) from A. B
transforms w into w′ = (w1, . . . , wNw) by addSpecialSymbols and transforms

w′ into {xj}Nwj=1 by symbolSetToVector. B sets S, α′1, α
′
2, {U ′1,i}σ

′′+1
i=1 , {U ′2,i}σ

′′+1
i=1 ,

U ′1, U
′
2 from ZN and outputs CTj forA. Denote CTj = {{Cj1,i, Cj2,i}σ

′′+1
i=1 , Cj1 , C

j
2}Nδj=1.

The only difference between Lemma 1 and Lemma 2 is that Lemma 2 implicitly

sets {rj2,i = d−1zi+r′j2,i}σ
′′+1
i=1 in {Kj

2,i}σ
′′+1
i=1 . The ciphertexts generated in Phase

1 has the same distribution as that by SP-FE.Encrypt because U ′1, U
′
2
R← ZN . -

Challenge: B receives query of challenge token from A. B is given the challenge

query for Assumption 1 as Tb = ga31 gbb22 gc23 with b ∈{0, 1} and a3
R← Zp1 , b2

R←
Zp2 , c2, d

R← Zp3 . B randomly generates β1, β2, {V ′1,i}σ
′′+1
i=1 , {V ′2,i}σ

′′+1
i=1 , V ′1 , V

′
2

from ZN and generates corresponding tokens for A as follows.

Denote TKj = {(uj , vj), {Kj
1,i,K

j
2,i}σ

′′+1
i=1 ,Kj

1 ,K
j
2}Nδj=1, where





{Kj
1,i}σ

′′+1
i=1 = {gV

′
1,i

1 (ga11 g2)β1wi(gc2d3)r
j
1,i}σ′′+1

i=1 = {gV1,i

1 gβ1wi
2 g

Trj1,i
3 }σ′′+1

i=1

{Kj
2,i}σ

′′+1
i=1 = {(Tb)zig

V ′
2,i

1 (gc2d3)r
′j
2,i}σ′′+1

i=1 = {gV2,i

1 gβ2zi
2 g

Trj2,i
3 }σ′′+1

i=1

Kj
1 = gc2d3 = gT3

Kj
2 = Πσ′′+1

i=1 (K
−qj1,i
1,i K

−qj2,i
2,i)(gc2d3 gb12)V

′
1 g
V ′
2

3 = g
−Σσ′′+1

i=1 (V1,iq
j
1,i+V2,iq

j
1,i)

1 gV1
2 gV2

3





Nδ

j=1

with (uj
R← Z|Q′′|, vj

R← Z|Q′′|), T=c2d, β2=bb2, {V1,i=d2V ′1,i + a1β1wi}σ
′′+1
i=1 ,

{V2,i=V ′2,i + a3β2zi}σ
′′+1
i=1 , V1 = b1V

′
1 − Σσ′′+1

i=1 (β1q
j
1,iwi + β2q

j
1,izi), and V2 =

TV ′1 + V ′2 − TΣσ′′+1
i=1 (qj1,i·rj1,i + qj1,ir

j
2,i). The distribution of the ciphertexts gen-

erated when T1 = ga31 gb22 g
c2
3 is given is exactly the same as the one in Game

3. Similarly, The distribution of the ciphertexts generated when T0 = ga31 gc23 is

given is exactly the same as the one in Game 2.

- Phase 2: B continues to adaptively query as in Phase 1.

- Guess: A outputs a guess b′ of b and sends it to B.

If the adversary A has the advantage ε in distinguishing Game 2 from Game 3,
then the simulator B has the same ε advantage in breaking Assumption 1. This
completes the proof of the Lemma 2. �
Lemma 3. If G satisfies Assumption 1, Game 3 and Game 5 are computation-
ally indistinguishable.

Proof: Game 3 and Game 4 are computationally indistinguishable following
the proof of Lemma 2 by setting Game 4 as Game 2 except for exchanging

{{Kj
1,i}σ

′′+1
i=1 }Nδj=1 with {{Kj

2,i}σ
′′+1
i=1 }Nδj=1 and exchanging {(uj , vj),wj}Nδj=1 with

{(uj , vj), zj}Nδj=1. Similarly, Game 4 and Game 5 are computationally indis-
tinguishable following the proof of Lemma 1 by setting Game 4 as Game 2

except for exchanging {{Kj
1,i}σ

′′+1
i=1 }Nδj=1 with {{Kj

2,i}σ
′′+1
i=1 }Nδj=1 and exchanging

{(uj , vj),wj}Nδj=1 with {(uj , vj), zj}Nδj=1. This completes the proof.

	Towards Symmetric Functional Encryption for Regular Languages with Predicate Privacy
	Introduction
	Background and Preliminary
	Deterministic Finite Automata and Regular Languages
	Definitions and Security Model
	Notation
	Complexity Assumption
	The Building Block

	SP-FE Construction
	Main Procedures
	Main Algorithms
	Correctness

	Analysis
	Security Analysis
	Performance Analysis

	Conclusions
	Sequence of Hybrid Games

