ProPS: A Progressively Pessimistic Scheduler
for Software Transactional Memory*

Hugo Rito and Joao Cachopo

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{hugo.rito, joao.cachopo}@ist.utl.pt

Abstract. Software Transactional Memory (STM) is one promising ab-
straction to simplify the task of writing highly parallel applications.
Nonetheless, in workloads lacking enough parallelism, STM’s optimistic
approach to concurrency control can adversely degrade performance as
transactions abort and restart often.

In this paper, we describe a new scheduling-based solution to improve
STM'’s performance in high-contention scenarios. Our Progressively Pes-
simistic Scheduler (ProPS) uses a fine-grained scheduling mechanism
that controls the amount of concurrency in the system gradually as trans-
actions abort and commit with success.

Experimental results with the STMBench7 benchmark and the
STAMP benchmark suite showed that current coarse-grained, conser-
vative transaction schedulers are not suitable for workloads with long
transactions, whereas ProPS is up to 40% faster than all other schedul-
ing alternatives.

Keywords: Performance, Software Transactional Memory, Transaction
Conflict, Transaction Scheduling.

1 Introduction

Software Transactional Memory (STM) [11] turned into one of the most promis-
ing abstractions to bridge the gap between mainstream programmers and parallel
programming. Unfortunately, the performance of STM-based applications may
vary greatly, depending on the application’s workload: Even though STMs ex-
hibit very good performance for read-dominated workloads, the same cannot be
said about highly contended workloads in which frequent transaction reexecu-
tions place a significant stress on the system, hindering its performance [1,3,7].

Transactions reexecute whenever they conflict, which happens when the STM
runtime speculatively executes two or more concurrent transactions that cannot
both commit due to conflicting memory accesses.

A transaction scheduler [12,2,4] is an STM component that uses runtime in-
formation to predict conflicts and, thus, prevent transactions that are likely to

* This work was supported by national funds through FCT — Fundagéo para a Ciéncia
e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 150-161, 2014.
© Springer International Publishing Switzerland 2014

ProPS: A Progressively Pessimistic Scheduler 151

conflict from running concurrently. The assumption is that in workloads lack-
ing inherent parallelism, executing a large number of transactions concurrently
can degrade performance as transactions restart often. So, to limit the amount
of restarts and the amount of wasted work, a transaction scheduler serializes
conflicting transactions either at transaction begin or at transaction restart.

Unfortunately, most scheduling policies are too conservative as they over-
serialize transactions—that is, two non-conflicting transactions are scheduled to
execute one after the other when they could safely overlap.

In the next section, we discuss how STMs may benefit from transaction
scheduling in high-contention workloads and we explain why coarse-grained and
conservative scheduling policies, as those used by existing transaction schedulers,
are unable to extract the latent parallelism of STM-based applications.

In this paper, we tackle the problem of efficient transaction scheduling and
we make the following contributions:

— A new fine-grained progressively pessimistic scheduling policy (ProPS) for
STM that collects information regarding the maximum concurrency level
between pairs of atomic operations and, then, uses that information to grad-
ually reduce concurrency as contention increases (Section 3).

— An overview of ProPS’s implementation in the FlashbackSTM [10]. This fully
decentralized implementation of our novel fine-grained scheduling policy has
zero runtime overhead for read-only transactions (Section 4).

— A thorough evaluation of ProPS with both the STMBench7 benchmark [6]
and the STAMP benchmark suite [8]. Results show that ProPS is up to 40%
faster than ATS [12], CAR [2], and Shrink [4] (Section 5).

2 Why We Need Better Transaction Scheduling

The key observation behind transaction scheduling is that conflicts are dynamic,
meaning that the order in which transactions execute influences the number of
conflicts that occur. Moreover, in many STM-based programs, transactions exe-
cute independently of each other in a nondeterministic order. Hence, by changing
the order in which transactions execute, a transaction scheduler may reduce the
amount of wasted work in high-contention workloads and increase throughput.
In practice, transaction schedulers use serialization to order transactions with
expected conflicts one after another, trading off concurrency between threads
for less wasted work. To exemplify, consider the execution scenario 1 depicted
at the top half of Figure 1. In this scenario, thread T} makes two calls to atomic
operation OP1 while thread 75 tries to execute atomic operation OP2 once.
Without a transaction scheduler, the concurrent execution of OP1 and O P2
has an adverse effect on performance because both atomic operations conflict
and, thus, only Tx; (first) and Tzs (later) commit with success without con-
flicting. Transaction T'zs, on the other hand, aborts and reexecutes twice before
committing with success, which happens only when executing solo in the system.
With a transaction scheduler, after detecting the conflict between T'z; and
Tzo (and to prevent T'zo from restarting again) the scheduler may force new

152 H. Rito and J. Cachopo

Without scheduler With scheduler
T, o | T, — o=
T, e rm{re=f— | T,
T, T, — & 3> i

[Transaction executing [>_~"3] Transaction waiting I Transaction commit I:l Transaction abort

Fig. 1. Execution of operations OP1, OP2, and OP3 without a transaction scheduler
and with a naive transaction scheduler by two concurrent threads (scenario 1) and three
concurrent threads (scenario 2). Only OP1/OP2 conflict when executed concurrently.

transactions to serialize after T'wo—that is, the scheduler delays T'xz3’s start to
after the successful commit of transaction Tzs. With this decision, the sched-
uler reduces to half the number of transaction restarts, therefore reducing the
execution time.

Ideally, the transaction scheduler is accurate enough to execute concurrently
only transactions that will not conflict. Though possible in some particular cases,
in general this is very hard to accomplish due to the dynamic nature of transac-
tions and, thus, schedulers serialize transactions based on previous observations.
Current scheduling solutions, however, are still too coarse-grained, too conser-
vative, and, for those reasons, may serialize non-conflicting transactions.

Coarse-grained scheduling solutions [12] monitor the number of aborts to de-
tect periods of high-contention, in which case they serialize all transactions. Such
schedulers assume that, when contention is high, a transaction that aborts and
restarts immediately has high probability to conflict again, leading to another
transaction abort. Thus, to prevent conflict-prone transactions from conflicting
again, the scheduler serializes all transactions that abort.

Despite their low overhead, these all-or-nothing approaches to scheduling have
limited applicability because transactions are serialized not due to the transac-
tion’s expected behavior but because of the behavior of the system as a whole.
To exemplify, consider scenario 2 of Figure 1 that extends scenario 1 with a third
thread (75) executing a single atomic operation OP3.

With the transaction scheduler, the reexecution of transaction Tzo forces all
subsequent transactions (Tx3 and Tx4, in this case) to serialize. Yet, as the
execution without the scheduler shows, this coarse-grained scheduling policy is
over-serializing transactions. Only T'zo and Tx3 need to execute one after the
other because only the pair OP1/0O P2 conflict when executed concurrently. The
pairs OP1/OP3 and OP2/OP3 do not conflict and may execute concurrently
with performance benefits as we observe in the scenario without scheduling.

Our naive scheduling policy is an over-simplification of Yoo and Lee [12]’s
Adaptive Transaction Scheduler (ATS). In ATS, each thread maintains a con-
tention intensity (CT) value, which is decreased after each successful commit and
increased after each abort, and threads serialize in a central queue whenever their
C1T value is above a predetermined threshold. ATS’s scheduling policy is very

ProPS: A Progressively Pessimistic Scheduler 153

simple and has nearly no overhead, but is too coarse-grained and unnecessarily
reduces concurrency in high contention scenarios, as described before.

Conservative scheduling solutions [2], on the other hand, serialize transac-
tions based on the fact that the atomic operations they execute conflicted with
each other, at least once, in the past. By using per-transaction information,
the scheduler attempts to predict more accurately how a particular transaction
configuration will behave when executed again concurrently. Going back to the
previous example, a conservative scheduler may learn that operations OP1 and
OP2 conflict, in which case it will serialize all their future executions.

CAR-STM [2] is a conservative scheduling policy that maintains a per-core
transaction queue and, when a transaction restarts, the dispatcher serializes the
restarting transaction in the per-core queue containing the transactions with
maximum probability of conflicting with it. Even though less conservative than
ATS, with a large number of concurrent threads or under high contention, CAR-
STM'’s per-core queues may constitute a performance bottleneck.

The problem with both scheduling policies is that they ignore the fact that
transactions are dynamic—that is, a transaction’s behavior may change as the
state of the application also changes. This means that, for instance, operations
OP1 and OP2 in our example may be able to execute concurrently in the future,
if they access disjoint memory locations.

Recognizing this runtime property of transactions, the Shrink [4] scheduler
uses the memory locations recently accessed by a thread to predict the read-
set of future transactions executed by that thread. At transaction start, Shrink
verifies whether any of the memory locations in the transaction’s predicted read-
set is being written by other concurrently executing transactions and, if that is
the case, the starting transaction serializes by acquiring a global shared lock.
However, it is unclear how the read-set of a transaction may help predict the
read-set of a different transaction executing a distinct atomic operation, even
considering the fact that both transactions are executed in succession by the
same thread. Also, Shrink intercepts all read accesses to memory, adding a non-
negligible overhead to the most common STM operation: the transactional read.

In summary, transaction schedulers’ pessimistic approach to concurrency may
reduce the number of conflicts between transactions but at the cost of reducing
too much the parallelism in the application. The decision to serialize transactions
that would execute without conflicting greatly hinders the throughput of the
system and constitutes a fundamental obstacle to the effectiveness of scheduling.
The challenge, then, is to develop a fine-grained, more optimistic transaction
scheduler that is able to increase parallelism between transactions.

3 A Progressively Pessimistic Scheduling Policy

Although system-wide information may help describe the runtime behavior of
the system as a whole, the transaction scheduler acts upon individual transac-
tions and, for that reason, the scheduler needs fresh transaction-specific infor-
mation to perform fine-grained scheduling decisions that minimize the number
of transactions that are unnecessarily serialized.

154 H. Rito and J. Cachopo

To allow such fine-grained scheduling our new Progressively Pessimistic Sched-
uler (ProPS) maintains a concurrency level matrix (C'L) between pairs of atomic
operations—that is, for each atomic operation of type ¢ and each atomic oper-
ation of type j, the value of C'L;; describes how many transactions executing
atomic operations of type i may execute concurrently with one transaction exe-
cuting atomic operation of type j.

In the beginning, all C'L;; values are equal to MAX_-THREADS, which corresponds
to the maximum number of concurrent threads in the systems (typically the
number of processors in the machine), and ProPS uses C'L values to adapt the
amount of concurrency in the system: At transaction begin of atomic operation 7,
the scheduler calculates the minimum C'L;; value between the starting transac-
tion and all other in-flight transactions. Atomic operations with a minimum CL
value of MAX_THREADS proceed normally. Yet, as an operation’s minimum C'L value
decreases, ProPS reduces the number of transactions executing that operation.

When a transaction of type ¢ aborts due to a conflict with another transaction
of type j, ProPS reduces the concurrency level between atomic operations of type
j and 7 using equation 1 below, where k is a value in [0, 1].

CLji = CLji X k (1)

By limiting the number of transactions of type j that may start concurrently
with transactions of type ¢ only, our new scheduling policy reduces the STM’s
level of optimism in a fine-grained way. Future transactions for different atomic
operations are unaffected by this reduction and, thus, may proceed normally at
transaction begin if their minimum CL value is equal to MAX_THREADS.

When a transaction of type 7 finally commits with success, for each operation
of type j ProPS updates operation’s ¢ C'L;; values using equation 2 below, where
a is a value in [0, 1], and numRestarts > 0 corresponds to the number of times
that the committing transaction restarted before this successful commit.

CL;; = min(MAX_THREADS, C'L;; + MAX_THREADS X « =+ (1 + numRestarts)) (2)

Note that, by design, ProPS exponentially reduces concurrency as transactions
conflict but increases concurrency only linearly at transaction commit. This de-
sign decision allows the scheduler to react very fast to periods of high contention,
while, at the same time, to steadily revise its predictions as transactions start
committing with success. Furthermore, at transaction commit, our scheduling
policy uses the number of times the transaction aborted before committing with
success to control how fast the scheduler restores concurrency, benefiting trans-
actions that seldom conflict.

4 The ProPS Implementation

We implemented ProPS in the FlashbackSTM [10], a word-base, multi-version
STM implemented as a pure Java library that extends the lock-free version of the
JVSTM [5] with the concept of memo-transactions [9]. In the FlashbackSTM,

ProPS: A Progressively Pessimistic Scheduler 155

1 static double[][] CL; static TxInfo[] txs; TxInfo myInfo

3 upon tx.begin:
myInfo.id = tx.id; myInfo.numRestarts = 0
do

S

6 cl = MAX THREADS; enemies = 1; worstEnemy = nil

7 for each inFlightTx in txs do

8 if (CL[tx.id][inFlightTx.id] < cl)

9 cl = CL[tx.id][inFlightTx.id]; enemies = 1; worstEnemy = inFlightTx
10 else if (inFlightTx == worstEnemy)

11 ++enemies

12 while (cl =+ enemies < 1)

13 limitConcurrency(cl =+ enemies)

14

15 upon tx.abort caused by enemyTx:

16 myInfo.numRestarts++

17 CL[enemyTx.id][myInfo.id] = CL[enemyTx.id][myInfo.id] * k
18

19 upon tx.commit:

20 txs[myInfo.pos] = nil

21 for each opId in atomicOperations do

22 CL[myInfo.id][opId] = min(MAX_ THREADS,

23 CL[myInfo.id][opId] + MAX THREADS X « =+ (1 + myInfo.numRestarts))

Listing 1.1. The ProPS implementation. The scheduler is fully decentralized as each
thread decides whether to wait or to begin immediately by itself.

reads are very fast, always consistent, and read-only transactions never conflict
with other transactions. Read-write transactions, on the other hand, may conflict
but only with other already committed read-write transactions.

To control the execution and the order in which read-write transactions com-
mit, we changed the FlashbackSTM in two ways. First, we changed read-write
transactions so that they report to the scheduler at transaction begin time, com-
mit time, and abort time. Second, we changed the bytecode manipulator so that
it assigns a unique identifier (ID) to each atomic operation.

Note that our modifications to the FlashbackSTM have zero runtime overhead
for read-only transactions: Given that read-only transactions never conflict in
the FlashbackSTM, they do not need to be scheduled and, thus, never report
to the transaction scheduler as read-write transactions do. In Listing 1.1 we show
the pseudocode of ProPS, which works in a fully decentralized way because each
thread decides whether to wait or to begin immediately by itself.

ProPS stores per-thread information in a TxInfo object and system-wide in-
formation in a global CL matrix and in a global txs array. The thread-local TxInfo
instance gathers information about the transaction currently in execution by the
thread, such as the ID of the atomic operation, and the number of transaction
restarts. On the other hand, the global CL matrix stores the concurrency level
between pairs of atomic operations, as described in the previous section, whereas
the global txs array contains all in-flight transaction currently in the system.

156 H. Rito and J. Cachopo

At begin time, the scheduler updates the thread’s TxInfo instance with infor-
mation regarding the new transaction (line 4) and uses the CL matrix to calculate
the transaction’s minimum cl value, depending on the operation’s ID and the
current system configuration (lines 5-12).

The limitConcurrency function (line 13) may delay the execution of a trans-
action because it forces the starting transaction to acquire a position in the
txs array with a compare-and-swap (CAS) operation. When a transaction suc-
cessfully acquires a given position in the txs array, it may begin its execution
(otherwise, it will have to keep trying until it succeeds); when the transaction
finishes, it releases its position in the txs array, as shown in line 20.

The size of the array corresponds to the maximum number of read-write trans-
actions that the scheduler will allow to execute concurrently—in our current
implementation, the size of the array corresponds to the number of cores in the
machine—and the scheduler uses the minimum cl value of each starting trans-
action to control the number of positions in the array that may be used. With a
cl value equal to MAX_THREADS, the scheduler behaves similarly to an optimistic
scheduler. Lower cl values make ProPS progressively more pessimistic.

At transaction abort, the scheduler increments the number of restarts (line 16)
and reduces the concurrency level (line 17). At commit time, a committing trans-
action increments its concurrency level with all atomic operations (lines 21-23).

It is worth mentioning that we made our implementation as lightweight as
possible. For instance, accesses to the C'L matrix are not explicitly synchronized
and, thus, threads may read stale data. We argue, however, that adding random
imprecisions to the scheduler is preferable than to pay the high cost of synchro-
nization because, in this particular context, suboptimal scheduling decisions do
not change the semantics of the programs, only their performance.

5 Experimental Results

To evaluate our approach, we used the STMBench7 benchmark [6] and the
STAMP benchmark suite [8]. We ran these benchmarks using the Flashback-
STM either with no scheduler (shown as Default) or with one of the following
schedulers: ProPS, ATS [12], CAR [2], and Shrink [4].

We configured ProPS with a k-value of 0.5, an a-value of 0.05. We tested
with several values for these parameters and used the values that produced the
best results. Due to space constraints, we do not show in this paper a sensitivity
analysis for these parameters, but the results do not vary too much within a
reasonable range for these values.

Neither one of the pessimistic schedulers used in our tests had an implementa-
tion for the FlashbackSTM, so we provided our own optimized implementation of
each scheduling policy. To collect fair and comparable results, all four schedulers
share the same FlashbackSTM code base and the same scheduling interface.

We ran our tests on a machine with four AMD Opteron 6168 processors, each
with 12 cores, for a total number of 48 cores. All processors shared a Supermicro
H8QG6 motherboard with 128Gb of RAM. The machine was running CentOS

ProPS: A Progressively Pessimistic Scheduler 157

55 Read-write (40% writes) - Write-dominated (90% writes)
z =26 '/,A"“A""A----A---»A.\._ VNN S
Q Q2.4
[e] o
= c 22
kel kel
© ©
g g
o <
= =
o)
o)
C C
4] o)
o o
=3 =}
el el
(7] ()
[()
o Q.
%) 7 (I
0 0.6

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Threads # Threads

Coarse =—f— Default --3-+ cArR -l ProPs «-/A\:-
Medium = Y= ATS —-F- Shrink <5~

Fig. 2. Speedup of the STMBench7 benchmark with all long read-write traversals and
all structural modifications disabled, for each of the two workloads

release 6.4 and Java SE version 1.7.0_.21. We made 20 runs of each benchmark
with 1 up to 48 threads in increments of 4 threads per test, and we removed the
top 5 best and worst results, presenting only the average of the ten remaining
values. The speedup results use as baseline the execution time of the benchmark
running single-threaded without any STM instrumentation.

5.1 STMBench7? Benchmark: Short Transactions

The STMBench7 benchmark was designed to test STMs under high-contention
scenarios, making it appropriate to understand how non-negligible concurrency
among transactions that often results in reexecutions affects performance.

We measured the time it took for the benchmark to complete a fixed number
of operations with all long read-write traversals and all structural modifications
disabled in a read-write workload (40% writes out of 130000 total operations)
and in a write-dominated workload (90% writes out of 60000 total operations).

In Figure 2, we present speedup results for the STMBench7 benchmark us-
ing both the FlashbackSTM with the various schedulers and two lock-based
approaches: coarse-grained locks and medium-grained locks.

Although STM’s indirect memory accesses add overhead, on both workloads
with one thread the STM version of the benchmark is faster than the non-
instrumented version of the benchmark. This happens because some operations
execute repeated method calls. These methods, when executed inside Flashback-
STM’s memo-transactions, populate a per-transaction memo-cache with infor-
mation about their runtime behavior. The STM then uses this information to
identify repeated work that may be skipped, thus improving performance.

Comparing the results obtained with the various schedulers, we see that, re-
gardless of the workload, ProPS outperforms all other approaches. The results
for the read-write workload with the STM are specially good when compared to
locks, because this workload benefits both from our less pessimistic approach to

158 H. Rito and J. Cachopo

Table 1. Percentage of aborts of the STMBench7 benchmark with all long read-write
traversals and all structural modifications disabled, for both workloads with 48 threads

Transaction scheduler

Workload Default ATS CAR ProPS Shrink
Read-write 59.41 9.34 871 15.96 30.49
Write-dominated 65.06 7.93 6.92 16.50 28.96

scheduling and from FlashbackSTM’s read-only operations that have very low
overhead and never conflict.

Overall we can conclude that, as the number of concurrent threads increases,
conflicts become more frequent and, therefore, the benchmark starts to benefit
from scheduling. The influence that conflicts have on performance is more evident
on the write-dominated workload where the FlashbackSTM without scheduling
achieves its peak speedup with 4 threads and then performance abruptly plunges
to the point that, with 48 threads, the benchmark executes as fast as with 1
thread. With scheduling, on the other hand, the benchmark is able to maintain
the performance stable as the number of threads increases.

Despite the drastic reduction in the abort rate (Table 1), none of the pes-
simistic schedulers’ peak performance surpasses the peak performance of the
Default scheduler. As the results with ATS and CAR clearly show, even on
write-dominated, conflict-prone workloads a lower abort rate may not translate
into better performance if the scheduler is too pessimistic and serializes trans-
actions that could otherwise execute concurrently without conflicts.

Instead of serializing all transactions when contention is high as traditional
pessimistic schedulers do, ProPS’s progressively pessimistic scheduling policy
gradually reduces concurrency when transactions start conflicting. Thus, even
though the abort rate goes up to 16.50%, ProPS outperforms all other alter-
natives, showing that there is latent parallelism in the benchmark that is not
explored by the pessimistic schedulers.

5.2 STMBench7 Benchmark: Mixed Transactional Workload

The previous results were obtained with two workloads that execute short trans-
actions predominantly. Now, we explore how the various schedulers behave for
a workload with very long transactions: For that, we use again the STMBench7
benchmark, but now with all long read-write traversals enabled.

For these tests, we changed the number of operations executed on each work-
load to 4000 operations on the read-write workload and to 2000 operations on the
write-dominated workload. This change was necessary to maintain an average
execution time of roughly 30 seconds with 48 threads. We present the speedup
results in Figure 3.

As we can see, all pessimistic schedulers perform worse than the FlashbackSTM
with no scheduler, a result somewhat surprising because the use of a scheduler

ProPS: A Progressively Pessimistic Scheduler 159

1a- Read-write (40% writes) 12- Write-dominated (90% writes)
1.34 N
A‘"'AH
1.2 ~ T«
" l;:15%1'l'i.";‘jﬁ‘;'3%::‘?@‘:%:3&‘._'_;:_i_-x_-_:x

Speedup (Single-thread no-STM)
Speedup (Single-thread no-STM)

2.7 +4m—/———mmm™—m———————————— 0.6 +—1—47—7m—7F"7"—"T"—"7""7"T"—"7—"7
1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Threads # Threads
Coarse =—f— Default --3-+ cArR -l ProPs «-/A\:-
Medium = Y= ATS —-F- Shrink <5~

Fig. 3. Speedup results relative to a sequential execution of the STMBench7 benchmark
with all structural modifications disabled, for each of the two workloads

should reduce the amount of wasted computation due to conflicting transactions,
and STMBench7 is known for having a highly conflicting workload. Yet, despite its
high abort rate, the Default approach extracts more parallelism from the bench-
mark with its optimistic approach, and, thus, it has better performance.

These results show that the performance issues caused by over-serialization
are specially bad in applications that execute large numbers of threads in a
mixed transactional workload where the size of transactions may vary greatly.

Furthermore, our results strongly indicate that the assumption behind most
pessimistic scheduling policies—that in high contention workloads transactions
that conflicted at least once in the past will always conflict with each other again
in the future—is usually wrong and, for that reason, schedulers need to take into
consideration the dynamic nature of transactions when deciding.

ProPS’s more optimistic approach to concurrency, coupled with fine-grained
information about the conflict probability between atomic operations, is able to
make better scheduling decisions, extract more parallelism from the benchmark,
and improve performance up to 35% in these two highly contented workloads.

Finally, despite the additional overhead imposed by the STM, the Flashback-
STM with ProPS outperforms locks and scales better on both workloads. Even
on the worst case scenario where 90% of transactions are read-write and may
read up to 1 million memory locations, ProPS is able to extract the benchmark’s
latent parallelism and scale up to 40 threads. In this very demanding workload,
medium-grained locks are only 10% faster with 48 threads than with 1 thread,
whereas ProPS with 48 threads executes 70% faster than with 1 thread and
surpasses the performance of medium-grained locks for 16 or more threads.

5.3 STAMP Benchmark Suite

STAMP has eight different applications but we limited our study to Genome
and Vacation as these applications represent two important execution scenarios:

160 H. Rito and J. Cachopo

Genome Vacation

4 1.84
s s
F3s i
[e] o
c c 1.4
g 7 3
o S 1.2
£ 254 £
@ 3 11
o 24 o
C C
& 5081
o 1.54 o

6 MR-l
3 ,306 o e
2 ' 204y
wn n
s o+
1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Threads # Threads

Default --3é-- ATS -F- cArR - Shrink =5— ProPs --/A\:-

Fig. 4. Speedup results for the Genome and the Vacation applications

Genome executes millions of short transactions (98% of read-write transactions
read less than 3 memory locations), whereas Vacation predominantly executes
long transactions that perform up to 7226 transactional reads. Each applica-
tion executed with the following parameters: For Genome, “-g 32768 -s 64 -n
667772167, and for Vacation, “-n 1800 -q 90 -u 90 -r 16384 -t 300000”.

Figure 4 shows the speedup results for the various schedulers. Once again,
ProPS consistently outperforms all other transaction schedulers.

Genome’s results highlight the usefulness of our scheduler in an application
that executes millions of micro transactions. ProPS is always as good or better
than all other schedulers, improving performance up to 40%. Yet, ProPS does
not scale past 24 threads and we believe that the cost of creating and terminating
a high number of short lived transactions justifies this performance plateau.

The Vacation benchmark reinforces the idea that current pessimistic sched-
ulers are not suitable for workloads with long transactions: Again, all pessimistic
schedulers perform significantly worse than Default. Most transactions in this
benchmark are long and, therefore, the decision to serialize any transaction that
would be able to execute without conflicting greatly hinders the performance of
the system. ATS, CAR, and Shrink use coarse-grained, conservative heuristics
that fail to predict the behavior of each individual transaction and end up se-
rializing almost all threads. ProPS, on the other hand, is the first transaction
scheduler to perform well on these types of workloads.

6 Conclusions

In this paper we proposed ProPS, a new transaction scheduler for STM systems
that gradually adapts the amount of concurrency in the application as trans-
actions abort and commit. When compared to other scheduling policies, our
new scheduling policy is fine-grained, because ProPS calculates C'L;; values for
each pair of atomic operations i and j, and is progressively pessimistic, because

ProPS: A Progressively Pessimistic Scheduler 161

rather than serializing all transactions when contention is high, ProPS gradually
reduces concurrency as C'L values decreases.

Experimental evaluation with the STMBench7 benchmark and the STAMP

benchmark suite demonstrated the usefulness of our novel scheduling policy as
ProPS was able to outperform and scale better than all other scheduling alter-
natives in a variety of workloads and applications. Unlike conservative solutions,
our less pessimistic approach to scheduling performs well in workloads with long
transactions and with a lot of latent parallelism.

References

10.

11.

12.

Cascaval, C., Blundell, C.; Michael, M., Cain, H., Wu, P.; Chiras, S., Chatterjee,
S.: Software transactional memory: Why is it only a research toy? Queue 6, 4658
(2008)

Dolev, S., Hendler, D., Suissa, A.: CAR-STM: Scheduling-based collision avoidance
and resolution for software transactional memory. In: Proceedings of the 27th ACM
Symposium on Principles of Distributed Computing, PODC 2008, pp. 125-134
(2008)

Dragojevié¢, A., Felber, P., Gramoli, V., Guerraoui, R.: Why STM can be more
than a research toy. Commun. ACM 54, 70-77 (2011)

Dragojevié, A., Guerraoui, R., Singh, A., Singh, V.: Preventing versus curing:
Avoiding conflicts in transactional memories. In: Proceedings of the 28th ACM
Symposium on Principles of Distributed Computing, PODC 2009, pp. 7-16 (2009)
Fernandes, S., Cachopo, J.: Lock-free and scalable multi-version software transac-
tional memory. In: Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP 2011, pp. 179-188. ACM (2011)
Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A benchmark for software
transactional memory. SIGOPS Oper. Syst. Rev. 41, 315-324 (2007)

McKenney, P., Michael, M., Triplett, J., Walpole, J.: Why the grass not be greener
on the other side: A comparison of locking vs. transactional memory. SIGOPS
Oper. Syst. Rev. 44, 93-101 (2010)

Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization, IISWC 2008, pp. 35-46. IEEE (2008)

Rito, H., Cachopo, J.: Memoization of methods using software transactional mem-
ory to track internal state dependencies. In: Proceedings of the 8th Interna-
tional Conference on the Principles and Practice of Programming in Java, PPPJ
2010(2010)

Rito, H., Cachopo, J.: FlashbackSTM: Improving STM performance by remember-
ing the past. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760,
pp. 266-267. Springer, Heidelberg (2013)

Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, PODC
1995, pp. 204-213. ACM (1995)

Yoo, R., Lee, H.: Adaptive transaction scheduling for transactional memory sys-
tems. In: Proceedings of the 20th Annual Symposium on Parallelism in Algorithms
and Architectures, SPAA 2008, pp. 169-178. ACM (2008)

	ProPS: A Progressively Pessimistic Scheduler for Software Transactional Memory

	1 Introduction
	2 Why We Need Better Transaction Scheduling
	3 A Progressively Pessimistic Scheduling Policy
	4 The ProPS Implementation
	5 Experimental Results
	5.1 STMBench7 Benchmark: Short Transactions
	5.2 STMBench7 Benchmark: Mixed Transactional Workload
	5.3 STAMP Benchmark Suite

	6 Conclusions
	References

