
A Queueing Theory Approach to Pareto

Optimal Bags-of-Tasks Scheduling on Clouds

Cosmin Dumitru1, Ana-Maria Oprescu1, Miroslav Živković1,
Rob van der Mei2, Paola Grosso1, and Cees de Laat1

1 System and Network Engineering Group,
University of Amsterdam (UvA),
Amsterdam, The Netherlands

C.Dumitru@uva.nl
2 Department of Stochastics,

Centre for Mathematics and Informatics (CWI),
Amsterdam, The Netherlands
R.D.van.der.Mei@cwi.nl

Abstract. Cloud hosting services offer computing resources which can
scale along with the needs of users. When access to data is limited by
the network capacity this scalability also becomes limited. To investigate
the impact of this limitation we focus on bags–of–tasks where task data
is stored outside the cloud and has to be transferred across the network
before task execution can commence. The existing bags–of–tasks esti-
mation tools are not able to provide accurate estimates in such a case.
We introduce a queuing–network inspired model which successfully mod-
els the limited network resources. Based on the Mean–Value Analysis of
this model we derive an efficient procedure that results in an estimate
of the makespan and the executions costs for a given configuration of
cloud virtual machines. We compare the calculated Pareto set with mea-
surements performed in a number of experiments for real–world bags–of–
tasks and validate the proposed model and the accuracy of the estimated
configurations.

1 Introduction

Bag–of–tasks (BoT) applications are common in science and engineering and
are composed of multiple independent tasks, which can be executed without any
ordering requirements. Therefore, the execution of a typical BoT application
can be parallelized. As the number of tasks within a particular BoT application
may be large, the application may also be computationally (i.e. resource) de-
manding. The execution parallelism and resource demanding properties of BoT
applications make them suitable for deployment and execution within the cloud
environment. Since the cloud environment has large (theoretically unlimited)
resources, the widely–adopted pay–as–you–use model implies the assignment of
budgets and/or execution deadlines. Characteristics of tasks, such as the running
time, are not given a priori, and therefore need to be estimated [12]. Taking into

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 162–173, 2014.
c© Springer International Publishing Switzerland 2014



A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 163

account the lack of prior knowledge of the tasks’ running times, this presents
the challenges for the resource management system with the conflicting goals of
minimizing the execution cost while meeting the total execution time deadlines.
In general, there are two types of BoT applications, namely compute–intensive
and data–intensive applications. We focus in this paper on data–intensive BoT
applications where each task requires the large–sized data to be available at the
location where data processing takes place before actual processing. In a typical
scenario involving such BoT applications, the Master (owned by the cloud user)
has a BoT, and each task is to be executed by one of the K Virtual Machines
(VMs), VM1, VM2, . . . , VMK . As the VMs are instantiated in the cloud and
become ready, they connect to the Master. When a VM connects (1) , the Master
randomly selects a task from a BoT, and assigns (2) it to the VM. In order to ac-
complish the assigned task, the VM has to retrieve the data of a–priori unknown
large size via Internet from a remote server (3), and during the retrieval process,
this VM may compete for the network and remote server resources with other
VMs. Naturally, the more VMs that compete for network and remote server re-
sources, the longer the retrieval time, and consequently, the larger the makespan.
Similarly, the larger the data to be retrieved, the longer the retrieval time and
the makespan. However, predicting by how much these factors will impact the
makespan remains a considerable challenge.

In this paper we analyze the significance of the data transfer performance
uncertainty to the makespan. This uncertainty further affects the accuracy of
the schedules presented to the user as (nearly) optimal. This is a consequence of
the approach in which state–of–the–art schedulers cannot identify the network
contention induced by a large number of VMs participating in an execution, or
large data transfers (or both). This leads to incomplete executions, or dramati-
cally violated makespan constraints. We derive a queueing–theory based model
that allows efficient investigation of the impact of data transfer to the makespan.
Based on the model and performed analysis, we derive the procedure that allows
efficient numerical derivation of the makespan, which further allows to calculate
the Pareto optimal solutions for execution costs and makespan.

– We derive and discuss a queueing–theory based model of the cloud system
used for the BoT applications. This model takes into account the data trans-
fer, and requires only the average size of the data set within the BoT. The
average size of the data may be estimated using well–known procedure for
estimating bags stochastic properties [12].

– We analyze the model using Mean–Value Analysis (MVA) [8] and develop
the simplified, yet efficient procedure that allows us to determine the data
retrieval time, and to estimate the makespan.

– We validate the proposed model against the traces of two different types of
real–world BoT applications executions on real–world clouds. In addition,
we use the MVA method to derive Pareto optimal configurations.

The paper is organized as follows: in Section 2 we describe the related work.
In Section 3 we describe the system model which accounts for the large data



164 C. Dumitru et al.

transfers. Further we analyse the proposed model using an MVA approach. Sec-
tion 4 discusses the results of the model validation, and illustrates the Pareto
front of the makespan in case of data–intensive BoT applications using the large
data sets. We present our conclusions in Section 5.

2 Related Work

This work is closely related to a number of topics: resource selection and schedul-
ing in clouds,performance prediction, and data-aware scheduling. In this section
we provide a short overview of related work.

Efficient resource scheduling with regard to minimizing makespan or other
objectives has been explored within the context of cluster, grid and cloud tech-
nologies. A common approach assumes full capacity information of available
resources and by employing various heuristics optimal schedules are obtained.
The majority of approaches just ignore the data access/transfer requirements
and expect that the network behaves as an infinite resource.

In [14] the authors consider network resources in the cloud resource selec-
tion phase, but they are performance constant, regardless of the workload. The
assumption made here is that input data is replicated across the available re-
sources. A genetic algorithm is used to obtain the Pareto frontier of combination
of resources that would lead to optimal schedules for a given workload.

The Budget Aware Task Scheduler (BaTS) [12] uses a stochastic approach to
determine the workload’s properties and uses the collected information to gener-
ate an approximated Pareto set of schedules suitable for the workload, along with
a predicted makespan [16]. While this system is efficient in predicting the behav-
ior of compute-intensive workloads, the potential impact of the limited network
resources on the makespan is ignored. The scheduler presented in [10] is able to
predict the execution time of more complex workloads, like DAG workflows and
it is data-aware, but it expects full information on tasks runtime including the
data transfer time. Moreover, this data transfer time does not change over time
with the addition of new, possibly different resources (scaling up).

When network resources are involved and data access becomes a bottleneck,
two popular approaches are taken. One optimizes based on data locality, that
is, jobs are scheduled on resources that are close to the data sources [7], [6]. An
orthogonal approach replicates data [11], such that the same data is stored at
multiple locations and compute jobs which require the same data can be spread
across the best available resources, thus lowering the chances of contention. Sys-
tems like Gfarm [15] and Hadoop [17] ensure that data is replicated system-wide
in order to avoid data access bottlenecks. The replication strategy and the num-
ber of replicas influences the performance of the system.

However, both approaches require either compute resources located conve-
niently close to the data or extra steps (and costs) to replicate the data before
the application starts. None of the approaches described above take into account
the changing data transfer time when predicting performance. Besides, to the
best of our knowledge, the queue–network models and Mean Value Analysis were
not used for the makespan calculation of data–intensive bags–of–tasks.



A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 165

3 System Model

In this section we introduce our model of the data–intensive BoT system previ-
ously described. First we describe the details of the observed system; then we
explain the queueing–theory based model of the system, and we end this section
by describing Mean Value Analysis of the given model.

One of the major assumptions for BoT systems is that all tasks from given
BoT are independent from one another, i.e. the tasks could be executed without
any ordering requirements. The assignment of a single task Ti from a total of
N BoT tasks to virtual machines is random, and we neglect the communication
overhead (for this assignment) between a particular virtual machine and the
master. There are in total K virtual machines, and once the task Ti is assigned
to VMk, k = 1, 2, . . . ,K, the virtual machine downloads the data from the data
storage. We note the random variable representing the download time of task Ti

as Td, and the expected value of task download time is noted by TD = E[Td].
Once the data corresponding to Ti has been downloaded by VMk, this virtual

machine immediately starts execution of the assigned task. When processing of
task Ti is completed, VMk requests new task assignment from the master. We
neglect the time that VM needs to store (i.e. upload) task’s output data to a
remote destination. As each VM in the system either downloads data or processes
the task, the number of tasks (jobs) allowed in the system is constant and equals
K. We note the compute rate of VMk by μk, and therefore the average time E[Sk]

a task has been served by VMk is given as E[Sk] =
1

μk
, k = 1, 2, . . . ,K.

Due to the fact that we neglect the upload data process as well as the com-
munication between master and VMs, our system can be modeled as the closed
queueing network. The VMs represent a queueing system where every new task
arrival experiences immediate service and does not wait – this system is modeled
as the one with infinite number of servers, of which at most K are used.

As single data storage is used for the data download, the download happens
over shared network resources. Therefore it could be modeled as single–server
Processor Sharing (PS) queue, in which the server download rate is μS . The PS
queue that models download process in our case could be either the Discrimi-
natory Processor Sharing (DPS) or Egalitarian Processor Sharing (EPS) queue.
This is due to the fact that download rate experienced by a VMk is limited by
the maximum download rate, μD

k , and these download rates may be different for
different VMs. When the number of download sessions is small, i.e. when the sum
of all the service demands at the server is below μS , we have DPS. Otherwise,
when the number of download sessions is large, the download process is modeled
as EPS. In the EPS model, each of the download tasks present in the system
obtain a fair share of the capacity. In such a case the download rate experienced
by VMk is µS

#dtasks . The data download rate for task Ti experienced by VMk is
given as the following:

μD
k if

#dtasks∑

l=1

μD
l ≤ μS and

μS

#dtasks
if

#dtasks∑

l=1

μD
l > μS (1)



166 C. Dumitru et al.

The model we presented can be considered as a closed BCMP queuing net-
work [4], i.e. there are multiple classes of the tasks as their processing rates
depend on the class of the task. This is due to the fact that a task is already
mapped to a VM of a certain type before it reaches the server. Next to it, the
download rates may differ, as given by equation 1. In order to calculate the
makespan, we need the expected time, E[T ] a task spends in the system. As
the data requests are generated only when the task assigned to VMk is com-
pleted, the expected time E[Tk] that tasks assigned to VMk spend in the sys-
tem, equals to the sum of the expected download time E[TD

k ], and the expected
service time i.e.:

E[Tk] = E[TD
k ] + E[Sk] = E[TD

k ] +
1

μk
k = 1, . . . ,K. (2)

The average download times E[TD
k ] are dependent on the number of download

tasks, and using equation 1 we have

E[TD
k ] =

⎧
⎪⎪⎨

⎪⎪⎩

1
µD
k

if
#dtasks∑

l=1

μD
l ≤ μS

E[#dtasks]
µS

if
#dtasks∑

l=1

μD
l > μS

(3)

In order to evaluate the expected number of download tasks E[#dtasks] from
equation 3 we would need the equilibrium state probabilities of our system.
While methods to obtain a product form for the equilibrium state probabilities
exist [5], they require computing all the states of the network and their complex-
ity increases with the number of nodes in the network. The computing of states
may take time, which impact the time required for the makespan calculation.
Besides, in order to calculate E[TD

k ] we need information about each task size. In
order to solve these two issues we derived an aggregated model, based on Mean
Value Analysis.

3.1 A Mean Value Analysis Approach

The first step in our approach is to transform the given model into the model in
which all virtual machines would have the same compute rate (μ̄k = μ̄) as well
as download rate (μ̄D

k = μ̄D). The second step is to analyse such model for tasks
of average size. This is the essence of the Mean Value Analysis (MVA) approach.

We model the VMs as the queueing system with the infinite number of servers,
of which at most K are used. The aggregated compute rate (μagg) of this system
remains the same,

μagg =

K∑

k=1

wkμk where wk =
μk∑K
k=1 μk

(4)

where wk represents the probability that some arbitrary task will be executed
on machine k in the non–aggregated system. The service rate of VMk is

μ̄ =
μagg

K
. (5)



A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 167

μ̄

μ̄

· · ·

μS

μ̄
n1 jobs

n2 jobs

μ̄D

μ̄D

μ̄D

Fig. 1. The aggregated model of the considered system

The similar reasoning holds for the aggregated download rate μD
agg , i.e.

μD
agg =

K∑

k=1

wkμ
D
k where wk =

μD
k∑K

k=1 μ
D
k

. (6)

The maximum download rate of VMk in this system is therefore

μ̄D =
μD
agg

K
. (7)

As in the original model, the actual data download rate is dependent on the
number of tasks that simultaneously access the data storage. The data download
rate is now equal for all virtual machines VMk, and let μS(j) be the service rate
of the data storage server when the number of download tasks #dtasks = j.
Using equation 7 we obtain the following expression for μS(j)

μS(j) =

{
μ̄D if j

K · μD
agg ≤ μS

µS

j if j
K · μD

agg > μS

(8)

Due to the aggregation process we can now calculate the stationary proba-
bilities of the system states. The system state is described as (n1, n2) where n1

represents the number of the tasks that are downloaded while n2 represents the
number of the tasks that are processed by (n2) VMs. It holds that n1+n2 = K,
and n1, n2 ≥ 0. Let π1(j|K) be the conditional probability that the number of
download tasks is j under condition that the total number of tasks in the net-
work isK. We define π2(j|K) accordingly. The mean service time experienced by
an arriving job at the data storage node (the average download time) is derived
using MVA for the single chain product form closed networks [8]. The MVA
analysis is based on two important results from the queuing theory: the arrival
theorem [13,8] and Little’s Law [9].

From the arrival theorem we obtain the expected download rate when there
are K tasks in the network as the following

E[TD(K)] =
K∑

j=1

π1(j − 1|K − 1)
j

μS(j)
(9)



168 C. Dumitru et al.

As VMs have the same compute rate, the expected service time is constant, i.e.

E[S] =
1

μagg
. (10)

The visit rate is defined as the mean number of visits made by a task at the
download server (vD) or aggregated virtual machines (vS). In our case, vD =
vS = 1

2 as the number of arrivals at the download server and the aggregated
virtual machines are the same. From Little’s Law we obtain the total system
arrival rate, i.e. throughput of the system with K jobs:

λ(K) =
K

vDE[TD(K)] + vSE[S]
=

K
1
2E[T

D(K)] + 1
2E[S]

. (11)

The queue length distribution at the download server is derived from

π1(j|K) =
v1 · λ(K)

μS(j)
π1(j − 1|K − 1), j = 1, . . .K. (12)

The probability of an empty queue is derived from

π1(0|K) = 1−
K∑

j=1

π1(j|K). (13)

Using recurrence formulae 9–13 we can derive E[TD(K)]. For a total of N tasks
within the BoT, the total makespan obtained using the MVA is

M =
N
K

E[TD(K)]+E[S]

. (14)

The computation complexity of the MVA-based estimation algorithm is O
(
K2

)

where K is the number of VMs. As in practice K is relatively small, the MVA
approach is well–suited to estimate the Pareto frontier of optimal configurations
for a given workload.

4 Evaluation and Discussion

We evaluate the accuracy of our MVA-based prediction procedure for data-
intensive bags–of–tasks using an experimental setup consisting of two real-world
applications and multiple cloud instance types. We also investigate the efficiency
of our MVA-based procedure when employed towards constructing Pareto fronts.

All experiments were performed using the Amazon EC2 [1] cloud region Ire-
land. The characteristics of the Amazon EC2 instance types used in our ex-
periments are presented in Table 1. The compute performance of each instance
consists of the number of virtual CPUs (vcpus) and their allocated shares, ECU
(EC2 Compute Unit), the equivalent of a 2007 AMD Opteron CPU. We chose
to focus on these three types because they exhibit different computation-to-
network-to-price ratios and therefore allow us to analyze the behavior of the
MVA-based procedure in different real-world scenarios. The storage server host-
ing the input data was located in the Netherlands. For instance reservation and
task execution we used the Budget- and Time-constrained Scheduler[12].



A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 169

Table 1. Amazon EC2 Instance Details

Type CPUs (ECU) Memory(GB) Network Cost($/h)
m1.s 1(1) 1.7 Low 0.047
m1.m 1(2) 3.75 Moderate 0.095
m1.l 2(4) 7.5 Moderate 0.190

Applications. We considered two image processing applications, each display-
ing a different compute-to-data ratio:OpenJpeg a JPEG2000 software encoder [3]
and a ImageMagick suite component, which compresses images to the JPEG for-
mat [2] and applies a sharpening filter. The input data used for our experiments
consisted in a subset of 7500 TIFF image frames in 4K resolution of the open
source movie Sintel. The average file size was 24.3 MB. For both applications, we
estimated the expected performance of each EC2 instance type (see Table 1) us-
ing BaTS’ sampling module. During the sampling procedure, we also performed
network bandwidth measurements to assess the storage server’s capacity. We
remark that, according to our sampling results, for the same input data, the
OpenJpeg application has a higher average execution time since the compression
algorithm used is more computationally-intensive.

Experiments. To evaluate the accuracy of our MVA-based prediction proce-
dure, we compare it against the data-oblivious prediction mechanism of BaTS,
referred to as ‘simple’, and against real executions (”exec”) of several scenarios
having the same input data (bag), but different cloud instance configurations:

1-1-1 consists in one instance of each type: m1.s, m1.m, m1.l
5-5-5 consists in five instances of each type: m1.s, m1.m, m1.l

10-10-10 consists in ten instances of each type: m1.s, m1.m, m1.l

Since real executions are subject to external noise (such as network traffic or
cloud instance performance variability), we repeat the execution of each scenario
three times and derive corresponding error bars to obtain the ‘exec’ makespans.

All results for both types of applications are collected in Figure 2. For each
configuration, we present the MVA-based makespan estimate, the ‘simple’
makespan estimate and the ‘exec’ makespan (with error bars). Each configu-
ration is labeled using the types and respective number of instances, in the
following format: type:no instances[+type:no instances[...]]. All execu-
tions were performed three times and the makespans averaged. The variance
of each execution was relatively low(0.10-0.20), especially for the ‘larger’ con-
figurations. In the case of ‘small’ (3 machines) configurations the variance is
slightly higher(0.20-0.25). We assume that this is due to both varying network
conditions and to the slight variability in performance of the instances. The
cloud provider is not able to provide a perfectly identical instance in terms of



170 C. Dumitru et al.

performance due to the shared environment. Also small configurations are more
sensitive to varying Internet conditions.

We selected these three configurations as they offer a good insight with re-
gard to the behavior of the MVA prediction method in the presence of varying
numbers and types of instances. The ‘1-1-1’ configuration has a low number of
instances and thus can be used to benchmark the behavior of both the MVA
and simple prediction methods. The ‘5-5-5’ configuration starts to encounter
contention at the storage server, especially in the case of the ImageMagick ap-
plication, which as previously mentioned, exhibits a lower compute-to-data ratio.
We already see here that the ‘simple’ estimation is no longer accurate enough.
The ‘10-10-10’ configuration manages to saturate the storage server in the case
of both applications. The MVA method is able to include the fact that the data
storage server has become the bottleneck. In all cases the MVA value is close to
the measured execution time. This shows that the simplification we have made
in our model, where all the different types of instances are aggregated and then
homogenized does not considerably affect the accuracy of the MVA method.

Fig. 2. Measured (exec), MVA Predicted and simple predicted makespans for three
configurations

We can now use this result to apply the MVA method to a real scenario in
which the user is faced with the task of selecting from a list of configurations,
which exhibit different performance and cost. We obtained the Pareto fronts
(PFs) of each application, using both the MVA-based and ‘simple’ estimates, as
shown in Figure 3. Each point in the graph represents an unique configuration
with its corresponding cost and makespan. The PFs were obtained by exhaus-
tively computing the makespan and budget estimates of all possible configura-
tions, considering a maximum of 10 instances per type, and then selecting the
non-dominated set of configuration, i.e. for a configuration from the Pareto Set
is . As the maximum number of instances and instance types increases, this ap-
proach becomes extremely slow (the total number of configurations grows expo-
nentially). However, here we focus on the efficiency of employing our MVA-based
method when constructing PFs and further usage of approximations algorithms
is beyond the scope of this paper. In the case of the PF of the ImageMagick ap-
plication we observe a ‘tipping point’, i.e. a point in the objective space where the



A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 171

speedup obtained by selecting a more expensive configurations starts decreas-
ing considerably. This is less visible in the case of the OpenJpeg application, as
the saturation point is not fully achieved not even in the case of the most ex-
pensive configuration. This is related, as previously mentioned, to the different
compute-to-data ratio of the application.

The ‘simple’ PF offers a set of configurations which, as empirically shown in
the first set of experiments does not represent the ‘true’ Pareto Front, due to the
naive method’s inaccuracy in the presence of network bottlenecks. By selecting
a configuration from this set, the user could potentially make inefficient use of
his budget.

Fig. 3. Pareto fronts for two application types: OpenJpeg and ImageMagick

To empirically evaluate the accuracy of each MVA-based Pareto front, we se-
lected for real execution four configurations: the global cheapest, the cheapest
from the group of very fast schedules, i.e. the ones at the right of the ‘tipping
point’, and two other configurations such that they equally divide the price in-
terval between the first two selected configurations. Figure 4 shows the execution
makespan (exec), the ‘simple’ makespan estimate and the MVA-based makespan
estimate for each configurations and for each application considered. Each con-
figuration was executed three times and Figure 4 presents the average over the
three executions together with the error. Again, we remark that the variance is
small, similar to that observed for the first presented experiments.

For all the configurations, the execution times, and both the MVA and simple
estimates are close to each other. This is due to the special properties held by
the schedules located on the Pareto front. These configurations make best use
of the available resources and inherently avoid contention; when contention is
reached, the configuration is less efficient with respect to cost and makespan
and therefore would not be present in the non-dominated set of configurations
(Pareto front).



172 C. Dumitru et al.

Fig. 4.Measured (exec), MVA-based and ‘simple’ predicted makespans for Pareto front
selected configurations

5 Conclusions and Future work

In this paper we have presented the theoretical model of a system which executes
data–intensive bags–of–tasks in a cloud computing environment with data access
bottlenecks. The empirical evaluation of the model shows promising results with
respect to makespan estimation for various combinations of cloud instances in
the presence of limited network resources. We showed how this method (MVA)
can be successfully applied to an existing scheduler to obtain Pareto fronts for
data–intensive bags–of–tasks workloads. The MVA procedure requires informa-
tion about the mean behavior of the system’s components and thus no other
statistical properties can be derived, besides means. While this can be seen as a
limitation of the prediction ability of our model, it makes it on the other hand
very robust and computationally efficient. As future work we plan to model the
system as a more complex queueing network, which would allow us to obtain
more properties of the system, such as service time distributions.

Funding has been provided by the Dutch national research program
COMMIT.

References

1. Amazon ec2 - amazon elastic compute cloud, https://aws.amazon.com/ec2/ (ac-
cessed: January 27, 2014)

2. Imagemagick: Convert, edit, or compose bitmap images,
http://www.imagemagick.org/ (accessed: Januray 27, 2014)

3. Openjpeg - jpeg2000 codec, http://www.openjpeg.org/ (accessed: January 27,
2014)

4. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed
networks of queues with different classes of customers. J. ACM 22(2), 248–260
(1975)

https://aws.amazon.com/ec2/
http://www.imagemagick.org/
http://www.openjpeg.org/


A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks 173

5. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley-Interscience, New York (1998)

6. Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E., Brasileiro, F., Sauve, J., Silva,
F.A.B., Barros, C., Silveira, C.: Running bag-of-tasks applications on computa-
tional grids: The mygrid approach. In: Proceedings of the 2003 International Con-
ference on Parallel Processing, 2003, pp. 407–416 (2003)

7. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-g: A compu-
tation management agent for multi-institutional grids. Cluster Computing 5(3),
237–246 (2002)

8. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press,
Inc., Orlando (1983)

9. Little, J.D.C.: A proof for the queuing formula: L = λ w. Operations Research 9(3),
383–387 (1961)

10. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage andAnalysis, SC 2011, p. 49:1–49:12.
ACM, New York (2011)

11. McClatchey, R., Anjum, A., Stockinger, H., Ali, A., Willers, I., Thomas, M.: Data
intensive and network aware (diana) grid scheduling. Journal of Grid Comput-
ing 5(1), 43–64 (2007)

12. Oprescu, A.-M., Kielmann, T., Leahu, H.: Budget estimation and control for bag-
of-tasks scheduling in clouds. Parallel Processing Letters 21(02), 219–243 (2011)

13. Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queuing net-
works. J. ACM 27(2), 313–322 (1980)

14. Taheri, J., Zomaya, A.Y., Siegel, H.J., Tari, Z.: Pareto frontier for job execution
and data transfer time in hybrid clouds. Future Generation Computer Systems
(2013)

15. Takefusa, A., Tatebe, O., Matsuoka, S., Morita, Y.: Performance analysis of
scheduling and replication algorithms on grid datafarm architecture for high-energy
physics applications. In: HPDC, vol. 3, p. 34 (2003)

16. Vintila, A., Oprescu, A.-M., Kielmann, T.: Fast (re-)configuration of mixed on-
demand and spot instance pools for high-throughput computing. In: Proceedings of
the First ACM Workshop on Optimization Techniques for Resources Management
in Clouds, ORMaCloud 2013, pp. 25–32. ACM, New York (2013)

17. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc. (2009)


	A Queueing Theory Approach to Pareto Optimal Bags-of-Tasks Scheduling on Clouds

	1 Introduction
	2 Related Work
	3 System Model

	3.1 A Mean Value Analysis Approach

	4 Evaluation and Discussion
	5 Conclusions and Future work
	References




