Automated Transformation of GPU-Specific
OpenCL Kernels Targeting Performance
Portability on Multi-Core/Many-Core CPUs*

Dafei Huang!?, Mei Wen!2, Changqing Xun'?, Dong Chen' 2, Xing Cai?,
Yuran Qiao™?2, Nan Wu?3, and Chunyuan Zhang!2

! Department of Computer, National University of Defense Technology
% State Key Laboratory of High Performance Computing,
Changsha, China
3 Simula Research Laboratory, Oslo, Norway
hdafei@acm.org

Abstract. When adapting GPU-specific OpenCL kernels to run on
multi-core/many-core CPUs, coarsening the thread granularity is
necessary and thus extensively used. However, locality concerns exposed
in GPU-specific OpenCL code are usually inherited without analysis,
which may give side-effects on the CPU performance. When executing
GPU-specific kernels on CPUs, local-memory arrays no longer match
well with the hardware and the associated synchronizations are costly.
To solve this dilemma, we actively analyze the memory access patterns
by using array-access descriptors derived from GPU-specific kernels,
which can thus be adapted for CPUs by removing all the unwanted
local-memory arrays together with the obsolete barrier statements.
Experiments show that the automated transformation can satisfactorily
improve OpenCL kernel performances on Sandy Bridge CPU and Intel’s
Many-Integrated-Core coprocessor.

Keywords: OpenCL, Performance portability, Multi-core/many-core
CPU, Code transformation and optimization.

1 Introduction

Heterogeneous computing systems, which incorporate two or more types of
compute devices, are nowadays widely available from supercomputers to smart
phones. A typical combination has been CPU plus GPU accelerator, while Intel’s
many-integrated-core (MIC) coprocessor is an increasingly popular choice of
accelerator, such as in the currently No.1 supercomputer of the world: Tianhe-2.
Programming, however, can be a challenge for using the heterogeneous devices
for computations. The common strategy is to program separately for each
type of the compute devices. Such a device-specific approach requires extensive

* Supported by the National Nature Science Foundation of China under No. 61033008,
61272145, and 61103080; 863 Program under No. 2012A A012706.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 210-221, 2014.
© Springer International Publishing Switzerland 2014

Automated Transformation of GPU-Specific OpenCL Kernels 211

programming effort, thereby difficult with respect to code maintenance and
portability. An ideal scenario is thus to have the same source code base for
multiple architectures, while maintaining a good level of performance portability.

OpenCL was designed with cross-platform code portability in mind. The
advantage of adopting OpenCL programming is thus that a unified source code
can work on different hardware architectures. On the other hand, however,
performance portability does not come for free with OpenCL. The majority of
existing OpenCL programs are GPU-specific, written with a bias or consensus
toward getting good performance through making use of a massive number of
threads, the round-robin instruction scheduling pattern, and the GPU-specific
memory hierarchy [4][14]. These GPU-specific implementations, when executed
directly on CPUs with heavy-weight cores, typically cannot achieve good
performance [10].

Code transformation can provide a GPU-specific OpenCL program with
performance portability to multi-core/many-core CPUs. A common technique
of transformation is to enforce a coarser thread granularity, using the so-called
work-item coalescing or serialization [12,13]. Moreover, work-items within a
work-group are a primary source of vector- and instruction-level parallelism, both
of which are typically exploited by a single CPU thread. However, the prior work
concerning OpenCL code transformation has largely neglected to incorporate
CPU-specific performance properties, such as spatial and temporal data
locality [6], or directly inherit data locality features from a GPU-specific OpenCL
kernel, often resulting in poor performance on CPUs [12,13]. What’s more, when
handling local memory and barriers, the existing code transformations have
mainly concentrated on functionality and semantics but not performance, and
without relevant analysis.

We will propose in this paper a new approach to transforming GPU-specific
OpenCL kernels into a high-performance form that suits multi-core/many-core
CPUs. It is based on a precise analysis of memory accesses, with help of a linear
array-access descriptor. The resulting code transformation can thus remove all
the unnecessary arrays that are allocated in OpenCL’s local memory. In addition,
all the unnecessary thread synchronizations are properly removed, instead of
blindly using the known technique of loop fission. Thereafter, a post optimizer
performs CPU-specific loop-level optimizations. The automatically transformed
OpenCL kernels can be effectively executed on the multi-core/many-core
architecture by using POSIX threads.

2 Related Work

There are many publications that address the challenge of adapting
OpenCL code for the multi-core/many-core architecture targeting performance
portability using code transformation, which directly translates GPU-specific
OpenCL code into another code fit for CPUs.

Previous research activities that implement OpenCL for CPU platforms
vary widely in the chosen approach to coalescing work-items and capturing

212 D. Huang et al.

SIMD parallelism. The Twin Peaks method [6] utilizes setjmp and longjmp to
merge fine-grain work-items into a single OS-thread, and performs vectorization
within a work-item, but does not explore inter work-item parallelism. Region
serialization methods [12,13] coalesce work-items by constructing thread loops
and performing loop fission to reproduce the similar functionality of inter
work-item synchronizations. They rely on an auto-vectorization technology
within loop iterations to exploit parallelism. Intel’s implementation of OpenCL
for x86, being the least explicitly disclosed or studied, directly targets SIMD
instructions and efficiently exploits vector-parallelism within a work-group [7].
None of the above implementations, however, handles data locality well enough,
since they just depend on if the locality exposed on the GPU-specific code is
suitable for the targeting CPU, so they may result in a strided access pattern by
executing one or more work-items as long as possible, instead of interleaving the
accesses of the work-items that can share the elements on one cache line. Stratton
et al. rely on CEAN expression to do a more advanced handling of spatial
locality [14]. Seo et al. adopt another approach from a different viewpoint [11], by
automatically adapting the work-group size for better performance on multi-core
CPU architecture.

No existing work can properly handle the issue of unnecessary use of local
memory and synchronization. The state of the art usually uses arrays in
OpenCL’s global memory (main memory as to CPU) to simulate the ones in
local memory, while ignoring the existence of caches on CPU. As for barriers,
the Twin Peaks method directly uses jump instructions to simulate the function,
which results in excessive overhead and breaks the locality in kernel code. Other
approaches fully depend on the technique of loop fission, which also results in
overhead of loop control instructions and variable extensions.

3 A Linear Descriptor of Array Access

An accurate identification of local and global memory access patterns is the key
to a high-quality transformation from GPU-specific kernels to the CPU-matching
counterparts. However, previously proposed descriptors of array access patterns
have been designed for the scenario of nested loops, or not accurate enough
to extract dependencies between work-items in the context of parallel SPMD
OpenCL kernels [3][5].

We propose a precise linear descriptor of array accesses, based on the
observation that most array accesses in a GPU-specific kernel can be expressed
linearly. For example, the only exception to linear array accesses that can be
found in Nvidia Computing SDK and the SHOC benchmark suite consists of
indirect array accesses.

For each array that is accessed in any loop within a GPU-specific OpenCL
kernel, our new array-access descriptor expresses the array index as a linear
subscript function of only initial variables, that is: the work-item/work-group
IDs, the loop induction variable, and the input arguments to the OpenCL kernel.
In addition, a set of linear constraints, i.e., equalities and inequalities, are derived

Automated Transformation of GPU-Specific OpenCL Kernels 213

__kernel void matrixMul(__global float* C, __global float* A, __global float* B,
__local float* As, __local float* Bs, int uiWA, int uiWB)

{
1 int aBegin = uiWA * BLOCK_SIZE * Gid.y;
2 int aEnd = aBegin + uiWA - 1;
3 int aStep = BLOCK_SIZE;
4 int bBegin = BLOCK_SIZE * Gid.x;
5 int bStep = BLOCK_SIZE * uiWB;

6 float Csub = 0.0f;
7 for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep)
8 { AS[Lid.x + Lid.y * BLOCK_SIZE] = Al[a + uiWA * Lid.y + Lid.x];

9 BS[Lid.x + Lid.y * BLOCK_SIZE] = B[b + uiWB * Lid.y + Lid.x];

10 barrier (CLK_LOCAL_MEM_FENCE) ;

11 for (int k = 0; k < BLOCK_SIZE; ++k)

12 Csub += AS[k + Lid.y*BLOCK_SIZE] * BS[Lid.x + k+BLOCK_SIZE];

13 barrier (CLK_LOCAL_MEM_FENCE); }

14 C[(Gid.y*GROUP_SIZE_Y+Lid.y)*GLOBAL_SIZE_X + (Gid.x*GROUP_SIZE_X+Lid.x)] = Csub;
}

Fig. 1. The original GPU-specific kernel of matrix multiplication

from the conditions of branches and loops to accurately pinpoint the range of
the array index. As an illustrating example, Figure 1 shows the OpenCL kernel
implementation of matrix multiplication, C = A x B, available from Nvidia GPU
Computing SDK. (It should be noted that some of the variables are renamed
for clarity, and Lid denotes the local work-item ID, whereas Gid denotes the
global work-group ID.) Within the outer loop of the kernel function there are
six different array accesses: write access to AS and read access to A on line 8,
write access to BS and read access to B on line 9, read access to both AS and BS
on line 12. Descriptors of the array accesses to AS and A (line 8,12) are listed
in Figure 2, where f denotes the linear subscript function, Constraint denotes
the set of linear constraints, and Iter,(r = a,b, k) represent the normalized
loop induction variables. For read access A[atuiWA*Lid.y+Lid.x], the linear

function is f4°2, derived by replacing a with its corresponding linear expression

without any intermediate variable. The Constraints’2¢ limits the ranges of the

variables in fzead, by combining loop conditions and intrinsic constraints on

work-group and work-item IDs.

fae*d = (uiWA x BLOCK SIZE x Gid.y + BLOCK SIZE x Itery) + wiW A x Lid.y + Lid.x
Constraint’¢® = {Iter, > 0; Iter, < uiW A/BLOCK SIZE; Gid.y > 0; Gid.y < GLOBAL SIZF;
Lid.xz > 0; Lid.x < BLOCK SIZE; Lid.y > 0; Lid.y < BLOCK SIZE}
fuEte = Lid.x + Lid.y x BLOCK SIZE
{Constramtf{g”e ={Lid.x > 0; Lid.x < BLOCK SIZE; Lid.y > 0; Lidy < BLOCK SIZE}

fred = Itery + Lid.y x BLOCK SIZE
Constraint’c§® = {Iter, > 0; Iter, < BLOCK SIZE; Lid.y > 0; Lid.y < BLOCK SIZE}

Fig. 2. Array access descriptors of accesses to AS and A in matrix multiplication

The derivation of a linear array-access descriptor, such as shown in Figure 2,
is fully automated by taking advantage of the Static Single Assignment in LLVM
infrastructure.

214 D. Huang et al.

4 Transforming GPU-Specific OpenCL Kernels

4.1 Analysis-Based Coalescing

Work-item coalescing (or serialization) aims to merge the work-items of an entire
work-group into a single CPU thread. The standard technique of coalescing is to
construct a nested thread loop, where the loop levels correspond to the dimension
of a work-group, the loop induction variables match the local work-item IDs, and
the loop body is the original GPU-specific kernel code. A complicating factor,
however, arises with thread synchronization. The state of the art is to adopt loop
fission wherever synchronization appears. An example can be found in Figure 3.

Kernel_ Name(Kernel Args...) Kernel_Name(Kernel _Args...)

Kernel _Body_1... for(Lid.z=0; Lid.z<GROUP_SIZE_Z; Lid.z++)

barrier(); for(Lid.y=0; Lid.y<GROUP_SIZE_Y; Lid.y++)

Kernel_Body_2. .. for(Lid.x=0; Lid.x<GROUP_SIZE_X; Lid.x++)
} { Kernel_Body_1... }

for(Lid.z=0; Lid.z<GROUP_SIZE_Z; Lid.z++)
for(Lid.y=0; Lid.y<GROUP_SIZE_Y; Lid.y++)
for(Lid.x=0; Lid.x<GROUP_SIZE_X; Lid.x++)
{ Kernel_Body_2... }

(a) Original kernel with barrier (b) Coaleced kernel using thread loop and loop fission
Fig. 3. Work-item coalescing by constructing thread loops

Considering the negative effects of blindly adopting loop fission, our remedy
is to adopt an accurate dependence analysis, based on the linear descriptor of
array accesses from Section 3, so that unnecessary thread synchronizations are
eliminated, thereby avoiding loop fission.

Another performance-critical factor, in connection with work-item coalescing,
is the use of OpenCL’s local memory. Local memory array emulated by a segment
of the slow main memory attached to a CPU may result in performance penalty,
due to unnecessary data copies and additional thread synchronizations. This
performance dilemma has received insufficient attention in the state of the art
of work-item coalescing. Our novel contribution is therefore to eliminate all the
unnecessary local-memory arrays during coalescing. This again will be based on
the precise analysis of memory access patterns.

Eliminating Unnecessary Local-Memory Arrays
The functionality of local memory usage in GPU-specific kernels can be classified
into three types:

1) Buffering: To improve temporal and spatial data locality within the kernel
code, newly accessed data that are to be reused are buffered in OpenCL’s
local memory, so that long-latency global memory accesses are replaced by
faster local memory accesses.

2) Reorganization: Data are loaded from OpenCL’s global memory and stored
in local memory using a different pattern, which allows coalesced memory
accesses and effectively avoids bank conflicts. A representative example is

Automated Transformation of GPU-Specific OpenCL Kernels 215

the transposed matrix multiplication (C' = A x AT) kernel [8], where tiles
of matrix A are loaded in rows but stored into columns of a local-memory
array.

3) Enabling communication and reducing computation: Intermediate results
of a work-item are stored in OpenCL’s local memory before another
work-item uses them. This type of usage not only reduces duplicated
computations among different work-items, but also enables inter work-item
communication.

On the multi-core/many-core architecture, functionality No. 3 also has to use
OpenCL’s local memory, thus work-item coalescing should not change this usage
of local memory. For functionality No. 2, although data copy overhead arises due
to the data reorganization, subsequent more efficient accesses to the reorganized
data may still draw overall performance benefits. Regarding functionality No. 1,
however, the usage of OpenCL’s local memory becomes obsolete because the
same effect can be achieved by the cache hierarchy on CPUs. Therefore, such
a usage of local memory should be eliminated during coalescing. This requires
an automated code analysis that can distinguish between the three usage types,
together with automated replacement of local-memory array accesses with the
corresponding global-memory array accesses.

Loads from local-memory arrays can be translated to direct global memory
loads, provided the following two conditions are both satisfied:

(1) For a pair of local array write and read, by examining their array access
descriptors, if some of the variables in the write descriptor are substituted
with the variables of the read descriptor, the two descriptors become identical
including the subscript functions and constraints.

(2) In this local array read-write pair, the write data is from a global memory
read, which can be checked by using a definition-use chain.

After replacing the local array read with its corresponding global array read.
The local array write will become dead code, and can be removed by compiler
afterwards. An example is the following local array read-write pair from Figure 2:

Constraintys't® = {Lid.x > 0; Lid.x < BLOCK SIZE; (4.1)

{ fYLi*e = Lid.x + Lid.y x BLOCK SIZE
Lid.y > 0; Lid.y < BLOCK SIZE}

Constraint’ed? = {Itery, > 0; Iter, < BLOCK SIZE; (4.2)

{ freed = Ttery + Lid.y x BLOCK SIZE
Lid.y > 0; Lid.y < BLOCK SIZE}

If we substitute Lid.z in (4.1) with Itery from (4.2), the two descriptors become
identical, which satisfies condition (1). Moreover, the write data of (4.1) is read
from global array A according to line 8 in Figure 1, which satisfies condition (2):

fred = (uiWA x BLOCK SIZE x Gid.y + BLOCK SIZE

(4.3)
XItery) + wiWA x Lid.y + Lid.x

216 D. Huang et al.

So a transformation from local memory load to direct global memory load is
legal, by performing the substitution of Lid.x with Itery in (4.3), and using it
to replace (4.2):

fasd = Itery + Lid.y x BLOCK SIZE =
fread = (wiWA x BLOCK SIZE x Gid.y + BLOCK SIZE (4.4)
XItery) + wiW A x Lid.y + Itery,

However, for local arrays with the data reorganization functionality, it is legal
but not performance-beneficial. So an intuitive or heuristic condition is induced
here to guarantee that a local array does not have the functionality of data
reorganization:

(3) Looking at the linear subscript functions of a local array write and its
respective global memory read, the variable Lid.x has the same coefficient
in the two functions (or that Lid.z does not exist).

For example, in formulas (4.1) and (4.3), Lid.z has coefficient 1 in both fy5i¢
and f7°%? and array accesses by (4.1) and (4.2) are the only accesses to local
array AS. By using the condition above, we can conclude that local array AS
does not have the functionality of data reorganization. By removing all the local
arrays that only have the functionality of data buffering, and replacing them
with direct accesses to global arrays, we can thus ensure good performance after
work-item coalescing. Lines 8,9,12 in Figure 5 (line numbers remain the same
as in Figure 1) shows the codes after eliminating the unnecessary local arrays
AS and BS.

Dependence Analysis and Synchronization Elimination
Synchronization elimination happens after the unnecessary local arrays, the main
source of synchronizations, are removed. However, we cannot simply delete all
the barriers, since these may serve other local arrays that are not removed, or
the synchronizations may use global memory. To check whether a barrier can
be safely eliminated, dependence analysis is needed. Here, dependence analysis
is very different from the typical scenario, because it is the dependence between
different work-items that we care about.

When performing dependence analysis for a certain barrier, we first divide
the kernel into basic blocks (barriers are also boundaries of the basic blocks).
Then we examine every pair of array accesses (one of the accesses must be a
write operation and both touch the same local or global array) that are located
separately in two basic blocks before and after the barrier. The process is shown
in Figure 4, where rectangles with dashed edge show the partitioning of basic
blocks with different control structures, and arrows show the basic blocks within
which array access pairs must be examined. The left part emphasizes that the
examinations are for different work-items. For each examination, we combine
the two descriptors of the access pair to form a linear Diophantine Inequation
System. If there is a solution to the inequation system where not all the three
pairs of local IDs are required to be equal, actual dependence exists and the
barrier cannot be removed.

Automated Transformation of GPU-Specific OpenCL Kernels 217

\

Work-item A Work-item B . Kernel Code Kernel Code Kernel Code

for/while() {

§ Basic Block... A i} Basic Block... |
Barrier() > Barrier()
| Basic Block... M Basic Block.. |

§ Basic Block..

Barrier()

}

Fig. 4. An illustration of dependence analysis

ary = (..., Lid.z, Lid.y, Lid.zx)

— —— T
f1 =Coe; -Var; + Const V—>
Constraint,

—— —— T

= . —
fo=Coez-Vare +Const on (| Lid.2, Lid.y', Lid.a') s
Constraints (4.5)

fi=f2
= { Constrainty

Constraints

Equation (4.5) shows the construction of an inequation system. The upper
part shows two descriptors to be examined (Coe denotes the vector of coefficients,
Var denotes the vector of variables, and Const denotes a constant), and the
lower part is the resultant system, generated by forcing the subscript functions
to be equal while the both constraints are satisfied. Note that each local ID is
no longer treated as the same variable in fi; and f>, so we use different names.
A barrier must be reserved if the inequation system has a solution without the
restriction {Lid.x = Lid.2’; Lid.y = Lid.y'; Lid.z = Lid.z'}.

By using the above dependence analysis, we can eliminate all the removable
barriers in a GPU-specific kernel, and then enclose the kernel body by a thread
loop. For non-removable barriers, loop fissions are inserted. Figure 5 shows the
matrix multiplication kernel after coalescing, where both the barriers in the
original kernel are eliminated.

for (int Lid.y=0 ; Lid.y<BLOCK_SIZE; Lid.y++)
for (int Lid.x=0 ; Lid.x<BLOCK_SIZE; Lid.x++) {

6 float Csub = 0.0f;

7 for (int Itera=0, Iterv=0; Itera<=uiWA/BLOCK_SIZE; Iterat++, Iterv++)

8,9 { //Dead Code

10 //Removed barrier (CLK_LOCAL_MEM_FENCE) ;

11 for(int Iterx=0; Iterx<BLOCK_SIZE; ++Iterx)

12 Csub += A[(uiWA*BLOCK_SIZE#Gid.y+BLOCK_SIZE*Itera)+uiWA*Lid.y+Iterk]
* B[(BLOCK_SIZE*Gid.x+BLOCK_SIZE*uiWB*Iters)+uiWB*Iterx+Lid.x];

13 //Removed barrier (CLK_LOCAL_MEM_FENCE); }

14 C[(Gid.y*GROUP_SIZE_Y+Lid.y)*GLOBAL_SIZE_X+(Gid.x*GROUP_SIZE_X+Lid.x)] = Csub;
}

Fig. 5. Code snippet of the matrix multiplication kernel after work-item coalescing

218 D. Huang et al.

4.2 Post Optimizations

After the synchronization elimination described in Section 4.1, there are two
unexploited CPU-specific performance properties of importance. The first is that
inter work-item parallelism is buried, leading to insufficient utilization of the
SIMD capability. The other is that loops in a coalesced code may be fused to
such a degree that gives poor CPU-specific data locality. Figure 6(a) shows
the unoptimized access sequences to arrays A and B, where iterative accesses to
array A go through the whole long row, and accesses to B go through the whole
column, resulting in successive cache misses. Furthermore, no SIMD parallelism

is exploited.

I Vectorized ...

4 000 /|
A B /, ! A = -
Loop 16 times. ; ’/ | ’/ E | | /’v —] i I\
————————— — i e e roadcaste Loop16/ | ||| [i[]. | ||toop16
——— — (AN I T 2 o PR =) | jEE——) times | . || times
e T e e NN I | moR P == ,‘f == \
— wopae | 11] ! B || e | ey SRR
op e) e 2 . . g tblock
times. : : | : = m I : V. H * g =
N TEesea X i I
- = O L I 0| N (O R L SN \
Ve 8 K $) i)
\ t = Eem ===
"BLOCK SIZE=16 ' BLOCK_SIZE=16 i \ w Loop 2 times Loop 2 times J
\ \ &
| 5

"
~ GLOBAL_SIZE=8000 [T PR & 4

(a) (b)

Fig. 6. Different access sequences to arrays A and B

We adopt two post optimizations of the coalesced code. They are combinations
of traditional loop-level optimizations, but of vital effects on final performance.

Vectorization: The best loop level for performing vectorization should be that
with induction variable Lid.x. This is because the coalesced memory accesses of
a GPU-specific kernel often result in sequential and short-stride memory accesses
across that loop level. So loop-interchange is firstly performed before ordinary
vectorization so that Lid.x-loop becomes the innermost. The resultant effect as
shown in Figure 6(b) is that, each scalar element of A is expanded into a vector,
and each set of eight adjacent accesses to B is vectorized to produce a new vector.
Then computational operations are fully vectorized so that the works of eight
work-items are accomplished simultaneously.

Data locality re-exploitation: Our process of data locality re-exploitation
has two steps, blocking of long non-thread-loops and loop interchange. As the
result shown in Figure 6(b), the iterative array accesses are restricted in small
blocks, so that the CPU cache can play a very good role.

The code snippet as the final output of the kernel transformation targeting
the Sandy Bridge architecture can be found in Figure 7.

5 Performance Evaluation

We have implemented a fully automated tool chain that performs kernel
transformation based on the Clang compiler front end and the LLVM compiler

Automated Transformation of GPU-Specific OpenCL Kernels 219

for(int Itera=0, Iterv=0; Itera<=uiWA/BLOCK_SIZE; Itera++, Itern++)
for(int vLid.x=0; vLid.x<BLOCK_SIZE/8; vLid.x++)
for(int Lid.y=0; Lid.y<BLOCK_SIZE; Lid.y++)
for(int Iterx=0; Iterx<BLOCK_SIZE; ++Iterk)
Csub[Lid.y] [vLid.x]= vec_float8_add(Csubl[Lid.y] [vLid.x],
vec_float8_mult(
vec_float8_broadcast (A[(uiWA*BLOCK_SIZE*

Gid.y+BLOCK_SIZE*Itera)+uiWA*Lid.y+Iterx]), //broadcast
vec_float8_load (B+BLOCK_SIZE*Gid.x+BLOCK_SIZE*uiWB*Iterv+
uiWB*Iterx+vLid.x*8) //load
)) //mult, add

Fig. 7. Final code snippet of the transformed matrix multiplication kernel

infrastructure [2]. The tool chain transforms a GPU-specific OpenCL kernel
into a function, whose input arguments include the original ones from the
GPU-specific kernel plus a set of work-group IDs. The vector operations are
enabled by using Intel intrinsics. Each call to this function is equivalent with
executing a corresponding work-group.

To run an entire OpenCL program that has both host and kernel code, the
kernel transformation tool chain is integrated into an open source OpenCL
implementation called FreeOCL [1], where POSIX threads are used to execute
work-groups concurrently.

Experiments are carried out on two hardware platforms: (1) two Intel Xeon
E5-2650 eight-core CPUs that have 16 physical cores together, as a typical
multi-core CPU, (2) an Intel Xeon Phi 5110p coprocessor with 60 physical
cores, as an emerging many-core CPU. The new OpenCL implementation,
including our automated kernel transformation tool chain (denoted by OurOCL),
is compared against the OpenCL implementation from Intel SDK for OpenCL
Applications 2013, which is the official OpenCL runtime provided by Intel
(denoted by IntelOCL).

Six kernels are used as the benchmarks. They cover a wide range of
computational intensities and intrinsic memory localities. The first five kernels
are optimized for running on GPUs so that they are well GPU-specific, where
Stencil2D comes from SHOC and the remaining four kernels are from Nvidia
GPU Computing SDK. The sixth kernel, NaiveMatrixMul, is the baseline
matrix multiplication from [9], which is not so GPU-specific, and can show the
potentiality of our method when few optimization features can be inherited.

IntelOCL is usually the most powerful commercial OpenCL runtime on Intel
platforms, so we compare running the kernels via OurOCL, where kernels will
be auto-transformed before execution, against running the same kernels via
IntelOCL. When running the benchmarks, only the kernel execution times are
recorded. Table 1 shows all the speedups of kernel executions relative to the
CPU+IntelOCL configuration. The table indicates that OurOCL can improve
the performance of GPU-specific kernels on multi-core CPUs by an average factor
of 3.24x, not including the NaiveMatrixMul kernel. The average performance
improvement of MIC+OurOCL over MIC+IntelOCL is 2.06x (3.53x/1.71x).

220 D. Huang et al.

Table 1. Performance comparison with Intel OpenCL implementation and OpenMP

CPU + CPU + CPU + MIC + MIC + MIC +

Kernel name Sl telOCL OwrOCL ~ OMP IntelOCL OurOCL ~ OMP
oclMatrixMul 8000 x 8000 1 3.02 0.37 1.94 3.95 3.74
320% 320 x 320
oclFDTD3d Radius=16 1 6.02 2.20 2.22 5.88 4.13
Timestep=>5
. 4096 x 4096 .

Stencil2D 1000 iters 1 2.53 1.16 1.83 2.42 1.95
oclDCT8x8 10240 x 10240 1 3.42 2.27 1.43 4.17 4.52
oclNbody 327680 1 1.20 0.74 1.13 1.24 1.38
«NaiveMatrixMul 8000 x 8000 1 33.48 4.10 4.55 43.76 41.43
Average (except NaiveMatrixMul) 1 3.24 1.35 1.71 3.53 3.14

IntelOCL is very good at utilizing the inter-work-group and inter-work-item
parallelism by using the multiple cores and SIMD units. But its synchronization
overhead is experimentally found to be somewhere between that of the
region-based methods and the Twin Peaks method [14]. So the performance
boost of OurOCL should be mainly attributed to the elimination of barriers
and local-memory arrays, and partly the locality re-exploitation. The oclNbody
kernel gets the minimum performance improvements on both platforms, because
it is the most compute-intensive. The overheads induced by barriers and
redundant memory copies only account for a small part of the kernel execution
time. As for the two stencil computation kernels: oclFDTD3d and Stencil2D,
improvements on MIC are much lower than those on CPU. This is because only a
small portion of the execution time is used for computation as the two kernels are
highly memory-intensive, so MIC can hardly show its superior parallel capability.
The intensity of memory accesses also results in the slightly lower performances
on MIC than those on CPU. On the other hand, the NaiveMatrixMul kernel
obtains huge performance boosts because of both overhead removal and data
locality improvement.

Performances of corresponding OpenMP implementations are also presented.
The OpenMP implementations are based on the serial host implementations
that can be found in every adopted benchmark, by properly adding OpenMP
directives. (Execution of the OpenMP implementations on MIC uses the native
mode.) We note that multi-core/many-core specific optimizations were already
performed in some of the host implementations such as ocIDCT8x8, and the
icc can also automatically carry out various optimizations. Generally, improved
OpenCL performances on both CPU and MIC are comparable with or even
better than the OpenMP implementations. This shows that our automated code
transformation can indeed greatly enhance performance portability.

6 Conclusion

To improve the performance portability of OpenCL programs from GPUs
to CPUs, code transformation is widely accepted. This paper presents a
novel transformation methodology for GPU-specific OpenCL kernels targeting

Automated Transformation of GPU-Specific OpenCL Kernels 221

performance portability on multi-core/many-core CPUs, aiming at solving the
potential problems induced by using local-memory arrays on CPUs, including
redundant data copies and the accompanying costly synchronizations. A new
array-access descriptor that can accurately uncover the array access patterns of
OpenCL work-items lays the foundation of our work.

Experiments are done on Sandy Bridge CPU and Knights Corner MIC,

which show that, for GPU-specific kernels, our new OpenCL implementation
outperforms the powerful Intel OpenCL runtime on both platforms.

References

1.

2.
3.

11.

12.

13.

14.

FreeOCL: multi-platform implementation of OpenCL 1.2 targeting CPUs,
https://code.google.com/p/freeocl/

The LLVM compiler infrastructure, http://11vm.org/

Balasundaram, V., Kennedy, K.: A technique for summarizing data access and its
use in parallelism enhancing transformations. In: SIGPLAN 1989 Conference on
Programming Language Design and Implementation, Portland, USA, pp. 41-53
1989

I(Baska)ran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: A compiler framework for optimization of affine loop nests for
GPGPUs. In: 22nd International Conference on Supercomputing, Island of Kos,
Greece, pp. 225-234 (June 2008)

Bastoul, C.: Code generation in the polyhedral model is easier than you think.
In: 13th International Conference on Parallel Architectures and Compilation
Techniques, Antibes Juan-les-Pins, France, pp. 7-16 (September 2004)
Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R.,
Zheng, B.: Twin peaks: A software platform for heterogeneous computing on
general-purpose and graphics processors. In: 19th International Conference on
Parallel Architectures and Compilation Techniques, Vienna, Austria, pp. 205-216
(September 2010)

Intel Corporation: Intel SDK for OpenCL Applications XE 2013 Optimization
Guide (2013)

Nvidia: OpenCL Best Practices Guide (February 2011)

Nvidia: OpenCL Programming Guide for the CUDA Architecture (February 2011)

. Pennycook, S., Hammond, S., Wright, S., Herdman, J., Miller, I., Jarvis, S.A.: An

investigation of the performance portability of OpenCL. Journal of Parallel and
Distributed Computing 73(11), 1439-1450 (2013)

Seo, S., Lee, J., Jo, G., Lee, J.: Automatic OpenCL work-group size selection for
multicore CPUs. In: 22nd International Conference on Parallel Architectures and
Compilation Techniques, Edinburgh, UK (September 2013)

Stratton, J.A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., Hwu,
W.M.W.: Efficient compilation of fine-grained SPMD threaded programs for
multicore CPUs. In: 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, Toronto, Canada, pp. 111-119 (April 2010)
Stratton, J.A., Stone, S.S., Hwu, W. M.W.: MCUDA: An effective implementation
of CUDA kernels for multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16-30. Springer, Heidelberg (2008)

Stratton, J.A., Kim, H.S., Jablin, T.B., Hwu, W.M.W.: Performance portability
in accelerated parallel kernels. Tech. Rep. IMPACT-13-01, University of Illinois at
Urbana-Champaign (May 2013)

https://code.google.com/p/freeocl/
http://llvm.org/

	Automated Transformation of GPU-Specific OpenCL Kernels Targeting Performance Portability on Multi-Core/Many-Core CPUs

	1 Introduction
	2 Related Work
	3 A Linear Descriptor of Array Access
	4 Transforming GPU-Specific OpenCL Kernels
	4.1 Analysis-Based Coalescing
	4.2 Post Optimizations

	5 Performance Evaluation
	6 Conclusion
	References

