
Can Inter-VM Shmem Benefit MPI Applications
on SR-IOV Based Virtualized Infiniband Clusters?�

Jie Zhang, Xiaoyi Lu, Jithin Jose, Rong Shi, and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering,
The Ohio State University

{zhanjie,luxi,jose,shir,panda}@cse.ohio-state.edu

Abstract. Single Root I/O Virtualization (SR-IOV) technology has been intro-
duced for high-performance interconnects such as InfiniBand. Recent studies
mainly focus on performance characteristics of high-performance communica-
tion middleware (e.g. MPI) and applications on SR-IOV enabled HPC clus-
ters. However, current SR-IOV based MPI applications do not take advantage
of the locality-aware communication on intra-host inter-VM environment. Al-
though Inter-VM Shared Memory (IVShmem) has been proven to support ef-
ficient locality-aware communication, the performance benefits of IVShmem for
MPI libraries on virtualized environments are yet to be explored. In this paper, we
present a comprehensive performance evaluation for IVShmem backed MPI us-
ing micro-benchmarks and HPC applications. The performance evaluations show
that, through IVShmem, the performance of MPI point-to-point and collective op-
erations can be improved up to 193% and 91%, respectively. The application per-
formance can be improved up to 96%, compared to SR-IOV. The results further
show that IVShmem just brings minor overhead compared to native environment.

Keywords: IVShmem, SR-IOV, Virtualization, MPI, InfiniBand.

1 Introduction

Distributed computing infrastructures are becoming increasingly virtualized, owing to
the ease of system management and administration. They provide desirable features
to meet demanding requirements of computing resources in modern computing sys-
tems, including server consolidation, performance isolation and ease of management,
along with guaranteeing security, and live migration [21]. Virtual Machine (VM) tech-
nologies have already been widely adopted in industry computing environments, es-
pecially data-centers. For instance, data-center providers, Amazon’s Elastic Compute
Cloud (EC2) [1], rely on virtualization to consolidate computational resources for ap-
plications from different customers, with required Quality of Service guarantees on the
same underlying hardware. Even though virtualization has gained significant momen-
tum in the enterprise computing domain, its adoption in the High Performance Comput-
ing (HPC) domain remains lower. One of the biggest hurdles in realizing this objective
comes from lower performance of virtualized I/O devices, offered by virtualized com-
puting environments [13]. The performance of virtualized I/O devices is likely to be
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the key driver in the adoption of virtualized cloud computing systems in HPC domains.
High performance MPI libraries such as MVAPICH2 [19], OpenMPI [20], can provide
sub-microsecond latencies. However, realizing such performance in virtualized envi-
ronment is still a challenge.

The recently introduced Single Root I/O Virtualization (SR-IOV) [23] offers an at-
tractive alternative for virtualizing I/O devices, when compared to existing software-
based virtualization techniques. According to the SR-IOV specification, a PCIe device
can present itself as multiple virtual devices and each virtual device can be dedicated to
a single VM. Our earlier study [13] indicates that SR-IOV can attain near to native per-
formance for inter-node point to point communication, at the MPI level. However, one
of the main drawbacks of SR-IOV is that it does not support VM locality aware com-
munication. Thus, inter-VM communications within the node also have to go through
SR-IOV channel, leading to performance overheads. On the other hand, VM communi-
cation schemes such as Inter-VM shared memory (IVShmem) [16], offer shared mem-
ory backed communication for VMs within a single host. Consequently, we carry out
a primitive-level experiment using Perftest-1.2.3 [2], as shown in Figure 1. The experi-
ment compares the primitive level latencies between SR-IOV based IB communication
and shared memory communication, and underscore the performance overheads. For
64 bytes message size, the latencies observed are 0.96 and 0.20 µs, for SR-IOV(IB-
Send) and IVShmem, respectively. These performance overheads motivate this study,
to explore whether IVShmem scheme can benefit MPI communication within a node
on SR-IOV enabled InfiniBand clusters.
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Fig. 1. Primitive-Level Latency Comparison be-
tween SR-IOV enabled IB and IVShmem

In this paper, we study the perfor-
mance characteristics of IVShmem and
explore its applicability in VM local-
ity aware communication for MPI li-
braries on SR-IOV enabled InfiniBand
clusters. We propose a high performance
prototype design of MPI library, for
intra-host inter-VM communication us-
ing IVShmem. Then we conduct a com-
prehensive performance evaluation using
micro-benchmarks and HPC applica-
tions. The evaluation results indicate that
IVShmem scheme has big potential to
benefit intra-host inter-VM communication on SR-IOV enabled InfiniBand clusters.
This paper mainly focuses on evaluating the performance improvement potential of
IVShmem backed MPI communication, on SR-IOV based InfiniBand clusters. We make
the following key contributions as part of this paper:

1. Identify the performance overheads associated with SR-IOV for intra-host inter-
VM communication

2. Detailed performance evaluations of IVShmem, and exploring its performance im-
provement potential for VM locality aware communication

3. Performance analysis and scalability evaluations of IVShmem backed MPI library
using micro-benchmarks and HPC applications
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4. Performance comparisons between IVShmem backed and native mode MPI li-
braries, using HPC applications

The evaluation results indicate that IVShmem can improve point to point and collective
operations by up to 193% and 91%, respectively. The application execution time can be
decreased by up to 96%, compared to SR-IOV. The results further show that IVShmem
just brings small overheads, compared with native environment.

The rest of the paper is organized as follows. Section 2 provides an overview of
IVShmem, SR-IOV, and InfiniBand. Section 3 describes our prototype design and eval-
uation methodology. Section 4 presents the performance analysis results using micro-
benchmarks and applications, scalability results, and comparison with native mode. We
discuss the related work in Section 5, and conclude in Section 6.

2 Background

Inter-VM Shared Memory (IVShmem) (e.g. Nahanni) [16] provides zero-copy access
to data on shared memory of co-resident VMs on KVM platform. IVShmem is designed
and implemented mainly in system calls layer and its interfaces are visible to user space
applications as well. As shown in Figure 2(a), IVShmem contains three components:
the guest kernel driver, the modified QEMU supporting PCI device, and the POSIX
shared memory region on the host OS. The shared memory region is allocated by host
POSIX operations and mapped to QEMU process address space. The mapped memory
in QEMU can be used by guest applications by being remapped to user space in guest
VMs. Evaluation results illustrate that both micro-benchmarks and HPC applications
can achieve better performance with IVShmem support.
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Fig. 2. Overview of Inter-VM Shmem and SR-IOV Communication Mechanisms

Single Root I/O Virtualization (SR-IOV) is a PCI Express (PCIe) standard which
specifies the native I/O virtualization capabilities in PCIe adapters. As shown in Fig-
ure 2(b), SR-IOV allows a single physical device, or a Physical Function (PF), to present
itself as multiple virtual devices, or Virtual Functions (VFs). Each virtual device can be
dedicated to a single VM through the PCI pass-through, which allows each VM to di-
rectly access the corresponding VF. Hence, SR-IOV is a hardware-based approach to



Can Inter-VM Shmem Benefit MPI Applications on SR-IOV 345

implement I/O virtualization. Furthermore, VFs are designed based on the existing non-
virtualized PFs. Therefore, the drivers of the current adapters can also be used to drive
the VFs in a portable manner.

InfiniBand [12] is an industry standard switched fabric designed for interconnecting
nodes in HPC clusters. The TOP500 rankings released in November 2013 indicate that
more than 41% of the computing systems use InfiniBand as their primary high perfor-
mance interconnect.

3 Prototype Design and Evaluation Methodology

In this section, we first propose the prototype design for IVShmem based MPI commu-
nication and then discuss various dimensions for evaluating the performance impact of
IVShmem for intra-host inter-VM communication on SR-IOV based InfiniBand clus-
ters. The results of evaluation for each dimension are described in Section 4.

3.1 Prototype Design

As introduced in Section 2, SR-IOV and IVShmem are two different mechanisms that
can be used for intra-host inter-VM communication. To better illustrate, the two inter-
VM communication schemes are presented in Figure 3(a). For SR-IOV scheme, which
is shown in the solid line, each VM is configured with a dedicated Virtual Function, so
that an MPI process in Guest-1 can communicate with another MPI process in Guest-2
without concerning whether Guest-2 is co-located with Guest-1 in a same physical node
or not. This does not deliver the best approach to high performance communication. In
order to take advantage of shared memory between VMs co-located in a given host,
guest VMs need to detect which VMs are co-located with themselves, so that they can
map the same memory region into their own memory spaces. Based on what we dis-
cussed in Section 2, IVShmem provides a mechanism to expose a host memory region
to all co-resident VMs as virtual PCI devices. And finally, this memory region can be
mapped to user spaces of guest systems. We implement a prototype MPI library by uti-
lizing IVShmem. Therefore, the communication between co-resident VMs can happen
along the IVShmem channel as shown in the dashed line in Figure 3(a), instead of the
SR-IOV channel, as shown in the solid line.

3.2 Evaluation Dimensions

We follow a five-pronged approach to evaluate the performance improvement poten-
tial of IVShmem for intra-host inter-VM communication on SR-IOV based InfiniBand
clusters, as shown in Figure 3(b).

Point to Point Communication: Point to point communication is a basic commu-
nication scheme in MPI communication. On virtualized environments with SR-IOV
support, our earlier studies [13] showed related performance evaluations. In this paper,
we mainly evaluate the performance improvement potential of IVShmem for point to
point communication including both two-sided and one-sided operations.

Collective Communication: Collective communication is an important and fre-
quently used communication scheme of MPI. However, current SR-IOV solution does
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Fig. 3. Inter-VM Communication Channels and Evaluation Dimensions

not take advantage of the locality aware collective communication on intra-host inter-
VM environment, which leads to performance overhead. Therefore, we evaluate the
performance improvement potential of IVShmem for four widely used collective oper-
ations across VMs on a single node in this paper.

Application Execution Time: MPI has established itself as the de-facto standard
of programming model for HPC applications. Clearly, the performance of MPI libraries
will significantly impact the execution time of these HPC applications. Thus, we choose
five representative HPC applications (as shown in Table 1) to evaluate the performance
benefits of IVShmem.

Table 1. Representative HPC Applications for Evaluation

Name Description
P3DFFT Parallel Three-Dimensional Fast Fourier Transforms, dubbed P3DFFT [5], is a library for large-scale com-

puter simulations in a wide range of sciences, such as physics, climatology and chemistry.
HPL High Performance Linpack (HPL) is the parallel implementation of Linpack [7] and the performance mea-

sure for ranking the computer systems of the Top 500 supercomputer list.
LAMMPS LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator [22]. It is a classical

molecular dynamics simulator from Sandia National Laboratory.
Graph500 Graph500 [24] is one of the representative benchmarks of Data intensive supercomputer applications. It

exhibits highly irregular communication pattern.
NAS NAS [3] contains a set of benchmarks which are derived from the computing kernels, which is common

on Computational Fluid Dynamics (CFD) applications. These represent the class of regular iterative HPC
applications.

Virtual Machine Scalability: As the emergence of virtualization technology, we
can achieve easier system management and performance isolation. However, the per-
formance characteristics might vary significantly as the number of VMs increase. This
paper evaluates the performance impact of IVShmem scheme by adjusting the number
of VMs within a physical node in SR-IOV enabled InfiniBand clusters.

Performance Overhead: Earlier studies indicate that high performance VM envi-
ronments are able to achieve low cost of CPU and memory virtualization [25]. I/O
virtualization, however, leads to longer I/O latency, since I/O devices are usually shared
by multiple VMs within a host. In this paper, we evaluate the performance overheads of
SR-IOV and IVShmem compared to native environment.
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4 Performance Evaluation

In this section, we describe our experimental testbed and discuss our evaluation of two-
sided and one-sided point to point, collective operations, and HPC applications. Since
this paper focuses on performance evaluation of IVShmem scheme on InfiniBand clus-
ters with SR-IOV support, we use one node with multiple cores for evaluation.

4.1 Experiment Setup

Our testbed is an InfiniBand cluster, where each node has dual 8-core 2.6 GHz Intel
Xeon E5-2670 (Sandy Bridge) processors with 20MB L3 shared cache, 32 GB main
memory and equipped with Mellanox ConnectX-3 FDR (56 Gbps) HCAs with PCI
Express Gen3 interfaces. We use RedHat Enterprise Linux Server release 6.4 (Santiago)
with kernel 2.6.32-279.19.1.el6.x86 64 as the host OS.

We use the Mellanox OpenFabrics Enterprise Distribution MLNX OFED LINUX
2.1-1.0.0 to provide the InfiniBand interface with SR-IOV support and KVM as the
Virtual Machine Monitor (VMM). Each VM is pinned to a single core and has 1.5 GB
main memory. The OS used in each VM is RedHat Enterprise Linux Server release 6.4
(Santiago) with kernel 2.6.32-131.0.15.el6.x86 64.

All applications and libraries used in this study are compiled with gcc 4.4.6 com-
piler. All MPI communication performance experiments use MVAPICH2 2.0rc1 and
OSU Micro-Benchmarks. Experimental results are averaged by 5 runs to ensure fair
comparison. Our tests are conducted with different numbers of VMs on one node, 8 for
power of two case, and 15 for full-subscribed case (while reserving one core for host
OS).
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Fig. 5. One-sided Point-to-Point Performance

4.2 Point to Point Communication Performance

In this section, we evaluate the MPI level point to point performance for intra-node
inter-VM communication in terms of latency and bandwidth. Figure 4(a) and Fig-
ure 4(b) show the two-sided point to point latencies of small and large message sizes,
respectively. We can observe that, IVShmem based MPI library achieves lower latency
for both small and large message sizes, compared to the SR-IOV. For example, the la-
tency of SR-IOV is 1.2µs, while it is 0.22µs for IVShmem at 4 bytes message size.
The experimental results indicate that the latency based on IVShmem can be decreased
up to 82%, compared to that of SR-IOV. With respect to point to point bandwidth, we
can see from Figure 4(c) that IVShmem can significantly improve the bandwidth for
various message size ranging from 1 byte to 4 MB. The improvement is up to 158%.
The peak bandwidth that IVShmem can achieve is near to 10 GB per sec, while it is
around 6 GB per sec for SR-IOV. We also evaluate the performance gains that comes
from using shared memory instead of InfiniBand for intra-node communication in na-
tive environment. Compared to not using shared memory (w/o shm), the performance of
native MPI can be improved by enabling shared memory (w shm) up to 77% and 191%
in terms of latency and bandwidth. From these, we can see that the performance gains
of using IVShmem instead of SR-IOV for intra-node communication in the virtualized
environment matches the gains that we observed in the native environment here.

Another important point we can observe is that IVShmem attains near to native per-
formance in terms of latency and bandwidth. The latency overheads compared to native
performance are 3%-5% at small message sizes. For example, the latencies for IVSh-
mem and native at 256 bytes message size are 0.35µs and 0.34µs, respectively. The
overhead is only 3%. We also present the evaluation results of multi-pair latency (7
pairs) in Figure 4(d). At 4 bytes message size, the latency of IVShmem is 0.77µs, while
it is 2.72µs for SR-IOV. When the message size varies from 1 byte to 4 MB, IVShmem
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can decrease the latency by up to 86%, compared to SR-IOV. Thus, IVShmem can
significantly improve the point to point communication performance for MPI library
compared to SR-IOV, and can also achieve near to native performance.

The recent MPI standard [18] has introduced one-sided communication model. In
this model, one process’s memory can be updated directly by another process. Unlike
MPI two-sided communication model in which both sender and receiver are involved
for data transfer, one-sided communication allows one process to specify all necessary
parameters, and synchronization is done explicitly to ensure the completion of commu-
nication. As it can be seen from Figure 5(a) and Figure 5(b), IVShmem based MPI one-
sided passive Put operation achieves lower latency and higher bandwidth, compared to
SR-IOV. The latency is decreased up to 85% at 1 KB message size, while bandwidth
can be improved up to 193% at 16 bytes message size. Similarly, the evaluation results
shown in Figure 5(c) and 5(d) indicate that IVShmem also benefits one-sided passive
Get operation in terms of latency and bandwidth. Similar performance improvements
are observed for passive Get operation. The results indicate that IVShmem scheme can
significantly improve performance of one-sided and two-sided point-to-point commu-
nications operations.

4.3 Collective Communication Performance

We select four widely used collective communication operations in our evaluations:
Broadcast, Allgather, Allreduce and Alltoall. Figure 11(a) to Figure 11(d) show that,
compared to SR-IOV, IVShmem significantly cuts down the latencies of the above four
collective operations across 15 VMs. For example, at 4 bytes message size, the latency
of broadcast operation for IVShmem is 0.5µs, while it is 4.15µs for SR-IOV. From 1
byte to 1 MB message size, the latencies can be decreased up to 91%, 87%, 85% and
88% through IVShmem for the above four collective operations, respectively. Based
on our experimental evaluations, IVShmem can remarkably improve MPI collective
communication performance within one node.

4.4 Application Performance

As discussed in Section 3, many of the HPC applications rely on MPI performance.
In this section, therefore, we evaluate the performance benefit of IVShmem using real
HPC applications. According to above evaluations on four collective communication
operations, we use several HPC applications, each one as a representative mainly cor-
responding to one or two particular collective operations. From Figure 6(a) to Fig-
ure 6(d), we depict the evaluation results of different test programs in P3DFFT library,
which are test inverse.c, test rand.c, test sine.c and test spec.c.
The inverse evaluation results using 15 VMs are shown in Figure 6(a). As we can see,
the execution times can be decreased by 96%, 79%, 40% through IVShmem for input
size 128, 256, 512, respectively. The execution times of rand also can be reduced by
96%, 76%, 37%. Similar results can be observed for sine and spec. This is because
the majority of the total execution time is spent in MPI Alltoall operation. However,
as the problem size increases, the proportion of communication drops down, and thus
the performance improvement decreases. The evaluation results indicate that IVShmem
can effectively reduce the execution time of the above four P3DFFT test programs. And
it also verifies the evaluation results of collective communication in Section 4.3.
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The HPL evaluation results are presented in Figure 7. Here, we first measure the
peak performance achieved by launching tests on 15 VMs as shown in Figure 7(a).
Both SR-IOV and IVShmem achieve peak performance when the problem size is larger
than 40,000. In our evaluations, IVShmem outperforms SR-IOV by around 4%-18%
in GFLOPS, for various experiments. To better analyze the communication cost, we
decomposed the time of HPL benchmark by using 8 VMs with various VM grid con-
figuration. From Figure 7(b), we observe that the main communication benefit in HPL
is coming from Broadcast. Through IVShmem, the broadcast latency can be decreased
by 66% and 50% for 2x4 and 1x8 grids, respectively.

We also profile the time decomposition of Chain and LJ benchmark in LAMMPS.
Figure 8 shows that IVShmem can decrease the communication time by 36% and 13%
for Chain and LJ, respectively. And the total execution time can be decreased by up to
8% for Chain.

4.5 Virtual Machine Scalability

In this section, we evaluate the virtual machine scalability to explore the performance
impact on increasing the number of virtual machines in a single host. Such evaluation
helps to determine the optimal number of virtual machines to be deployed within a sin-
gle host. We measure the weak scalability of HPL with fixed memory usage of each
VM and increasing number of VMs. Figure 9(a) shows that IVShmem brings 2%-7%
benefits compared to SR-IOV. We also use Graph500 benchmarks to evaluate the strong
scalability of IVShmem and SR-IOV. As shown in Figure 9(b), IVShmem exhibits bet-
ter scalability and decreases the execution time up to 35%, compared to SR-IOV.

4.6 Performance Overhead

For performance overhead evaluation, we used NAS to run seven different computing
kernels of class B: IS, MG, CG, LU, FT, BT and SP. The first 5 kernels ran across
8 VMs, while BT and SP ran across 9 VMs, based on the requirement of these two
application kernels. It can be noted from Figure 10, IVShmem reduces the execution
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times for NAS Parallel Benchmarks - IS (21%), MG (19%), LU (17%), compared to
SR-IOV. We also ran them on native environment, and we observe that IVShmem only
introduces around 5% overhead compared to native performance. Our evaluation results
indicate that IVShmem introduces a small overhead.

5 Related Work

I/O virtualization can be broadly classified into two categories – software based and
hardware based. Earlier studies such as [17] and [4] have shown network performance
evaluation of software-based approaches in Xen. Studies [14,6,11] have demonstrated
that SR-IOV is significantly better than software-based solutions for 10GigE networks.
In [14], the authors have provided a detailed performance evaluation on the environ-
ment of SR-IOV capable 10GigE in KVM. They have studied several important factors
that affect network performance in both virtualized and native systems. Further, stud-
ies [9,15,10] with Xen have demonstrated the ability to achieve near-native performance
in VM-based environment for HPC.

Our previous study of the performance characteristics of using SR-IOV with In-
finiBand [13] has shown that while SR-IOV enables low-latency communication, MPI
libraries need to be designed carefully and offer advanced features for improving intra-
node, inter-VM communication. Previously, we proposed designs for improving intra-
node inter-VM communication by using an Inter-VM Communication Library (IVC)
and re-designed the MVAPICH2 library to leverage the features offered by the IVC [8].
However, this solution was based on the Xen platform and did not show the studies with
SR-IOV enabled InfiniBand clusters. In addition, an implementation of IVShmem [16]
provided the detailed introduction of Nahanni, a IVShmem implementation. Based on
the implementation, the authors developed the MPI-Nahanni user-level library, which is
ported to the Nemesis channel in MPICH2 library. Their design used memory-mapped
shared memory provided by Nahanni in order to accelerate inter-VM communication
on the same host.

Different from the previous work, this paper presents a comprehensive performance
improvement potential study of IVShmem for intra-host inter-VM communication
based on MVAPICH2 library on SR-IOV enabled InfiniBand clusters. Performance
evaluation shows promising results of IVShmem based MPI communication using point
to point, collective micro-benchmarks and several representative HPC applications.
This paper is the first paper to carry out performance studies with IVShmem on SR-
IOV enabled InfiniBand clusters.
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Fig. 11. Collective Communication Performance on 15 VMs

6 Conclusion and Future Work

In this paper, we have studied the performance improvement potential of IVShmem
for intra-host inter-VM MPI communication. We have briefly introduced the prototype
design of a high performance MPI library for intra-host inter-VM communication us-
ing IVShmem. And then we have conducted detailed performance evaluations using
MPI micro-benchmarks and representative HPC applications. Our performance evalu-
ations using micro-benchmarks show that IVShmem based MPI library improves point
to point (two-sided and one-sided) and collective performance by up to 193% and 91%,
respectively. Application evaluation results indicate that based on IVShmem, the exe-
cution times of NAS, P3DFFT, LAMMPS benchmarks were decreased by up to 21%,
96%, 8%, respectively, compared to SR-IOV. And the peak performance of HPL is
improved by 18% using IVShmem. The evaluations using Graph500 and NAS also
demonstrate that IVShmem based MPI library shows good scalability and introduces
minor overhead, compared to native performance.

In the future, we plan to continue our research along this direction, and provide a
high performance MPI library design to dynamically switch between IVShmem and
SR-IOV for efficiently supporting locality aware MPI communication across nodes on
SR-IOV enabled InfiniBand clusters.
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