

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 354–365, 2014.
© Springer International Publishing Switzerland 2014

Power-Aware L1 and L2 Caches for GPGPUs

Ehsan Atoofian and Ali Manzak

Electrical Engineering Department,
Lakehead University,
Thunder Bay, Canada

{atoofian,amanzak}@lakeheadu.ca

Abstract. General Purpose Graphics Processing Units (GPGPUs) employ sev-
eral levels of memory to execute hundreds of threads concurrently. L1 and L2
caches are critical to performance of GPGPUs but they are extremely power
hungry due to the large number of cores they need to serve. This paper focuses
on power consumption of L1 data caches and L2 cache in GPGPUs and proposes
two optimization techniques: the first optimization technique places idle cache
blocks into drowsy state to reduce leakage power. Our evaluations show that
cache blocks are idle for long intervals and putting them into drowsy mode im-
mediately after each access reduces leakage power dramatically with negligible
impact on performance. The second optimization technique reduces dynamic
power of caches. In GPGPU applications, many warps have inactive threads
due to branch divergence. Existing GPGPU architectures access cache blocks
for both active and inactive threads, wasting power of caches. We use active
mask of GPGPUs and access only the portion of cache blocks that are required
by active threads. By dynamically disabling unnecessary sections of cache
blocks, we are able to reduce dynamic power of caches significantly.

Keywords: GPGPU, CUDA, Memory hierarchy, Cache, Power.

1 Introduction

Early Graphics Processing Units (GPUs) exploited software-managed local memories
(or scratch-pad) instead of caches. GPU workloads include large amount of streaming
data which are difficult to cache. However, recent general purpose GPU applications
demonstrate high level of data locality which makes them suitable for caches. In re-
sponse, GPU vendors have included caches in their designs. For instance, NVIDIA
introduced up to 48KB L1 cache per core in Fermi [9] and AMD’s Fusion GPU [13]
offers 16KB L1 cache per core. Both vendors’ recent GPUs have global coherent L2
caches. NVIDIA increased size of L2 cache from 768KB in Fermi architecture [9] to
1536KB in GK110 [11]. It is expected that the size of caches grows in future.

Large caches consume significant static and dynamic power. This problem exacer-
bate in future: voltage reduction has slowed down in recent years, limiting dynamic
power reduction through voltage scaling. Lowering the threshold voltage results in
significant increase in static power. Therefore, it is necessary to optimize caches to
reduce power consumption.

 Power-Aware L1 and L2 Caches for GPGPUs 355

Several architectural and circuit level techniques have been proposed to deal with
the power of caches in processors [6, 14]. However, GPGPUs provide unique oppor-
tunities to reduce power of caches due to their architecture. For example, once a cache
block is accessed by a thread, it takes several hundreds of clock cycles until the same
block is accessed again. This is mainly due to the round-robin scheduling policy [5]
used in GPGPUs. So, once a thread is executed, it should wait until GPGPU schedules
other threads before it is executed again. The long inter-access delay can be used to
reduce leakage power by placing cache blocks into drowsy mode [8] immediately
after each access. The other opportunity for optimization of caches in GPGPUs is
related to underutilization of cache blocks. Due to branch divergence, some applica-
tions are not able to fully utilize warp slots each cycle. Hence, dynamically disabling
access to inactive cache blocks can reduce dynamic power.

In summary, this paper makes the following contributions:

1) The inter-access delay of L1 and L2 cache blocks is in the range of several hun-
dreds of clock cycles. We exploit this property and propose a method that dynamical-
ly changes the state of cache blocks between ON and drowsy.

2) The number of active threads within a warp varies across the cycles. We exploit
GPU active-mask feature to detect inactive portions of cache blocks before an instruc-
tion is scheduled for execution. We disable bit-lines, word-lines, and sense amplifiers
of inactive SRAM cells to reduce dynamic power in L1 and L2 caches.

The remainder of the paper is structured as follows. Section 2 describes our base-
line GPGPU model. Section 3 explains the motivation behind this work. Section 4
details our optimization techniques. Section 5 discusses our measurement methodol-
ogy and reports the results. Section 6 describes related work and Section 7 concludes
the paper.

2 Background

In this section, we provide a brief description of GPGPU architecture. For consisten-
cy, we use NVIDIA and CUDA terminology in this paper. However, our techniques
are general and can be applied to a broader range of GPGPUs from other vendors.

A GPGPU consists of many Streaming Multiprocessors (SMs) and each SM typi-
cally has 8 to 32 Processing Elements (PEs). For instance, NVIDIA’s Fermi series has
16 SM and each SM has 32 PEs. Figure 1 shows architecture of a GPGPU. Each SM
is associated with a private L1 data cache and read-only constant and texture caches
along with a low latency shared memory. The memory is organized as several DRAM
banks and each bank is associated with a slice of shared L2 cache. SMs and L2 cache
are connected through an interconnection network. In this work, we use a 2D mesh
topology for interconnection network since it is simple to implement and is through-
put-effective [4].

A CUDA program is composed of one or more kernel functions that are launched
and executed on the GPGPU (Figure 2). Each kernel divides its work into identically
sized groups, called Cooperative Thread Arrays (CTAs). Every CTA is assigned to an
SM for execution. To improve utilization of resources in an SM, more than one CTA

356 E. Atoofian and A. Manzak

can be assigned to the SM. The maximum number of CTAs per SM is limited by SM
resources such as number of threads, size of shared memory and register file, etc.
[10]. For example if a CTA requires 8KB of shared memory and the baseline SM has
32KB available, then only 4 CTAs can be launched simultaneously on the same SM.
From a programmer’s point of view, all threads within a CTA execute each instruc-
tion in the kernel concurrently. However, on the real hardware, because of resource
constrains, software threads are actually executed in groups of threads called warps. A
warp has 32 threads on current NVIDIA GPUs. The SM executes one warp at a time.
If a warp is stalled due to a long latency instruction, then the SM selects another warp
for execution.

Fig. 1. GPGPU architecture

Fig. 2. GPGPU application hierarchy

A GPGPU kernel commonly accesses global memory space which is shared by all
threads. When threads access data in the global memory, their accesses go through a
two-level cache hierarchy. The L1 caches are private to SMs but the L2 cache is shared
by all SMs. The L1 caches are not coherent. They follow write-evict, write-no-allocate
policy [10]. On the other side, the L2 cache is coherent and uses write-back with
write-allocate policy [10]. The cache blocks in GPGPUs are wide. For instance, in
Fermi family, the cache blocks in L1 and L2 caches are 128 bytes. So, if all load or
store instructions of a warp map to the same cache line, then all threads of the warp
can be completed in a single transaction.

SM

L1

……
SM

L1

Interconnection Network

DRAM

L2

DRAM

L2 ……

… KernelKernel Kernel …

CTA CTA CTA ……

… warpwarp

Application

 Power-Aware L1 and L2 Caches for GPGPUs 357

In this work, we employ a two-level scheduler [17]. The scheduler partitions warps
into two groups: an active group holding warps eligible for execution and an inactive
group of pending warps. Warps that are waiting for long latency events such as loads
from DRAM are placed in the pending set. Once a warp is ready for execution, it is
removed from the pending list and is inserted into the active list. This approach avoids
stall cycles in a one level round-robin based scheduler [5] since warps progress with
different speeds and the probability that all warps stall due to a long latency memory
operation reduces significantly.

3 Motivation

In this section, we explain motivation behind our work and characterize several work-
loads used in this study to show power saving opportunities in GPGPUs. We use ap-
plications from NVIDIA SDK [18], Rodinia Benchmark suite [20], and Parboil
Benchmark suite [21] (for detail of experimental framework, please refer to Section
5). The second column in Table 1 shows abbreviations for the benchmarks.

Fig. 3. Breakdown of accesses to cache blocks in L1 and L2 caches

Figure 3 shows breakdown of accesses to the cache blocks in L1 and L2 caches. For
each benchmark, the first bar corresponds to the L1 cache and the second bar corre-
sponds to the L2 cache. Each bar in the graph is divided into 16 sections. The top most
component of a bar labeled A16384 shows number of blocks that are accessed 16384
times or more. Similarly, the bottom most component labeled A0 shows the number
of blocks that are not accessed by any SMs. In L1 caches, 50% of cache blocks are
accessed 16 times or less. In L2 cache, 50% of cache blocks are accessed 8 times or
less. Since most of memory requests are serviced by L1 caches, cache blocks in L2 are
idle more often. In DWT, GSS, and MYC, more than 88% of the cache blocks are
never used for execution of the programs. These cache blocks can be put into drowsy
mode to reduce power consumption.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BN
L

CO
N

D
W
T

D
XT

EIG

H
IS

M
ST

N
BD

BPR

CFD

G
SS

H
SP

M
YC

SRD

STM

CU
T

H
ST

M
RI

SA
D

STC

A0 A1 A2 A4 A8 A16 A32 A64 A128 A256 A514 A1024 A2048 A4096 A8192 A16384

358 E. Atoofian and A. Manzak

Next, we focus on cache blocks that are accessed by PEs. Figure 4 shows break-
down of inter-access cycles for cache blocks in L1 and L2 caches. For each bench-
mark, the first bar corresponds to the L1 caches and the second bar corresponds to the
L2 cache. We measure the number of cycles elapsed between two consecutive access-
es to the same cache blocks. For L1 caches, more than 50% of cache blocks have in-
ter-access cycle of 128 or more. For L2 cache, more than 50% of cache blocks have
inter-access cycle of 64 or more. On average, the inter-access cycle for L1 and L2
caches are 2442- and 2840-cycle, respectively. In the two-level scheduler, after a
warp is scheduled for execution, it should wait until all the other warps in the active
list are scheduled. The only time that a warp is scheduled for execution in two con-
secutive cycles is when there is no other warp in the active list. Hence, quite often,
there is a gap between two executions of a warp. This inter-access delay provides
opportunity to put the cache blocks into drowsy mode immediately after they have
been accessed.

Fig. 4. Breakdown of inter-access cycles for cache blocks in L1 and L2 caches

GPGPUs execute threads in the granularity of warps. Each warp consists of 32
threads executing instructions in a lock-step manner. A fully utilized warp has 32
active threads executing one instruction at a time. In Graphics applications, quite
often warps utilize all 32 slots. However, this may not be true for general purpose
applications. General purpose applications exhibit more complex control flow behav-
ior due to frequent branch instructions. Conditional branch instructions can cause
threads within a warp take different paths, or diverge. Since GPGPUs allow a warp to
have only one active PC at any given time, GPGPUs execute taken and not-taken
paths in two phases. In the first phase, threads in the taken path execute and all
threads in the not-taken path are idle. In the second phase, threads in the not-taken
path execute and the rest are idle. Existing GPGPU implementations access cache
blocks for all 32 threads within a warp although many warps may have fewer than 32
threads. The last two columns in Table 1 show the percentage of active threads within
the warps that access L1 and L2 cache blocks, respectively. It is important to note

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BN
L

CO
N

D
W
T

D
XT

EIG

H
IS

M
ST

N
BD

BPR

CFD

G
SS

H
SP

M
YC

SRD

STM

CU
T

H
ST

M
RI

SA
D

STC

L0 L1 L2 L4 L8 L16 L32 L64 L128 L256 L514 L1024 L2048 L4096 L8192 L16384

 Power-Aware L1 and L2 Caches for GPGPUs 359

that L2 cache is accessed when a miss occurs in any of the L1 caches including data,
texture, and shared L1 caches. This is the main reason that block utilization in L2
cache is lower than block utilization in L1 data caches. While in some benchmarks,
i.e. CUT, all warps have 32 active threads throughout the entire execution, some oth-
ers, i.e. MYC, have very low cache block utilizations. Unnecessary accesses to the
cache blocks in benchmarks with low warp utilization waste power. By avoiding these
unnecessary accesses, we can reduce dynamic power in caches.

Table 1. GPGPU Benchmarks and Warp Utilization

Benchmark Abbr. L1 block Utilization L2 block Utilization

binomialOptions BNL 99% 98%

convolutionSeparable CON 100% 81%

dwtHaar1D DWT 100% 95%

dxtc DXT 100% 1%

eigenvalues EIG 100% 33%

histogram HIS 100% 94%

MersenneTwister MST 100% 73%

nbody NBD 100% 14%

backprop BPR 91% 81%

cfd CFD 100% 93%

gaussian GSS 65% 37%

hotspot HSP 100% 96%

myocyte MYC 4% 2%

srad_v1 SRD 99% 99%

streamcluster STM 98% 99%

cutcp CUT 100% 100%

histo HST 100% 98%

mri-gridding MRI 100% 99%

sad SAD 93% 93%

sgemm STC 100% 100%

4 Reducing Power of L1 and L2 Caches

In this section, we present static and dynamic power reduction techniques based on
opportunities discussed in Section 3.

4.1 Static Power Reduction Using Drowsy Cells

Inter-access cycles in Figure 4 show that cache blocks are not accessed for long inter-
vals and it is possible to save power of cache blocks when they are idle. Several tech-
niques have been proposed to reduce leakage power of cache cells by turning off
cache blocks when they are not needed [1, 22]. The drawback of these techniques is

360 E. Atoofian and A. Manzak

that data in cache blocks are lost when they are turned off and the extra power needed
to access interconnection network and L2 cache (if L1 miss occurs) or main memory
(if L2 miss occurs) to reload data may negate any power saving and may degrade per-
formance. To avoid these pitfalls, we put cache blocks into drowsy mode [8].

A drowsy cell exploits dynamic voltage scaling to reduce leakage power. Each
cache block can switch between high and low (drowsy) supply voltages. When a
cache block is idle its voltage is set to low supply voltage. Due to short-channel ef-
fects in deep-submicron processes, leakage current reduces significantly in idle cache
blocks. The combined effect of reduced leakage current and voltage results in a dra-
matic saving in static power. Whenever an SM sends a request to a cache, the cache
controller checks the condition of the voltage of the cache line. If the accessed line is
in normal mode, no extra delay is incurred, because the power mode of the line can be
checked concurrently with the read and comparison of the tag. However, if the line is
in drowsy mode, we need to prevent the discharge of the bit-line of the cache line
because it may read out the wrong data. We need to wait an extra cycle to switch the
supply voltage back to normal mode before reading out the data.

One implication of drowsy cell is that execution time of programs may increase
since drowsy cells require extra time to wake-up. We use a two-level scheduler [17]
to select a warp for execution. Each cycle, the scheduler selects a ready warp from the
active list and sends it for execution. To hide wake-up latency of drowsy cells, the
scheduler should send the source operands of a load/store instruction to the memory
unit before the associated instruction is issued. To handle this, the scheduler can issue
a warp and concurrently look into active warps to find the warp that is going to be
issued in the next cycle. Thus, one can eliminate the overhead of drowsy cells with 1-
cyle wake-up delay. Similarly, the scheduler can look into active list and send infor-
mation of the warp to the memory unit n cycles ahead and may wake-up drowsy cells
to hide n cycles of wake-up delay. So, the two-level scheduler is able to hide the la-
tency of drowsy cells. However, we also evaluate a scheduler which is not able to
check the warps ahead of time. In Section 5, we explore the performance impact of
drowsy cells with different wake-up latencies assuming that it is not feasible to hide
the latency of drowsy cells.

4.2 Reducing Dynamic Power Using Active Mask

In the previous section, we used drowsy cells to reduce leakage power when a cache
block is idle. However, when the cache block is accessed all bytes within the block
are placed in ON state. For example, in Fermi family, each cache block is 128-byte.
So, when SM executes a load/store instruction, the whole 128-byte is woken up. Ac-
cessing such a large number of SRAM cells incurs significant dynamic power because
of activating word-lines, bit-lines, and sense amplifiers.

As shown in Table 1, the percentage of active threads varies across the bench-
marks. Because of branch divergence, some warps cannot fill the whole 32 slots.
However, in existing implementations of GPGPUs, a warp with partial utilization still
activates the whole cache block. This means that we have to pre-charge word-line
(WL), bit-line (BL), bit-line-bar (BLB), and sense amplifiers for the whole cache

 Power-Aware L1 and L2 Caches for GPGPUs 361

block although a subset of the cache block is used for warp execution. One way to
reduce dynamic power of the cache blocks is to access only portions of cache blocks
that are accessed by active threads. GPUs use an active mask which indicates active
threads within a warp. The mask is a vector of 32 bits and each bit corresponds to a
thread. When a branch instruction diverges, the bits corresponding to active threads
are set and the rest are cleared. Hence, we can use active mask to disable portions of
cache blocks associated with inactive threads.

We use the Divided Word Line (DWL) [23] technique to implement active mask
aware access to caches. Figure 5 illustrates the structure of DWL. In DWL, the WL is
segmented into several Small WLs (SWLs). Each SWL enables or disables accessing
to the portion of cache block attached to it. For our work, each SWL covers 4-byte of
the cache block. The output of a row decoder is connected to SWLs. GPU architecture
is suited for easy integration of DWL into caches. A warp’s active mask has all in-
formation required to determine which SWL should be active or inactive. Each SWL
is activated by an AND gate which has two inputs, the horizontal line coming from
the row decoder and the vertical line coming from the active mask. DWL reduces
dynamic power since whenever a cache block is accessed those bytes within the cache
block that correspond to the inactive threads are disabled.

Fig. 5. Structure of DWL

5 Methodology and Results

We used GPGPU-Sim (version 3.1.1) [3] to evaluate our power aware optimization
techniques. GPGPU-Sim is a publicly available, detailed cycle-based simulator for
GPGPUs. We configure the simulator to closely match NVIDIA’s Fermi GTX480 as
recommended in the GPGPU-Sim manual (Table 2). We use a collection of bench-
marks from CUDA SDK [18], Rodinia Benchmark suite [20], and Parboil Benchmark
suite [21] (Table 1). We ran the benchmarks until completion or for 1 billion instruc-
tions, whichever comes first.

WL

SWL

.

.

.

mask[0] mask[31]

…

…
…

row decoder

…

…

362 E. Atoofian and A. Manzak

5.1 Experimental Results

In this section, we report power saving in L1 and L2 caches. Figure 6 shows static, dy-
namic, and total power saving in L1 and L2 caches. For each benchmark, the first bar
represents static power in caches with drowsy mode relative to the static power of the
baseline scheme. Bars less than one show power reduction. In order to quantify the
leakage current in caches, we modeled a cache based on 6T SRAM cells in HSPICE.
We used the technology files from Predictive Technology Models (PTM) [12] with
feature size of 32-nm and nominal voltage of 0.9V. We found that the state of SRAM
cells can be maintained if Vdd is reduced up to 0.2V. While an ideal drowsy cell can
work at 0.2v, in practice it is necessary to add safety margin to take into account noise
and also mismatch between transistors. Table 3 shows static power for nominal voltage
and reduced voltages in a row of L1 and L2 caches. Even when Vdd is reduced to 0.4v,
the static power is less than 8% of static power when cache cells operate at full Vdd.
For the rest of this section, we assume drowsy cells operate at 0.4v.

Table 2. GPGPU-Sim Configuration Table 3. Static power in a row of $L1/$L2

Number of SMs 16
Warps/Shader 48

Threads per warp 32
PEs/SM 32

Registers per core 32768
$L1 (size/assoc/line) 16KB/4-way/128B
$L2 (size/assoc/line) 768KB/16-way/128B
Memory controller FR-FCFS

The second column in Figure 6 shows dynamic power in L1 and L2 caches with ac-

tive mask relative to dynamic power of the baseline scheme. We extracted resistance
and capacitance of SWLs based on the model used in CACTI v6.0 [15]. Similar to
static power, we used HSPICE with PTM [12] and feature size of 32-nm to estimate
dynamic power. The dynamic power depends on warp utilization of the benchmarks
(Table 1). Benchmarks with low warp utilization, i.e. MYC, show significant dynamic
power saving. On the other side, benchmarks such as CUT that usually have 32 active
threads do not benefit from this technique. Benchmarks with moderate warp utiliza-
tion, i.e. GSS, have limited dynamic power saving. On average, the dynamic power
reduces by 7% and 24% in L1 and L2 caches, respectively.

 The third column in Figure 6 shows the relative total power saving. The combined
system first changes the state of a requested cache block from drowsy to active. Then,
based on active mask, it decides which portion of the cache block should be activated.
Benchmarks with low warp utilization, i.e. MYC, have the highest power saving be-
cause they take advantage of both the leakage and the dynamic power saving tech-
niques. On average, the total power is reduced by 90% and 96% in L1 and L2 caches,
respectively.

As we discussed in Section 4.1, a two level scheduler can activate a cache block
ahead of time and avoid any penalty due to wake-up delay. However, if it is not

Vdd(v) 0.2 0.3 0.4 0.9

Static Power

$L1/$L2(mw)

0.04/0.260.056/0.360.08/0.531.081/6.7

 Power-Aware L1 and L2 Caches for GPGPUs 363

feasible to hide wake-up latency (for example if GPGPU uses a scheduler other than
the two level scheduler), we assume that this delays execution of the warps. To quan-
tify the effect of wake-up latency, we ran the benchmarks with one and two extra
cycles overhead. Note that these latencies are in addition to the latency of the baseline
cache. Figure 7 shows performance of a GPGPU with drowsy cache relative to the
baseline scheme. Bars less than one show slow-down. A GPGPU has many warps and
if a warp is stalled due to cache delay, the GPGPU can issue and execute another
warp. Hence, the performance changes slightly with wake-up delay. On average, the
performance of the benchmarks changes by less than 0.3% when wake-up delay is
one and two cycles. In some benchmarks, i.e. STM, execution time reduces when
wake-up delay increase. We analyzed these benchmarks and found that the sequence
of executed warps changes with wake-up delay. In the new sequence, cache miss rate
reduces and this improves performance of these benchmarks slightly.

a)

b)

Fig. 6. Static, dynamic, and total power saving in a) L1 and b) L2 caches

Fig. 7. Performance impact of drowsy cache with one and two cycles wake-up delay

0.0

0.2

0.4

0.6

0.8

1.0

BNL CON DWT DXT EIG HIS MST NBD BPR CFD GSS HSP MYC SRD STM CUT HST MRI SAD STC

Lo
w

er
 is

 b
et

te
r

L1_Stat L1_Dyn L1_Total

0.0

0.2

0.4

0.6

0.8

1.0

BNL CON DWT DXT EIG HIS MST NBD BPR CFD GSS HSP MYC SRD STM CUT HST MRI SAD STC

Lo
w

er
 is

 b
et

te
r

L2_Stat L2_Dyn L2_Total

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

BNL CON DWT DXT EIG HIS MST NBD BPR CFD GSS HSP MYC SRD STM CUT HST MRI SAD STC

D1 D2

364 E. Atoofian and A. Manzak

6 Related Work

Gebhart et al. [2] proposed a unified local memory which can dynamically change the
capacity of register, shared memory, and cache on a per application basis. Existing
implementations of GPGPUs use a one-size-fit-all policy and hard-partition local
storage of an SM in design time. However, GPGPU applications have diverse local
storage requirements and a single memory unit is often most critical to performance
of a given application. Gebhart et al. [2] proposed a unified memory architecture that
aggregates different memory units and allows a flexible allocation based on applica-
tions’ requirements. The tuning that this flexibility enables improves both perfor-
mance and energy of GPGPUs.

Sankaranarayanan et al. [7] proposed adding tinyCache to reduce power of L1 data
cache. A tinyCache is a small filter inserted between a PE and an L1 data cache and
intercepts accesses to the shared L1 cache. The main challenge of tinyCache is cache
coherency. Since each PE has a private tinyCache, it is necessary to maintain coher-
ency across tinyCaches of an SM. To reduce coherence overhead, Sankaranarayanan
et al. proposed to either evict content of tinyCache into L1 cache (e.g. for barriers) or
bypass tinyCache (e.g. for atomic operations). TinyCache is able to reduce power of
L1 data cache by filtering out a sizable portion of memory accesses to the L1 cache.

The above techniques can be used along with our optimization techniques to re-
duce power consumption of caches in GPGPUs further.

Warped register file [16] uses compiler to turn off unallocated registers and places
the rest into drowsy mode to reduce leakage power. It also avoids charging bit-lines
and word-lines of registers associated with inactive threads to reduce dynamic power.
Our work is different from warped register file since we focus on the power of caches
in GPGPUs.

This paper is an extension of our previous work [19] on L1 data caches in
GPGPUs. We have studies inter-access cycle and warp utilization in L2 cache and
found that the behavior of L2 cache is similar to L1 cache. We applied drowsy cell and
active mask to the cache blocks and reduced static, dynamic, and total power of L1
and L2 caches.

7 Conclusion

This paper proposes two power-aware optimization techniques that target static and
dynamic power of L1 and L2 caches in GPGPUs. Due to large inter-access distance of
cache blocks, GPGPUs provide unique opportunities to reduce power. Our first opti-
mization technique puts cache blocks into drowsy state and brings them to active state
only when they are accessed. Given the large pool of warps in GPGPUs, this aggres-
sive drowsy state management technique impacts performance negligibly. The second
technique exploits active masks and eliminates activation of unused portions of cache
blocks. These two optimization techniques combined are able to reduce power of L1
and L2 caches by 90% and 96%, respectively.

 Power-Aware L1 and L2 Caches for GPGPUs 365

Acknowledgment. This work was supported by the National Sciences and Engineer-
ing Research Council of Canada.

References

1. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: Exploiting generational behavior to re-
duce cache leakage power. In: Proceedings of ISCA, pp. 240–251 (2001)

2. Gebhart, M., et al.: Unifying primary cache, scratch, and register file memories in a
throughput processor. In: Proceedings of MICRO-45, pp. 96–106 (2012)

3. Bakhoda, A., Yuan, G., Fung, W., Wong, H., Aamodt, T.: Analyzing CUDA workloads
using a detailed GPU simulator. In: Proceedings of ISPASS (April 2009)

4. Bakhoda, A., Kim, J., Aamodt, T.: Throughput-effective On-chip Networks for Manycore
Accelerators. In: MICRO (2010)

5. Fung, W., Sham, I., Yuan, G., Aamodt, T.: DynamicWarp Formation and Scheduling for
Efficient GPU Control Flow. In: MICRO (2007)

6. Boettcher, M., et al.: MALEC: A Multiple Access Low Energy Cache. In: Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE), pp. 368–373 (2013)

7. Sankaranarayanan, A., Ardestani, E.K., Briz, J.L., Renau, J.: An Energy Efficient GPGPU
Memory Hierarchy with Tiny Incoherent Caches. In: ISLPED, pp. 9–14 (2013)

8. Flautner, K., et al.: Drowsy caches: Simple techniques for reducing leakage power. In:
Proceedings of ISCA, pp. 148–157 (2002)

9. NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (2009)
10. NVIDIA. CUDA Programming Guide Version 5.0 (2013)
11. NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110

(2012)
12. Arizona state university predictive technology model, http://ptm.asu.edu
13. Demers, E.: Evolution of AMD graphics, AMD Fusion Developer Summit (2011)
14. Agrawal, A., Jain, P., Ansari, A., Torrellas, J.: Refrint: Intelligent refresh to minimize

power in on-chip multiprocessor cache hierarchies. In: Proceedings of HPCA (2013)
15. Muralimanoharet, N., et al.: Optimizing NUCA Organizations and Wiring Alternatives for

Large Caches with CACTI 6.0. In: Proceedings of MICRO (2007)
16. Abdel-Majeed, M., Annavaram, M.: Warped Register File: A Power Efficient Register File

for GPGPUs. In: Proceedings of HPCA (2013)
17. Gebhart, M., et al.: Energy-efficient mechanisms for managing thread context in through-

put processors. In: Proceedings of the ISCA, pp. 235–246 (2011)
18. NVIDIA. CUDA C/C++ SDK code samples (2013)
19. Atoofian, E.: Reducing Static and Dynamic Power of L1 Data Caches in GPGPUs. In:

Proceedings of HPPAC, Phoenix AZ (2014)
20. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S.-H., Skadron, K.: Rodinia: A

Benchmark Suite for Heterogeneous Computing. In: IISWC (2009)
21. Stratton, J.A., et al.: Parboil: A Revised Benchmark Suite for Scientific and Commercial

Throughput Computing (2012)
22. Zhou, H., et al.: Adaptive mode-control: A static-power-efficient cache design. In: Pro-

ceedings of International Conference on Parallel Architectures and Compilation Tech-
niques (2001)

23. Yoshimoto, M., et al.: A divided word-line structure in the static ram and its application to
a 64k full cmos ram. IEEE Journal of Solid-State Circuits 18(5), 479–485 (1983)

	Power-Aware L1 and L2 Caches for GPGPUs
	1 Introduction
	2 Background
	3 Motivation
	4 Reducing Power of L1 and L2 Caches
	4.1 Static Power Reduction Using Drowsy Cells
	4.2 Reducing Dynamic Power Using Active Mask

	5 Methodology and Results
	5.1 Experimental Results

	6 Related Work
	7 Conclusion
	References

