
Shades: Expediting Kademlia’s Lookup Process�

Gil Einziger, Roy Friedman, and Yoav Kantor

Computer Science Department, Technion, Haifa 32000, Israel
{gilga,roy,ykantor}@cs.technion.ac.il

Abstract. Kademlia is considered to be one of the most effective key
based routing protocols. It is nowadays implemented in many file sharing
peer-to-peer networks such as BitTorrent, KAD, and Gnutella.

This paper introduces Shades, a combined routing/caching scheme
that significantly shortens the average lookup process in Kademlia and
improves its load handling. The paper also includes an extensive perfor-
mance study demonstrating the benefits of Shades and compares it to
other suggested alternatives using both synthetic workloads and traces
from YouTube and Wikipedia.

1 Introduction

Distributed Hash Tables (DHT) are at the heart of most peer-to-peer (P2P)
systems. Consequently, a plethora of papers and ideas on how to implement
DHTs has been published, e.g., [4,19]. DHTs tend to differ from each other in
the routing scheme they employ, as well as the space and message overhead they
incur for maintaining their overlay. During the last few years, Kademlia has
become one of the most widely used DHTs in practice [20,22]. This is largely
due to its proven robustness to churn, enabled by its unique partially parallel
lookup mechanism and large routing tables. Further, Kademlia’s applications
extend beyond P2P. For example, a variant of Kademlia was suggested for high
performance computing in grids and clusters [25].

Like many other DHTs, Kademlia’s routing phase may involve contacting a
logarithmic number of nodes, which may be too slow for time sensitive appli-
cations [18,21]. For example, one of the lessons of the CoralCDN project [10],
a successful DHT based content delivery network, is that DHT lookup latency
was a performance bottleneck for their system.

Since typical workloads of Internet based applications are often highly skewed,
caching lookup results along the search path has the potential of reducing the
average lookup time experienced by users. However, due to Kademlia’s unique
routing and dynamic bucket manipulation schemes, caching is less effective in
Kademlia than in more rigid DHTs like Chord [9].

To tackle this problem, we introduce a novel caching and augmented routing
mechanism for Kademlia called Shades (the entire code of Shades is available
as open source at [2]). That is, each node maintains a small local cache that is

� This work is partially supported by the Technion HPI Research School.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 391–402, 2014.
c© Springer International Publishing Switzerland 2014



392 G. Einziger, R. Friedman, and Y. Kantor

managed using an effective cache filtering mechanism called TinyLFU. TinyLFU
maintains a compressed approximate statistics of all items encountered and uses
this as an admission filter that only admits popular items into the cache and is
able to do so in a very time and space efficient manner, as reported in [8]. Fur-
ther, Shades augments Kademlia’s routing decisions using a secondary hashing
technique that we call colors. As described later in this paper, colors are used to
help caches specialize in items of their own color, thereby increasing the skewing
in the observed access distribution of the requests they encounter, resulting in
much higher hit rates. In particular, a limited number of lookup requests are
issued to nodes whose id hashes to the same color as the key of the item being
searched rather than according to the usual Kademlia lookup process. In addi-
tion, the hints from TinyLFU’s statistics are used to limit the number of such
deviations from the normal lookup process and only apply them when there is
statistical evidence that they are likely to help. Finally, we employ an overload
protection mechanism to prevent Kademlia nodes from becoming overwhelmed
with requests1.

We have experimented with Shades and compared it to plain Kademlia and
other previous caching suggestions for Kademlia, namelyKadCache – the caching
suggestion of the Kademlia authors [20], the local cache suggested in [12] – a.k.a.
Local and Kaleidoscope [9]. These experiments were conducted using both syn-
thetic workloads mimicking ones that are often found in real applications, as well
as real traces from YouTube and Wikipedia. In these results, we have found that
Shades significantly reduces the number of nodes participating in the lookup
process compared to plain Kademlia, KadCache, Local and Kaleidoscope. At
the same time, it also achieves competitive message and bandwidth overheads
relative to the other suggested caching schemes.

The rest of this paper is organized as follows: We start by describing Shades
(and Kademlia) in Section 2. Section 3 survey an additional related work. Perfor-
mance evaluation is presented in Section 4. Finally, we conclude with a discussion
in Section 5.

2 Shades

As indicated before, Shades includes three components: a highly effective small
cache, an augmented routing that is based on secondary hashing (colors) whose
goal is to direct lookup traffic to caches that are likely to have the data, and
an overload protection mechanism. The caching mechanism is described below
in Section 2.1, the routing scheme is presented in Section 2.2, and the overload
protection is explained in Section 2.3.

2.1 Caching Mechanism

With Shades, each node in the system maintains a small local cache in addition
to its Kademlia storage. When a node receives a lookup request, it can either

1 This latter optimization does not improve the lookup hop-count, but rather the
overall latency by avoiding routing to nodes that are overloaded.



Shades: Expediting Kademlia’s Lookup Process 393

return the k-closest nodes, return a cached result or return the stored value.
The difference between Kademlia storage and the cache is that the former has
to store all items that the node is assigned to according to the Kademlia DHT
algorithm. On the other hand, the goal of the cache is to boost the performance
of the system by storing selective items. In particular, in order to keep the
cache size small and since real world workloads tend to exhibit access locality,
intuitively the cache should include the most frequently requested items.

For the cache management, we have chosen to employ the cache architecture of
TinyLFU [8]. In TinyLFU, there is a separation between cache eviction policies
and admission policies. TinyLFU maintains an approximated statistics over all
recently encountered items such that a new item will replace the cache victim
only if it is more frequent than the cache victim as illustrated in Figure 1(a). Since
the statistics are kept over a large collection of past requests and can potentially
be very big, TinyLFU only maintains an approximation of this statistics. To keep
the statistics fresh, TinyLFU perform a periodic Reset operation, this operation
halves all counters. As reported in [8], the memory overhead associated with
TinyLFU is comparable to a memory pointer per cache line. Since TinyLFU
can work with any eviction policy, we complement TinyLFU, with a Lazy LFU
eviction policy. This policy attempts to find the least frequently used item in the
cache, however does so lazily, performing a single search step per cache lookup,
resulting in O(1) query complexity, and hit rate similar to a true LFU cache.

(a) TinyLFU general architecture: a new item is
only admitted if it is recently more popular
than the cache victim.

(b) Shades Palette

Fig. 1. An illustration of TinyLFU and Shades Palette

2.2 Routing

As mentioned before, Shades augments the standard Kademlia routing scheme
by utilizing a secondary key called color in order to partition cache content
between nodes and create a distributed large cache out of many small individual
caches. Unlike the Kademlia key that comes from a large domain to prevent
collisions, the color domain is small and collisions are desirable.

During the parallel iterative lookup process, Shades may issue cache lookup
requests to nodes that have the same color as the requested key even if these



394 G. Einziger, R. Friedman, and Y. Kantor

nodes do not advance in Kademlia’s XOR distance metric [20].2 For this reason,
we call such deviations a side step. Hence, while intuitively a side step improves
the chances of hitting a cache due to the use of colors, in the case of a cache miss,
it prolongs the lookup process since it does not advance toward the key in the
XOR metric. In order to avoid paying this price for cache misses, Shades only
takes side steps if the item is relatively likely to be cached already. To that end,
Shades relies on TinyLFU to keep track of the likelihood that the item would
indeed be in the cache, as detailed later in this section.

Finally, once the lookup is done, the search result is only stored in caches that
are interested in caching it. Since TinyLFU only admits items to the cache if
they are more frequent then the cached items, Shades ensures that the cached
result is shared with a node that is likely to admit it. In the rest of this section,
we first describe an auxiliary data structure used by the routing mechanism of
Shades and then provide the details of the protocol.

Palette. Since going over all the k-buckets in order to find a matching color
candidate can be time consuming, each node p maintains a mapping between
colors and the nodes matching these colors that p is award of. This mapping,
implemented as a hash table, is called the Palette of node p. For each color i,
when node p has at least one node of color i in any of its k-buckets, then the ith
entry of p’s Palette points to these nodes. However, if p does not have any node
of color i in any of its k-buckets, then we fill the corresponding entry with other
nodes that p detects using the following pull gossip mechanism.

Whenever p sends a lookup message, it piggybacks on the lookup message a
bitmap that represents which colors have no representatives in its Palette. I.e.,
bit i in the bitmap contains 1 if p is already aware of at least one node of color
i and 0 otherwise. When a node q receives such a lookup message, it piggybacks
on the reply one node corresponding to the color of each 0 bit in the bitmap that
q is aware of (if q knows such a node). In addition, q includes at least one node
whose color matches the color of the searched key. All this data is piggybacked
on existing messages to avoid generating new messages. The size of piggybacked
data is relatively small: a bitmap whose size in bits is the number of colors and
at most one id per color (and typically only a few ids or none at all).

Shades’ Palette is illustrated in Figure 1(b). In this example, there are 8 dif-
ferent colors. The dark tokens represent the nodes that appear in the k-buckets
whereas the bright tokens are nodes discovered through the bitmap gossip mech-
anism. In this example, color 8 does not have any representative. Therefore the
bitmap [11111110] will be added to any outgoing Kademlia message. If any of
the nodes that receive such a message knows of a node that matches color 8, it
will include this node in its response.

Shades Routing Protocol. The routing protocol for key lookup, performed
by node p, goes as follows. Denote c the searched key’s color. While node p is not

2 The distance metric used by Kademlia to decide on hashed ids proximity is XOR.



Shades: Expediting Kademlia’s Lookup Process 395

aware of c-colored nodes, p performs traditional Kademlia lookups. When node
p is aware of c-colored nodes, either from its data structures or through replies
received from other nodes, it performs multiple cache lookups denoted as side
steps. These cache lookups are performed simultaneously to Kademlia’s routing
protocol. We call these cache lookups side steps since they are not necessarily
advancing the search according to the Kademlia XOR metric.

Let q be the c-colored node that is closest to the searched key. The first side
step is performed by sending a request to node q, which does not have to be in
the k-candidates list. q checks whether the requested key is in its cache. If so, it
sends back the (key, value) item from the cache. Otherwise, q returns a response
that contains the following additional information:

– Is the item needed? I.e., will this specific cache admit this item if encountered
based on the mechanism described in Section 2.1.

– Is the item popular? I.e., is this item likely to be admitted to other caches.

When p receives the response from q, it acts according to the response: In case
of a cache hit, the lookup is finished. Otherwise, if the item is not popular, then
no more side steps are performed and the lookup is continued as in Kademlia.
If the item is popular, then another side step can be taken. Note that by this
point, p received more c-colored nodes from responding nodes. If p discovered
more than one c-colored node, it favors contacting the closest one according to
the XOR metric.

At the end of the lookup, if the lookup is successful, p sends the (key,value)
item to the c-colored node that is closest to the searched key and has noted in
its response that the value is needed. This node stores the result in the cache
for future requests.

Shades, as Kademlia, has up to α outstanding queries at any given time.
When not performing a side step, all the outstanding queries advance according
to the key XOR distance metric as in Kademlia. While performing a side step,
α − 1 of the outstanding queries advance according to the key distance metric
in addition to the one outstanding side step.

Note that in order to perform a side step, p needs to know a node with the
same color as the searched key. Recall that the Palette significantly increases
the probability that p knows such a node. This enables our protocol to usually
perform the first side step right in the start of a lookup, which is important since
the benefit of hitting a cache early is far greater than hitting it later.

2.3 Congestion Control

When we started experimenting with Kademlia in general and Shades in partic-
ular, we encountered a severe congestion problem when running test cases with
many nodes (this can be seen in the result in Section 4.5 below). For this reason,
we implemented a simple congestion control mechanism .

In that mechanism every message is attached an additional bit that is set if
the sender’s incoming message queue was more then 75% full when the message



396 G. Einziger, R. Friedman, and Y. Kantor

was sent. Once a node receives a message with a set congestion bit, it marks the
sending node as a candidate for replacement. That is the receiver encounter a
possibility to replace the congested, it will do so without sending a ping message.
The result of this mechanism is that congested nodes reduce their representation
in routing tables and therefore receive less incoming traffic.

3 Related Work

Several works have investigated how to use caching to reduce the lookup cost
in DHTs. For example, in [12] it is suggested to add to Kademlia a local cache
named Fast Table. This table stores the results of previous lookups the node has
performed. When a node receives a lookup request, it first checks its Fast Table
to see if it contains cached results for it. This approach was shown in [9,12] to
yield a reduction in average lookup length. As mentioned in the introduction,
we refer to this scheme as Local in this paper.

Another important caching suggestion appears in the original Kademlia pa-
per [20]. In this suggestion, every time a node performs a lookup operation, it
sends a store value request to the last node it contacted that did not have the
value. This suggestion, called KadCache in this paper, was evaluated in [9] for
its message cost and (lack) of load balance capabilities. In this paper, we ex-
tend that evaluation of KadCache to cover its latency aspects. As we show in
the performance section of this paper, Shades reduces considerably the number
of contacted nodes compared to both Local and KadCache, and usually also
improves the communication overhead.

The work most related to Shades is Kaleidoscope [9]. Kaleidoscope also uses
colors to augment the combined routing and caching process of Kademlia to
obtain better caching, but focuses on communication overhead reduction. In
Kaleidoscope, messages are first forwarded to a node of a matching color along
the lookup path, and only then an iterative lookup starts. Since Kaleidoscope
never deviates from the lookup path, it cannot efficiently use as many colors as
Shades, and therefore achieves lower cache hit rates than Shades. Further, the
more colors Kaleidoscope uses, the longer it take to reach each cache.

Unlike Kaleidoscope, Shades may deviate from the lookup path of Kademlia
if there is probabilistic evidence that doing so is likely to find a cached result
nearby. Shades bases its decisions on a compressed approximated statistics in
order to both manage its cached content, and also decide on the maximal number
of cache lookups that may deviate from the Kademlia lookup path. So while both
Kaleidoscope and Shades rely on the notion of colors as a secondary hashing
mechanism, each takes this concept in a completely different direction.

The main differences between Kaleidoscope and Shades are summarized in
Table 1. As can be seen, Shades uses more colors than Kaleidoscope and therefore
forms a more effective distributed cache. Further, Shades benefits more from each
cache hit as it performs the first cache lookup earlier than Kaleidoscope. Shades
also uses a more advanced cache policy that is also used to decide how many
times we deviate from the lookup path, and what node is most suitable to store



Shades: Expediting Kademlia’s Lookup Process 397

the cached value at the end of the lookup. Finally, the last line of the table titled
“share policy” indicates that shades stores the results of successful lookups in
caches of matching colors that were encountered along the lookup process only
if these caches are likely to benefit from them. In contrast, Kaleidoscope always
pushes the results of lookups to such caches. This helps Shades save messages.
Evidently, in our performance evaluation section, we show that Shades contacts
substantially fewer nodes than Kaleidoscope, obtains significantly better load
sharing, and generates similar overall traffic as Kaleidoscope.

Table 1. Comparison between Kaleidoscope and Shades

Kaleidoscope Shades

# Colors 17 150

On path lookups Unlimited Unlimited

Deviates from path No Yes

Time of first cache lookup During lookup First step

Cache policy LRU TinyLFU+LazyLFU

Share policy Always Only if needed

Other methods to reduce Kademlia’s lookup latency includes careful param-
eter configuration [22], techniques to fill k-buckets with nodes of geographical
proximity [16], a new metric based on geographical distance [11] and a recursive
lookup scheme [15]. We believe that many of these suggestions can be deployed
alongside with Shades as they either reduce the latency of individual messages,
or optimize the configuration parameters of the protocol. In contrast, Shades
slightly changes the algorithm and satisfies lookups using information from fewer
nodes.

Other DHT’s like OneHop [13], Kelips [14] and Tulip [3] achieve O(1) lookups
at the cost of background traffic overheads. In contrast, Shades does not gen-
erate any background traffic. Systems that include O(1) lookups include, e.g.,
Dynamo [7] and ZHT [17]. Both systems target high performance data centers.
Given that a variant of Kademlia was also suggested for this context [25], Shades
can be adopted to that domain as well.

4 Performance Measurements

4.1 Methodology and Setup

In this section, we evaluate the performance of Shades. We also compare Shades
to Kaleidoscope [9], Local [12], and the caching scheme suggested by the origi-
nal Kademlia paper [20] (a.k.a. KadCache). For the evaluation, we used a Java
implementation of Shades, Kaleidoscope, KadCache, and Local. We have exper-
imented with several different sizes of networks by running multiple Java VMs
(one VM per 80 nodes) on two servers and emulating the users lookup requests
that are picked from a given, pre calculated workload. We used both synthetic
and real life workloads. The real workloads are distributions that were taken
from a real YouTube data set [6] and a real Wikipedia data set [23].



398 G. Einziger, R. Friedman, and Y. Kantor

In the synthetic distributions, each node in the system periodically picks an
item out of 1,000,000 possible keys according to the specific distribution and
issues a lookup request for that key. In the YouTube distributions, we used a
data set that contains statistics of over 161k newly created videos. These videos
were monitored weekly during 21 weeks starting from 16th April, 2008. We used
the number of views per week in order to directly generate a distribution that
reflects the popularity of each video during that week. As for the Wikipedia
trace, it contains an ordered list of requests that were accepted by Wikipedia
servers during a period of two months. It is very extensive and contains 10%
of the traffic for Wikipedia at that time period. Unfortunately, this trace does
not contain client information. Therefore, we simply picked a continuous flow of
5 million requests, cut it into small chunks and randomly but equally assigned
them nodes. Each request is then assigned to a key and is searched for during
the experiment.

In all experiments, caches are given a warm-up period in which each node
in the system issues 500 lookup requests. After the warm-up period, each
node in the system issues 500 additional lookup requests. Statistics of message
send/receive, incoming/outgoing bandwidth and the latency are monitored lo-
cally by each node and are collected via HTTP at the end of the experiment.
Our experiments where performed on the real system code with the following
parameters: bucket size k = 7; network sizes: 500, 2, 500 and 5, 000 nodes; re-
quest distributions: Zipf 0.7, Zipf 0.9. Zipf distributions with similar values were
found, e.g., in Web caching and file sharing applications [5]. Notice that in the
case of 5, 000 nodes, the experiment includes a total of 5, 000, 000 requests, half
during the warmup period and the other half during the measurement interval.

4.2 Metrics and Definitions

Since the wall-clock latency depends on a large number of factors and is therefore
very noisy, we have decided to focus on measuring the number of contributing
nodes for each lookup, i.e., the number of nodes whose replies were utilized while
performing the lookup, instead of wall-clock latency. We note that this number
may be different from the number of contacted nodes, e.g., if three parallel
lookups are sent and the first reply returns the value, then the number of con-
tributing nodes is 2 (the initiator and the node that returned the cached result),
even though 3 nodes were contacted. Since Kademlia works with concurrent iter-
ative lookup, this is not exactly the latency in hops. Yet, since our experiments
were conducted with α = 3, dividing the number of contributing nodes by α
(3) gives a relatively good estimation to the number of hops used in the lookup
process. We have also studied the cache hit rates as well as the amount of traffic
generated both in terms of message count and overall bandwidth.

4.3 Number of Colors

Varying the number of colors has a complex effect. On the one hand, increasing
the number of colors enhances the observed frequency of correctly colored items



Shades: Expediting Kademlia’s Lookup Process 399

Table 2. Effect of the number of colors on the performance of Shades

Performance And The Number of Colors

Wikipedia YouTube

Shades(50) Shades(150) Shades(50) Shades(150)

Local 0.28 0.26 0.21 0.2

First side step 0.47 0.5 0.59 0.64

Second side step 0.5 0.53 0.65 0.69

more aggressively, thereby increasing their weight in the cache. On the other
hand, since the cache size is limited, it comes at the expense of general items,
hurting the performance of the local cache.

Hence, the number of colors is a tradeoff parameter. Picking the correct num-
ber mainly depends on what the system goals are. In order to explain this trade-
off, we measured the hit rates of the local cache, the first side step and the second
side step for different color configurations. This check neglects searches that end
due to other reasons within their first few steps.

The results in Table 2 present the different hit rates achieved using 50 and 150
colors. As expected, 50 Colors achieves higher local cache hit rates, but lower
chromatic cache hit rates. We feel that Shades offers a more attractive tradeoff
with 150 colors than with 50 colors.

This configuration achieves over 50% hit rate within the first two side steps
with both Wikipedia and YouTube workloads. In the latter, it reaches 65% hit
rate for the first side step and over 70% hit rate after the second side step.

Hence, as long as the increase in hit rate after the first side step is significant,
we suggest increasing the number of colors in order to achieve lower latency. The
rest of our measurements focus on the 150 colors configuration of Shades.

4.4 Comparison to Other Caching Mechanisms

In this section, we compare Shades to previously suggested caching schemes as
well as to a plain Kademlia. We use concurrency of α = 3 and measure how
many nodes contributed to the lookup resolution.

Fig. 2. Number of contributing nodes required to perform a lookup



400 G. Einziger, R. Friedman, and Y. Kantor

To get a better feel for the latency improvement of Shades, we exhibit the
average and median lookup latency measured by the number of contributing
nodes. The median represents how many nodes are required on average to resolve
half of the lookups.

Table 3 presents the median latency values for all the protocols evaluated.
Shades reduces the median latency by as much as 22%− 34% compared to the
best alternative for every workload.

Unlike median, average latency can be manipulated in many ways and is
sensitive to edge values. For example, lookups that are resolved at the local cache
significantly reduce the average latency without impacting the median latency.
Also the minority of very long lookups increase the average latency without
increasing the median latency. Our results are presented in Table 3.As can be
seen, Shades improves also the average latency by ≈ 18− 23% in comparison to
the best alternative of each workload.

Table 3. Average and median latency during the measurements

Average And Median Latency (Contributing Nodes)

Kademlia Local KadCache Kaleidoscope Shades Shades/Best

Metric A M A M A M A M A M A M

Zipf 0.7 5.34 5.47 5.29 5.29 5.16 5.18 5.12 5.1 4.08 3.27 0.79 0.64

Zipf 0.9 4.01 3.76 3.92 3.42 4.01 3.76 4.20 3.15 3.03 2.18 0.77 0.69

YouTube 3.72 2.69 3.41 2.66 3.40 2.44 3.40 2.64 2.74 1.9 0.81 0.78

Wikipedia 4.32 3.48 4.06 3.44 4.14 3.23 4.15 3.2 3.31 2.21 0.82 0.69

We expect Shades’ latency advantage to become more dominant with larger
networks. Since the lookup paths of Kademlia grow longer with the network size,
the impact of finishing a large portion of the searches within the first two hops
becomes greater in large networks.

4.5 Load Distribution

Table 4 compares the average number of messages handled by the most congested
50 nodes in the network (1% busiest nodes). As can be observed, for each work-
load Shades improves the load placed on these nodes by 22%-43%. Since all rout-
ing protocols are equipped with the same congestion control mechanism, we credit
the improvement to our routing technique. Intuitively, Shades sends lookups in two
different directions, distributing the load more evenly in the system.

Table 4. Load placed upon the most congested nodes

Messages Handled By 1% Most Congested Nodes

Kademlia Local KadCache Kaleidoscope Shades Shades/Best

Zipf 0.7 26.2 23.9 22.7 20.05 11.45 0.57

Zipf 0.9 21.4 18.6 16.7 17 13.00 0.78

YouTube 22.4 18.2 21.1 17.9 13.3 0.74

Wikipedia 26.6 17.6 19.9 17 13.3 0.78



Shades: Expediting Kademlia’s Lookup Process 401

5 Discussion

We have presented Shades, a combined caching/routing scheme that augments
Kademlia, yielding a significant improvement in latency. Through simulations
that are based on artificial Zipf-like distributed workloads as well as real traces
from YouTube and Wikipedia, we have found that Shades reduces the median
number of nodes contributing to each lookup by 22-36% compared to the best of
breed among the other schemes in the workloads tested and a 30-40% reduction
compared to plain Kademlia. Shades obtains a load reduction on the busiest
nodes (hot-spots) of 22-43% with respect to the best scheme and 40-56% com-
pared to plain Kademlia. With reported latencies of 5.8-7.6 seconds for tuned
Kademlia based systems such as [18,21], our improvements can have a significant
impact on the user experience of these systems.

Shades also generated fewer messages than Kadcache and Local, and a similar
bandwidth consumption as the best of breed among them. In some workloads
Kaleidoscope offers slightly lower message and bandwidth costs than Shades,
but the differences are small.

Another interesting aspect of Shades is that its latency with a small cache
of 100 items is better than any of the other caching schemes we have compared
against even when they are equipped with an unbounded cache. Shades is an
open source project [2], implemented as an extension to OpenKad [1].

When using caching, there is always the question of keeping the cache content
consistent. There are many applications in which data is immutable, in which
case the problem does not exist. In particular, in such systems explicit versioning
is often used instead of updates (e.g., http://www.saphana.com/). In other cases,
using periodic revalidation against the main copy or deleting items from the
cache after a TTL is enough to ensure timely eventual consistency [24].

References

1. OpenKad, http://code.google.com/p/openkad/
2. Shades source code, https://code.google.com/p/shades/
3. Abraham, I., Badola, A., Bickson, D., Malkhi, D., Maloo, S., Ron, S.: Practical

locality-awareness for large scale information sharing. In: van Renesse, R., Castro,
M. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 173–181. Springer, Heidelberg (2005)

4. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of P2P Content Distribution
Technologies. ACM Computing Survey 36, 335–371 (2004)

5. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: INFOCOM, pp. 126–134 (1999)

6. Cheng, X., Dale, C., Liu, J.: Statistics and social network of youtube videos. In:
16th Int. Workshop on Quality of Service, IWQoS 2008, pp. 229–238 (June 2008)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

8. Einziger, G., Friedman, R.: Tinylfu: A highly efficient cache admission policy. In:
22nd Euromicro Int. Conf. on Parallel, Distributed and Network-Based Processing
(PDP), pp. 146–153 (February 2014)

http://code.google.com/p/openkad/
https://code.google.com/p/shades/


402 G. Einziger, R. Friedman, and Y. Kantor

9. Einziger, G., Friedman, R., Kibbar, E.: Kaleidoscope: Adding colors to kademlia.
In: Proc. of the 13th IEEE Int. Conf. on P2P Computing (September 2013)

10. Freedman, M.J., Freudenthal, E., Mazières, D.: Democratizing content publication
with coral. In: Symposium on Networked Systems Design and Implementation,
NSDI 2004, pp. 18–18. USENIX Association, Berkeley (2004)

11. Groß, C., Stingl, D., Richerzhagen, B., Hemel, A., Steinmetz, R., Hausheer, D.:
Geodemlia: A robust p2p overlay supporting location-based search. In: Proc. of
the 12th IEEE Int. Conf. on P2P Computing. IEEE (September 2012)

12. Guangmin, L.: An Improved Kademlia Routing Algorithm for P2P Network. In:
Int. Conf. on New Trends in Information and Service Science, pp. 63–66 (2009)

13. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays.
In: Proc. of the 9th Conf. on Hot Topics in Operating Systems, HOTOS 2003.
USENIX Association, Berkeley (2003)

14. Gupta, I., Birman, K., Linga, P., Demers, A., van Renesse, R.: Kelips: Building an
efficient and stable p2p dht through increased memory and background overhead.
In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 160–169.
Springer, Heidelberg (2003)

15. Heep, B.: R/kademlia: Recursive and topology-aware overlay routing. In: 2010
Australasian Telecommunication Networks and Applications Conf (ATNAC), 31
October- November 3, pp. 102–107 (2010)

16. Kaune, S., Lauinger, T., Kovacevic, A., Pussep, K.: Embracing the peer next door:
Proximity in kademlia. In: Eighth Int. Conf. on P2P Computing, P2P 2008, pp.
343–350 (September 2008)

17. Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z.,
Raicu, I.: Zht: A light-weight reliable persistent dynamic scalable zero-hop dht. In:
Parallel & Distributed Processing Symposium, IPDPS (2013)

18. Liu, B., Wei, T., Zhang, J., Li, J., Zou, W., Zhou, M.: Revisiting why kad lookup
fails. In: Proc. of the 12th Int. Conf. on P2P Computing, pp. 37–42. IEEE (2012)

19. Lua, E., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey and Comparison
of P2P Overlay Network Schemes. IEEE Communications Surveys Tutorials 7(2),
72–93 (2005)

20. Maymounkov, P., Mazières, D.: Kademlia: A P2P Information System Based on
the XOR Metric. In: Proc. of the 1st Int. Workshop on P2P Systems (IPTPS),
pp. 53–65 (2002)

21. Steiner, M., Carra, D., Biersack, E.W.: Faster content access in kad. In: Proc.
of the 8th Int. Conf. on P2P Computing, pp. 195–204. IEEE Computer Society,
Washington, DC (2008)

22. Stutzbach, D., Rejaie, R.: Improving lookup performance over a widely-deployed
dht. In: INFOCOM 2006. 25th IEEE Int. Conf. on Computer Communications.
Proc., pp. 1–12 (2006)

23. Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia workload analysis for decen-
tralized hosting. Elsevier Computer Networks 53(11), 1830–1845 (2009)

24. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44
(2009)

25. Wozniak, J.M., Jacobs, B., Latham,R., Lang, S., Son, S.W.,Ross, R.B.: C-mpi:A dht
implementation for grid and hpc environments. In: Preprint ANL/MCS-P1746-0410,
04/2010 (2010)


	Shades: Expediting Kademlia’s Lookup Process
	1 Introduction
	2 Shades
	2.1 Caching Mechanism
	2.2 Routing
	2.3 Congestion Control

	3 Related Work
	4 Performance Measurements
	4.1 Methodology and Setup
	4.2 Metrics and Definitions
	4.3 Number of Colors
	4.4 Comparison to Other Caching Mechanisms
	4.5 Load Distribution

	5 Discussion
	References




