Analysis and Comparison of Truly Distributed
Solvers for Linear Least Squares Problems
on Wireless Sensor Networks

Karl E. Prikopa, Hana Strakova, and Wilfried N. Gansterer

University of Vienna, Vienna, Austria
Faculty of Computer Science

Abstract. The solution of linear least squares problems across large
loosely connected distributed networks (such as wireless sensor networks)
requires distributed algorithms which ideally need very little or no co-
ordination between the nodes. We first provide an extensive overview of
distributed least squares solvers appearing in the literature and classify
them according to their communication patterns. We are particularly
interested in truly distributed algorithms which do not require a fusion
centre, cluster heads or any multi-hop communication. Beyond existing
methods, we propose the novel least squares solver PSDLS, which utilises
a recently developed distributed QR factorisation algorithm. All com-
munication between nodes is exclusively performed within the push-sum
algorithm for distributed aggregation.

We analytically compare the communication cost of PSDLS and the
existing truly distributed algorithms. In all these algorithms, the commu-
nication cost of reaching a predefined accuracy depends on many factors,
including network topology, problem size, and settings of algorithm-specific
parameters. We illustrate with simulation experiments that our novel PS-
DLS solver requires significantly fewer messages per node than the previ-
ously existing methods to reach a predefined solution accuracy.

1 Introduction

We consider the problem of solving the linear least squares problem

min |b — Az, (1)

for x € R™ in a truly distributed way, where A € R™™ with n > m and
b € IR™. We are interested in solving such problems over a loosely connected,
decentralised network, e.g. a wireless sensor network (WSN), where each node
holds part of the input data. In particular, we assume that A is distributed
row-wise over the N nodes of the network and that the element b(i) resides on
the same node as the i*" row of A. For n > N, each node contains a block of
consecutive rows of A.

Many applications in WSNs require the distributed solution of a linear least
squares problem, e. g., the reconstruction of physical fields [1], target tracking [2],

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 403-414, 2014.
© Springer International Publishing Switzerland 2014

404 K.E. Prikopa, H. Strakova, and W.N. Gansterer

the solution of the seismic tomography inversion problem [3] when monitoring
volcanic activity or localisation [4]. WSNs typically consist of a large number of
inexpensive sensor nodes which act autonomously but cooperate with each other
to achieve a common goal. Working in a fully decentralised manner allows for
decisions to be made on any node. In combination with actuators, the nodes can
take autonomous actions in the physical world. Asynchronous communication
is an important challenge to be considered in the design of a truly distributed
algorithm. The sensor nodes are normally constrained in terms of their resources,
primarily their energy supply and computation capabilities. One of the sources
of high power consumption is communication. The energy required by the nodes
to communicate with other nodes is directly proportional to the communication
range. This implies that communicating with the immediate neighbourhood of
a node is significantly cheaper than communicating with very distant nodes.
Preserving energy also increases the lifespan of the nodes and in turn of the
entire network.

As we will summarise in the following section, many distributed least squares
solvers can be found in the literature, but most of them do not operate in a
truly distributed manner without the need for centralised fusion centres, cluster
heads or multi-hop communication. Multi-hop communication requires routing
tables, and setting those up requires additional communication. The overhead is
particularly large if the routing tables have to be updated frequently.

Dynamic changes and distributed fault tolerance are also important factors
in the design of a distributed algorithm for WSNs. Although such difficult sce-
narios are beyond the scope of this paper, they can be implicitly considered by
the use of gossip algorithms for aggregation. The push-sum algorithm [5] used
by the PSDLS algorithm proposed in this paper can be directly replaced by
fault-tolerant alternatives which are able to recover from silent message loss and
temporary or permanent link failures [6,7].

Synopsis. In Section 2, we provide an extensive review of the existing literature
about distributed least squares solvers and classify them based on their communi-
cation patterns. In Section 3, we introduce the new push-sum-based distributed
least squares solver PSDLS. Section 4 provides an analytical comparison of the
communication cost of PSDLS and the truly distributed algorithms appearing
in the literature up until now. Simulation results are presented in Section 5, and
our conclusions are summarised in Section 6.

2 Existing Distributed Least Squares Solver

In this section, we summarise the efforts presented in the literature for solving the
linear least squares problem (1) in a distributed setting. We categorise existing
algorithms into three groups: (i) Centralised approaches using a fusion centre or
approaches which require global communication, (ii) clustered approaches where
the communication of each node is limited to a subset of the network (cluster)

Truly Distributed Least Squares Solvers 405

with a cluster head, and (ii7) truly distributed approaches where the communi-
cation of each node is limited to its immediate neighbourhood without using any
multi-hop communication.

2.1 Centralised Approaches or Global Communication

A strategy that has been studied extensively is the use of a central unit (fu-
sion centre) which performs the computation for the entire network. The fusion
centre approach first collects the data from all nodes in the network (global
communication), then solves problem (1) at the fusion centre and finally dis-
tributes the result to all nodes (global communication). The positioning of the
fusion centre is crucial for communication cost and scalability (cf. [3]). There
are several drawbacks to this approach: Potential congestion effects (particu-
larly around the fusion centre [8]) can lead to delays and in the worst case to
data loss. Multi-hop communication and setting up routing tables incur addi-
tional overhead. Last, but not least, the fusion centre becomes a single point
of failure. Research on fusion centre approaches often focusses on the efficient
accumulation of the data at the fusion centre (see, e.g., [9]). Other efforts per-
form only parts of the computation at the fusion centre and offload other parts
onto the individual nodes (see, e. g., [4]). However, these approaches still require
global (multi-hop) communication of each node with the fusion centre.

Reichenbach et al. [4] consider the problem that each node needs to determine
its location and analyse three methods for solving the least squares problem
arising in this context: normal equations, QR factorisation and singular value
decomposition. For all three methods, they split the computation into two parts
in order to distribute them between a high performance base station and wireless
sensor nodes. The base station computes the computationally intensive tasks and
then sends the result to the nodes, which only have to perform low complexity
computations to determine their location. This approach significantly reduces the
amount of computation performed on the sensor nodes, saving more than 47%
of floating-point operations for normal equations and more than 99% for the QR
factorisation and the SVD. The disadvantage is the communication cost incurred
by the nodes having to send their measurements to the fusion centre either over
long distances or with multi-hop communication and non-static routing.

One example for exploiting a specific routing structure is presented by Borgne
et al. [9], where the measured data is aggregated at each node towards the fu-
sion centre along a routing tree. The authors extend the basic set of available
aggregation functions (minimum, maximum, sum, count and average) to a re-
gression operator which uses the sensor node measurements as input, reducing
the amount of data based on the regression model. The advantage of this ap-
proach is the reduction of the communication range of the nodes to a localised
neighbourhood. However, the final result is only available at the fusion centre,
which in the event of a failure leads to the breakdown of the entire computation.

The distributed multisplitting method [10], based on the parallel multiplitting
method by Reanut [11], applies the well-known fixed-point iteration methods
Jacobi, Gauss-Seidel and successive over-relaxation to the normal equations.

406 K.E. Prikopa, H. Strakova, and W.N. Gansterer

The matrix A is distributed column-wise over the nodes and weighting matrices
are used to recombine the solutions of the local problems, which are independent
problems resulting from the linear multisplitting of A. Note that in this method,
the solution x is not replicated, but distributed across the nodes. In each iteration
a vector of size n has to be broadcast to all other nodes (global communication).

The distributed modified conjugate gradient least squares (D-MCGLS) algo-
rithm [10] exploits the fact that the conjugate gradient method can be applied to
the symmetric and positive definite normal equations. It is also based on a par-
allel method, MCGLS by Yang and Brent [12], which is targeted at distributed
memory architectures. Yang and Brent have improved the parallel performance
of the standard CGLS method by reducing the global synchronisation points for
the inner products. D-MCGLS requires A to be distributed row-wise. If A is not
symmetric, for each local row of A, the node also needs to have the correspond-
ing column locally. Each node has to use the same initialisation for x. In each
iteration, a vector of length m and a scalar value have to be broadcast to all
other nodes in the network (global communication).

2.2 Clustered Approaches

A first step towards a more decentralised setting than the fusion centre ap-
proaches summarised in Section 2.1 is based on clustering. The network is di-
vided into clusters. In each cluster, one node acts as the cluster head, which
often is more powerful than the other nodes in the cluster. The division is based
on a certain criterion, e. g., on the geographical location of the nodes or on the
predefined communication radius of the cluster head. The cluster heads act as
intermediate fusion centres for the clusters. The nodes of a cluster only commu-
nicate with their cluster head and with nodes within the same cluster. Compared
to the fusion centre approaches, a multi-tier model is used where only the cluster
heads communicate with the fusion centre, reducing the communication cost and
also the risk of congestion.

Behnke et al. [13] address issues arising with the clustered version of the dis-
tributed least squares algorithm presented in [4]. They report that the algorithm
does not scale well with an increasing number of nodes and on large networks
does not work at all due to the assumption that each node can communicate
with all cluster heads which distribute the precomputed parts of the solution.
They develop the scalable distributed least squares (sDLS) algorithm to over-
come these drawbacks by limiting the communication of each node to its cluster
head. To achieve this, each node is provided with individual precomputed data,
in turn reducing the size of the data transferred to each node and also the
computations to be performed by each node. Communication and computation
costs are therefore independent of the network size and enable scalability of the
algorithm also in large networks.

Shakibian and Charkari [14] propose a clustered, multi-swarm version of the
particle swarm optimisation algorithm (MMS-PSO) for solving a least squares
problem as a minimisation problem. Each cluster head manages the member
nodes acting as a sub-swarm of the process. They also use a fusion centre to get

Truly Distributed Least Squares Solvers 407

the final global result from all cluster heads through weighted averaging. The
authors claim that their method decreases the latency through clustering and
converges faster than a fusion centre approach.

Summarising, clustering reduces but does not eliminate the risk of a single
point of failure affecting the entire network. The cluster heads usually have to
be more powerful than the other nodes to be able to handle the higher volume
of messages received. If a cluster head fails, the complete area covered by the
cluster and its data are lost until a new cluster head takes over.

2.3 Truly Distributed Approaches

The most decentralised approach is to limit the communication of the nodes
to their immediate neighbourhood (defined by the communication range). Each
communication partner has to be reachable in a single hop as multi-hop com-
munication would incur additional overhead through routing and thus increase
the energy consumption of the resource restricted nodes.

Zhou et al. [15] propose a distributed least squares solver which they claim
is robust against reported node failures. The algorithm is designed for m =
1 and higher dimensions are not considered in [15]. The distributed iterative
algorithm exchanges the values of A and b with the neighbours and updates
them using a Metropolis weight based on the degree of the node’s neighbours,
which are determined before the iterative algorithm initialises. In the event of
a node failure, convergence is still guaranteed, but the result will no longer
be correct. Therefore, the authors extend their algorithm, trying to reduce the
magnitude of the occurring error. A disadvantage is that node failures have
to be detectable. Once detected, the weights used in the computation have to
be updated throughout the network, which poses a global updating problem
requiring communication across the entire network. In the event of a node failure,
the magnitude of the error depends on the network topology. Although the
algorithm presented in [15] is truly distributed, we do not consider it in our
analysis and in our simulations because it is restricted to the special case m = 1.

Sayed et al. [2,16,17] propose a diffusion-based least mean square estimator
(diffLMS) using steepest-descent iterations for solving the normal equations. Dif-
fusion strategies are seen as an alternative to consensus strategies for distributed
optimisation problems, both limiting the communication to the neighbourhood.
A and b are both distributed row-wise. In each iteration, diffLMS consists of two
main steps, an adaption step and a combination step, and delivers an estimate of
the solution z in each node. The authors provide two variants of their algorithm,
adapt-then-combine (ATC) and combine-then-adapt (CTA), which differ in the
order of these computation steps (for details, see Section 4).

Another fully distributed approach is the distributed least mean squares
method (D-LMS) by Schizas, Mateos and Giannakis [18,19,20]. D-LMS is based
on Lagrange multipliers and uses the least squares residual and the difference
between the estimates of x from the neighbourhood in a correction step to com-
pute the least squares solution iteratively. The data distribution of A and b is
again row-wise. At each step an estimate for the solution x is available in each

408 K.E. Prikopa, H. Strakova, and W.N. Gansterer

node. D-LMS communicates twice in each iteration, once to broadcast the cur-
rent estimate to all neighbours and a second time to send individual correction
vectors to each neighbour (single-hop unicast — for details, see Section 4).

3 A Push-Sum-Based Least Squares Solver

In this section, we introduce the Push-Sum Distributed Least Squares Solver
(PSDLS), shown in Algorithm 1, for problem (1). The matrix A and the vector
b are distributed row-wise across the participating nodes. The parts of A and b
available locally at node u will therefore be denoted by A* and b, respectively.
The solution x is approximated at each node. The local instance of a vector v
which occurs at every node u will be referred to as v,,, and v, (i) refers to the 0
element of v,. In particular, x, refers to the approximation of the entire solution
vector x at node u. The algorithm does not require any knowledge about the
global topology of the network and it does not assume any specific connections
between the nodes. Each node only needs to know its neighbours. In such a
setup, the push-sum algorithm [5] provides a truly distributed way for summing
or averaging values across the nodes of the network. If each node knows the total
number of nodes IV in the network, then the sum of the values over all nodes can
be computed using distributed averaging. Note that IV can also be estimated in a
truly distributed way [21]. Alternatively, the push-sum algorithm can be used to
compute the sums directly without the need to know N at every node. However,
based on our experience, this variant leads to slightly slower convergence.

Algorithm 1. Push-Sum Distributed Least Squares Solver (PSDLS)

Input: A € R™*™ with n > m, b € IR", both distributed row-wise over N nodes
Output: z, € IR™ on every node

1: in each node u do

2: [QY, Ry] < vdmGS(A")

3: zy < dmmv(Q* ", b%)

4: Ty < solve Ryxy = 24y > local

PSDLS is a direct least squares solver first computing a distributed QR
factorisation of A (line 1.2') and subsequently solving locally a linear system
with the triangular matrix R, at every node (line 1.4). For the distributed
QR factorisation we use the gossip-based distributed modified Gram-Schmidt
orthogonalisation method vdmGS introduced in [22,23]. vdmGS returns the or-
thonormal matrix @ € IR™*™ distributed row-wise (denoted by Q“) and the
complete upper-triangular matrix R € IR™*™ in every node (denoted by R,).
Consequently, Q' is distributed column-wise across the nodes. To compute the
right-hand side of the linear system (line 1.3), the distributed matrix-vector mul-
tiplication dmmuv described in [23] is used, which accepts the matrix argument

! Line x.y refers to line y in Algorithm x.

Truly Distributed Least Squares Solvers 409

distributed column-wise and the vector argument distributed row-wise. The so-
lution of the linear system (back substitution) can be computed locally and does
not need any further communication with the other nodes because every node
has its local estimate of R. At the end of the algorithm, each node u has its own
local approximation z,, of the solution of the least squares problem (1).

4 Communication Cost of Distributed LS Solvers

We compare the communication cost of the novel PSDLS method, both variants
of difLMS described in [16] and D-LMS described in [20] in terms of number of
messages and amount of data sent per node.

diff LMS. There are different versions of the diff LMS algorithm aside from the
order of execution in ATC and CTA mentioned previously. difLMS can also
exchange the observations b* and matrix rows A" with the neighbouring nodes
to improve the estimate of the solution. This requires an additional step for
exchanging the information which increases the communication cost. For better
comparison with [16], we will limit the analysis to the versions without the
additional information exchange.

In the ATC version of the diffLMS method, shown in Algorithm 2, each node
u first computes an intermediate value v, € IR™, which adds a step-size u of
the least squares residual to the current estimation of z,, where A* and b“
correspond to the rows of A and b available locally on node u. The intermediate
value 1, is subsequently broadcast to the local neighbourhood D,,. Each node
then updates its estimate of x,, with a weighted sum of all received ; (i € D,,),
and its own 1), the weights being denoted as w, (). A proof of convergence and
several possible weighting matrices are given in [16].

The CTA variant of difLMS performs exactly the same operations but in
a different order. The intermediate values v, are first broadcast to the neigh-
bourhood, then each node computes its estimate of x,, and in the last step the
new intermediate value 1),,. According to [2, p.31], “ .. the difference between the

Algorithm 2. Diffusion Least Mean Square (diffLMS) - ATC and CTA

Input: A € R"*™ with n > m,b € IR", both distributed row-wise over N nodes
For all nodes u: x, and v, initialised with zero
Output: z, € R™ on every node

Adapt-then-Combine (ATC) Combine-then-Adapt (CTA)

1: in each node u do 1: in each node u do

2: while not converged do 2 while not converged do

3: Py ¢ Tyt ,LLA"T(b" — A%zy) 3: Broadcast 1, to D,

4: Broadcast v, to D, 4: Yu — wou (W) Tu+Xiep, wu(i)x;
5 Ty — wo (W) PutTicp,wu(i)h; 5 Ty Pyt AT (B — A¥epy,)
6 end while 6 end while

410 K.E. Prikopa, H. Strakova, and W.N. Gansterer

Algorithm 3. Distributed Least-Mean Squares Solver (D-LMS)

Input: A € R"*™ with n > m,b € IR", both distributed row-wise over N nodes
For all v and Vi € D, z, and v;, initialised with zero
Output: z, € IR™ on every node

1: in each node u do
2: while not converged do

Broadcast z, to D,

for each node i € D,, do

vl = v, + §(@u — @)

Send v}, to each corresponding node i € D,

Ty = o + p24% T (0" — A%2y,) — Sien, (v — v) — cTien, (Tu —)]
end while

implementations lies in which variable we choose to correspond to the updated
weight estimate.”. In ATC, x,, is the result of the combination step (line 2.5 of
ATC), in CTA it is the result of the adaption step (line 2.5 of CTA). However,
mathematically and numerically this does not result in the same solution.

D-LMS. The D-LMS method is shown in Algorithm 3. A node u first broadcasts
its current estimate x, to its neighbourhood D,, (line 3.3). Then an individual
correction vector v! is computed for each neighbour i € D, using the received
estimation z; and its own estimation z, (line 3.5). These values are then sent
to each corresponding node i. In the last step of each iteration (line 3.7), the
new estimate x,, is computed using a least squares residual from A" and b", the
locally available parts of A and b, and the correction terms v, and v received
from the neighbourhood. This term is added to the current z, and weighted
with a step-size parameter p resulting in an estimate x, of the solution z in
each node. Proof of convergence is given in [18].

Comparison of Communication Cost

The cost of a broadcast to all neighbours (“local broadcast”) depends on the
topology and on the type of connection. Therefore, we introduce the broadcasting
parameter B(d) for denoting the number of messages required for broadcasting
to d neighbours. In a wireless setting, a single message is required to perform a
broadcast to all neighbours, thus B(d) = 1. However, in a setting with point-
to-point communication (e.g., wired connections), d messages are required for
sending a message to d neighbours, thus B(d) = d. For a global broadcast beyond
the neighbourhood in any network other than a fully connected one, additional
messages are needed for multi-hop message relaying over intermediate nodes.
The communication patterns and costs for ATC and CTA are identical. In each
iteration, each node u broadcasts a vector of size m to its neighbourhood D,,. In
ky iterations, node u sends k; B(|D,,|) messages. D-LMS requires communication
in two of its steps. In line 3.3, a local broadcast is required to distribute the vector
x4, of size m to the neighbours. Line 3.6 sends |D,,| individual messages of size

Truly Distributed Least Squares Solvers 411

Table 1. Comparison of the communication cost for diff LMS, D-LMS and PSDLS

Algorithm Number of messages Total amount of data
sent per node sent per node
diffLMS k1 B(|Du|) k1 B(|Dul)m
D-LMS k2 (B(|Du|) + |Dul) k2 (B(|Dul) + [Du|)m
PSDLS 2mR 5 (m*+7m) R

m to distribute the correction term. This results in ko (B(|Dy|) + |Du|) messages
and ko (B(|Dy|) 4+ |Dy|)m data values sent per node.

Although PSDLS is not an iterative method, we have to consider the number
of rounds R required by each push-sum algorithm. Note that in practice R
may vary slightly for different push-sum calls due to the randomisation. In the
distributed QR decomposition, for the first m — 1 columns of the matrix A
two push-sum calls have to be executed, the first one summing scalars and the
second one summing vectors. In column / of A the length of these vectors is m—1.
For column m only one scalar push-sum call has to be executed. The matrix-
vector product Qb requires one more push-sum call on vectors of length m.
Consequently, the number of messages sent per node is 2mR. In each push-sum
call, the values and a weight have to be transmitted [5].

Table 1 summarises the analytical results of this section. We conclude that
independently of the number of iterations k; and kg, D-LMS sends |D,| more
messages and more data per iteration than diffLMS. For comparing the com-
munication cost, information about the number of iterations k; and ko required
by diffLMS and D-LMS, respectively, and the number of push-sum rounds R re-
quired by PSDLS is necessary. As our simulation results in Section 5 illustrate,
these quantities differ significantly across the three methods.

5 Experiments

The simulation results presented in this section demonstrate the different con-
vergence speeds in terms of average number of messages sent per node and
therefore provide some qualitative insight into typical values of ki1, k2 and R for
the algorithms compared in this paper. Our simulations are based on Matlab
implementations of the algorithms. The implementation of the push-sum algo-
rithm is round-based and synchronised. The neighbours are selected at random
from a uniform distribution. For all methods, A and b are distributed row-wise
over all N nodes. Without loss of generality, we consider the special case n = N,
i.e., each node holds one row of A and one element of b. Like in [16], the relative
degree weight matrix was used for both diffLMS and D-LMS.
In order to evaluate the accuracy of the approximate solution z, computed
by the algorithms, we evaluated the relative error
Jmaxlzy — 2" loo /|27 oo, (2)

=L

where z* is the solution computed sequentially in Matlab.

412 K.E. Prikopa, H. Strakova, and W.N. Gansterer

Hypercube Random Geometric
10° [0 o
3 _ Ry
f 10-1 L 1 R
= —2 B e
EN 11 \ % 3
I 1074 [] L ‘!]
= 05 L 1 F \ 1
= 6 H 1 @
T; 107% ¢ =fge- CTA 7 r -~ CTA \t ‘:, 7
g 1077 L ATC 1t ATC t & 1
5 —6— D-LMS i —o— D-LMS &
B 108 [eeeeoeem PSDLS | I — PSDLS L 9
10! 10? 10° 10* 10° 10 102 10° 10* 10°
Average number of messages per node Average number of messages per node

Fig. 1. Comparison for N = n = 64, m = 8 on different topologies: hypercube (left) and
random geometric (right). The step-sizes are parc = pera = 0.01 and pp-Lvs = 0.2.

diff LMS and D-LMS are both iterative methods, whereas the PSDLS is a di-
rect method with an iterative building block (the push-sum algorithm) in each
step. For a fair comparison of the methods, the instances of the push-sum algo-
rithm in PSDLS were not terminated based on reaching a predefined accuracy,
but based on a predefined maximum number of rounds.

The behaviour of diffLMS and D-LMS strongly depends on the choice of the
step-size parameter u. Based on our experience, in particular the convergence
speed of diff LMS is very sensitive to the choice of i, and for bad choices of y the
methods even diverge. The best choice for p in terms of convergence speed seems
to vary greatly with m, the topology and the average node degree. Unfortunately,
the literature does not give any guidance on how to choose p. Thus, we performed
extensive simulations across a wide range of values for u and chose the values at
which the respective algorithm eventually achieves the highest accuracy.

Figure 1 shows the convergence behaviour of the different algorithms for N =
64 nodes arranged in a hypercube and as a random geometric graph on the unit
square with a communication radius 0.2. The horizontal axis shows the average
number of messages sent per node and the relative error (2) achieved for this
number of messages sent per node is plotted on the vertical axis. The experiments
show that the diffLMS methods do not reach the targeted accuracy of 10~% and
after 12000 messages only achieve an accuracy of 1072 on a hypercube. On
a random geometric graph diff LMS diverges at around 3100 messages and does
not even reach 10~!. On a hypercube network, the D-LMS algorithm achieves an
accuracy of 10~%, but requires around 32600 messages to be sent per node. The
PSDLS method converges significantly faster than the other algorithms requiring
only about 1950 messages per node to reach an accuracy of 10~8, which is a factor
of 16 less than D-LMS. The amount of data sent per node is also significantly
lower for PSDLS, sending only 5400 values compared to 261000 values sent by

Truly Distributed Least Squares Solvers 413

D-LMS. Similar behaviour can be observed for the random geometric graph.
PSDLS converges more than 7 times faster than D-LMS and sends only 0.05%
of the data sent by D-LMS.

6 Conclusion

We surveyed existing distributed least squares solvers and classified them based
on their communication pattern. We introduced a novel truly distributed least
squares solver PSDLS based on the push-sum algorithm, which limits the com-
munication to the immediate neighbourhood of each node and does not require
a fusion centre or clustering.

We analysed and compared the communication cost of all existing truly dis-
tributed methods in terms of the number of messages and the amount of data
sent per node. Numerical simulations showed that the number of messages per
node required for a solution accuracy of 1078 is more than a factor of seven lower
for the novel PSDLS algorithm than for the other truly distributed methods.

Future work will consider fault tolerance in distributed least squares solvers.

Acknowledgement. This work was partly supported by the Austrian Science
Fund (FWF): S10608-N13 (NFN SISE).

References

1. Reise, G., Matz, G., Grochenig, K.: Distributed field reconstruction in wireless sen-
sor networks based on hybrid shift-invariant spaces. IEEE Transactions on Signal
Processing 60(10), 5426-5439 (2012)

2. Sayed, A.H.: Diffusion adaptation over networks. In: Academic Press Library in
Signal Processing, vol. 3, pp. 323-454. Academic Press, Elsevier (2014)

3. Shi, L., Song, W.Z., Xu, M., Xiao, Q., Kamath, G., Lees, J., Xing, G.: Imaging
seismic tomography in sensor network. In: IEEE International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS), pp. 304-306 (2013)

4. Reichenbach, F., Born, A., Timmermann, D., Bill, R.: A distributed linear least
squares method for precise localization with low complexity in wireless sensor net-
works. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006.
LNCS, vol. 4026, pp. 514-528. Springer, Heidelberg (2006)

5. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 482-491 (2003)

6. Gansterer, W.N., Niederbrucker, G., Strakova, H., Schulze Grotthoff, S.: Scalable
and fault tolerant orthogonalization based on randomized distributed data aggre-
gation. Journal of Computational Science 4(6), 480-488 (2013)

7. Niederbrucker, G., Strakova, H., Gansterer, W.N.: Improving fault tolerance and
accuracy of a distributed reduction algorithm. In: SC Companion: High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 643-651 (2012)

8. Khan, M.I., Gansterer, W.N., Haring, G.: Static vs. mobile sink: The influence
of basic parameters on energy efficiency in wireless sensor networks. Computer
Communications 36(9), 965-978 (2013)

414

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

K.E. Prikopa, H. Strakova, and W.N. Gansterer

Le Borgne, Y.A., Nowe, A., Abughalieh, N., Steenhaut, K.: Distributed regression
for high-level feature extraction in wireless sensor networks. In: 2010 Seventh In-
ternational Conference on Networked Sensing Systems (INSS), pp. 249-252 (2010)
Shi, L., Song, W.Z., Kamath, G., Xing, G., Liu, X.: Distributed least-squares iter-
ative methods in networks: A survey. Submitted to Computing Journal (2013)
Renaut, R.A.: A parallel multisplitting solution of the least squares problem. Nu-
merical Linear Algebra with Applications 5(1), 11-31 (1998)

Yang, L., Brent, R.: Parallel MCGLS and ICGLS methods for least squares prob-
lems on distributed memory architectures. The Journal of Supercomputing 29(2),
145-156 (2004)

Behnke, R., Salzmann, J., Lieckfeldt, D., Timmermann, D.: SDLS - Distributed
least squares localization for large wireless sensor networks. In: International Con-
ference on Ultra Modern Telecommunications & Workshops, pp. 1-6 (2009)
Shakibian, H., Charkari, N.: MMS-PSO for distributed regression over sensor net-
works. In: IEEE Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI), pp. 68—-73 (2010)

Zhou, Q., Kar, S., Huie, L., Poor, H.V.: Robust distributed least-squares estima-
tion in sensor networks with node failures. In: IEEE Global Telecommunications
Conference, pp.1-6 (2011)

Cattivelli, F., Sayed, A.: Diffusion LMS strategies for distributed estimation. IEEE
Transactions on Signal Processing 58(3), 1035-1048 (2010)

Tu, S.Y., Sayed, A.: Diffusion strategies outperform consensus strategies for dis-
tributed estimation over adaptive networks. IEEE Transactions on Signal Process-
ing 60(12), 62176234 (2012)

Schizas, I.: Consensus in ad hoc WSNs with noisy links - Part II: Distributed
estimation and smoothing of random signals. IEEE Transactions on Signal Pro-
cessing 56(4), 1650-1666 (2008)

Mateos, G., Schizas, I.D., Giannakis, G.B.: Performance analysis of the consensus-
based distributed LMS algorithm. EURASIP Journal on Advances in Signal Pro-
cessing 2009(1), 68:6-68:6 (2009)

Schizas, I.D., Mateos, G., Giannakis, G.B.: Distributed LMS for consensus-based
in-network adaptive processing. IEEE Transactions on Signal Processing 57(6),
2365-2382 (2009)

Sluciak, O., Rupp, M.: Network size estimation using distributed orthogonalization.
IEEE Signal Processing Letters 20(4), 347-350 (2013)

Strakova, H., Gansterer, W.N., Zemen, T.: Distributed QR factorization based
on randomized algorithms. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 235-244. Springer,
Heidelberg (2012)

Strakova, H., Gansterer, W.N.: A distributed eigensolver for loosely coupled net-
works. In: 21st FEuromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 51-57 (2013)

	Analysis and Comparison of Truly Distributed Solvers for Linear Least Squares Problems on Wireless Sensor Networks

	1 Introduction
	2 Existing Distributed Least Squares Solver
	2.1 Centralised Approaches or Global Communication
	2.2 Clustered Approaches
	2.3 Truly Distributed Approaches

	3 A Push-Sum-Based Least Squares Solver
	4 Communication Cost of Distributed LS Solvers
	5 Experiments
	6 Conclusion
	References

