Resolving Semantic Conflicts in Word Based
Software Transactional Memory

Craig Sharp, William Blewitt, and Graham Morgan

Newcastle University, NE1 7TRU, UK
{craig.sharp,william.blewitt,graham.morgan}@ncl.ac.uk

Abstract. In this paper we describe a technique for addressing seman-
tic conflicts within word based Software Transactional Memory. A se-
mantic conflict is considered to be some application condition which
causes transactions to explicitly abort. Session locking and a companion
Contention Management Policy are described which support the paral-
lel exploration of multiple transaction schedules at run time, to resolve
semantic conflicts. Performance figures are provided to demonstrate the
effectiveness of our technique when semantic conflicts are introduced into
established benchmarks.

Keywords: Transactional Memory, Contention Management, Shared
Memory, Concurrency Control, STM.

1 Introduction

Software Transactional Memory (STM) has become a popular research area for
concurrent programmers given that the STM abstraction offers ease of use in
comparison to lock based approaches. More powerfully, composing sections of
concurrent code can be achieved with ease using STM unlike a lock-based imple-
mentation [1]. At the time of writing, however, there exist a variety of STM im-
plementations with two approaches gaining prominence: object based and word
based. Object based STMs [2,3] are generally particular to object orientated
languages and represent shared data in the form of atomic objects. Conversely,
shared data in word based STMs [4,5] is represented at the level of memory
words.

Felber et al observed in [4] that word based STMs allow transactional accesses
to be mapped directly to the underlying memory system. As a result, word based
STMs offer: (i) easier integration into existing programming languages and (ii)
greater efficiency in the context of compiler support. TinySTM [4,6] has been
provided as a lightweight and efficient word based STM. The (relatively) small
code base makes TinySTM particularly attractive for STM development, allow-
ing easy integration with the STAMP [7] benchmark suite. For these reasons,
the developments in this paper have been integrated into TinySTM.

A significant feature of any STM system concerns the handling of aborted
transactions under high contention for shared resources due to concurrent con-
flicts on shared data; a task typically delegated to the Contention Management

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 463-474, 2014.
© Springer International Publishing Switzerland 2014

464 C. Sharp, W. Blewitt, and G. Morgan

Policy (CMP). Various CMPs exist to determine which transaction must abort
upon a conflict (time-stamp CMP, for instance, gives priority to the transaction
that began first). From the perspective of the application, however, there also
exist semantic conflicts which can be conceived as conditions within the appli-
cation which prevent a transaction from committing. Figure 1(A) provides an
example of a semantic conflict with two threads executing a withdrawal and de-
posit transaction concurrently. Let us suppose that there is a concurrent conflict
between the withdrawer and depositor transactions and that the CMP decides
to abort the depositor. If the withdrawer requires that a deposit be made be-
fore it can perform the withdrawal, however, then it cannot continue and must
(explicitly) abort. Both transactions re-execute until the depositor precedes the
withdrawer (or the CMP aborts the withdrawer). If a CMP is employed which
resolves conflicts based on transaction starting time or the amount of work com-
pleted, it is possible that the withdrawer may always succeed in aborting the
depositor (if the withdrawer began before the depositor or has carried out more
work, for instance).

Primitives exist to provide transaction coordination, which may in turn re-
duce the occurrence of semantic conflicts (e.g. Harris et al [1] provided primitives
such as retry and orElse). Alternatively, a ‘semantic transaction’ can be avoided
if simply allowed to commit rather than aborting explicitly (assuming no con-
current conflicts have occurred). The programmer may then specify that the
transaction execute at some future time. Neither approach, however, alleviates
the programmer from the burden of resolving the conflict. Conversely, [8] intro-
duced a new CMP (Hugh) which resolves semantic conflicts without placing a
burden on the programmer. Hugh was integrated with an object based STM and
micro-benchmarks demonstrated some encouraging initial results. Hugh2 has
since been implemented with TinySTM (a word based STM). [9] describes the
process of enabling transaction replication within TinySTM and severe implica-
tions for memory management are demonstrated (caused by the introduction of
semantic conflicts). In this paper the following contributions are provided:

— The implementation of a novel session locking technique to resolve semantic
conflicts in a manner both decoupled from the programmer and compatible
with existing CMPs;

— Performance results showing the impact and resolution of semantic con-
flicts with several CMPs in large-scale benchmarks (e.g. STAMP benchmark
suite [7]).

In Section 2 we describe the Implementation of our CMP and Section 3 sum-
marises Related Work. Section 4 provides an Evaluation and, finally, Section 5
concludes the paper and summarises possible avenues for future work.

2 Implementation

2.1 Overview

Hugh?2 CMP is activated once some thread, encounters a semantic conflict (caus-
ing thread, to explicitly abort its transaction). Before the aborted transaction

Resolving Semantic Conflicts in Word Based Software Transactional Memory 465

A THREAD 1 THREAD 2 B THREAD 1 THREAD 2
: :
X W/DRAW ™ DE(POSI ‘ ‘ TX W/DRAW READ/WRITE) TX DEPOSIT

READ/WRITE

i SEMANTIC
CONFLICT
TX W/DRAW ot TX DEPOSIT
TX W/DRAW
TX DEPOSIT fdrrs ™
DECIDE:

RE-SCHEDULE COMMIT D,W

i

Fig. 1. Scenarios A and B contrast the approaches of a conventional CMP with the
Hugh2 CMP when a semantic conflict occurs

is restarted, thread, enters a new session mode. During session mode, thread,
re-executes its own transaction in addition to the transactions of any other ses-
ston mode threads. Each session mode thread executes a single permutation
of transactions, to discover a schedule of transaction execution which resolves
the semantic conflict(s). Figure 1(B) shows the re-execution of two transactions
accessing a single account (specifically, a depositor and withdrawer transaction).
Thread 2 executes a permutation which succeeds in resolving the semantic con-
flict (the deposit ensures that the withdrawal can occur).

When there are no further transactions to execute, each thread performs con-
sensus to determine the permutation to be committed. Consensus is managed
using a Universal Construction (hereafter UC). The UC is essentially a linked-
list, which may be concurrently appended to by threads engaged in session mode.
Each new entry of the UC identifies the transactions that have been committed
during a particular session. Once a session has terminated each participating
thread can determine whether its own transaction was committed or aborted
by reading the log of the UC. Those threads whose transactions remain uncom-
mitted perform a new session, while the threads of the committed transactions
return to non-session mode.

2.2 Sessions

Hugh2 attempts to resolve semantic conflicts within the context of a session. A
non-session mode thread will enter session mode if: (i) it encounters a semantic
conflict while executing a transaction and (ii) it encounters data that is ses-
sion locked while executing a transaction. In addition to the normal structures
required by TinySTM, the following data structures are required to support
sesston execution:

— A global Transaction Table is provided where the n-th entry into the ta-
ble belongs to the n-th thread in the application. Threads in session mode
retrieve and execute transactions stored in the table;

— A global UC is provided (a linked list) with a session counter (an integer).
Each list entry corresponds to a session and the session counter identifies the

466 C. Sharp, W. Blewitt, and G. Morgan

Algorithm 1. TinySTM Handlers

function onStart(tz, ftn, args)

1 if tx.state # started then return nocalltz;
2 if tz.nbAborts = 0 then setTableEntry(tz.id, ftn, args);
3 if tz.sessionMode then
4 setTableSession(tz.id, sessionCounter);
else
5 return calltx;
6 while true do
7 if (tzcall < getNextTx(tz)) = noMoreTz then
8 if onTimeout(tz) = 0 then break else continue;
9 if consensusReached(sessionNo(tz.id)) then break;
10 Invoke (tzcall.ftn, txcall.arg);
11 if onTxSuccess(tz, tzcall) = 0 then break;
12 return nocalltz;
function onPreCommit (tx)
13 if tx.state # started then return;
14 logEntry < UCLogEntry(sessionNo(tz.id));
15 if cas(&logEntry, logEntry, tr.txtMask) = fail then
16 tx.state < lostConsensus;
17 rollback();
else
18 tx.state < wonConsensus;
function onCommit (tz)
19 logEntry < UCLogEntry(sessionNo(tz.id));
20 if tx.state = wonConsensus then
21 atomicIncrement (sessionCounter);
22 tx.state < started;
23 if bitIsSet(logEntry, tz.id) then
24 tx.sessionMode « false;
else
25 rollback();

current session. Every entry contains a bit mask denoting which transactions
were committed for that particular session;

— Each thread also uses several variables to manage session execution includ-
ing: a flag indicating whether it is in session mode, a state variable to hold
its progress (which may hold the value: started, lostConsensus or wonCon-
sensus), and a bit mask to record the transactions executed during a ses-
ston (The i-th bit of the mask corresponds to the i-th entry in the Transac-
tion Table).

TinySTM allows custom handlers to be called upon the occurrence of several
important events during the per-thread execution of a transaction. Hugh?2 is
mostly implemented within these handlers, specifically: onStart, onPreCommit,
onCommit and onAbort. Algorithms 1 and 2 provide the pseudo code:

OnStart performs the iterative execution of transactions when a thread enters
session mode. When a thread first executes a transaction it inserts the transac-
tion function and argument to the transaction table (line 2). Non session mode
threads return from the onStart handler and executes their transactions nor-
mally (line 5). If the thread is in session mode, then the thread’s table entry

Resolving Semantic Conflicts in Word Based Software Transactional Memory 467

is updated to hold the current value of the session counter (line 4). Setting the
session counter acts as a flag which other session mode threads can use to de-
termine which transactions can be executed as part of their own session. Lines 6
to 11 perform the iterative execution of transactions. The thread first attempts
to retrieve a new transaction to execute (line 7). If no more transactions are
available, however, the thread calls an onTimeout handler (line 8). If the thread
has not committed any transactions, it continues reading from the table. Other-
wise, the thread breaks out of the loop and returns the nocalltz constant (line
12). If consensus has been reached (line 9) or the next transaction is successfully
executed and no time remains (line 11), the thread breaks out of the loop and
returns nocalltz (line 12).

OnPreCommit contains the code where session mode threads attempt to decide
consensus. The session-mode thread invokes compare-and-swap (CAS) to set
the status of the next entry in the UC (line 15). the thread updates its state,
depending on the result of the CAS call (lines 16 and 18).

OnCommit is called after the onPreCommit handler has been invoked. If the
calling thread is in session mode and it decided the consensus result, then it
atomically increments the session counter (line 21) indicating to other threads
that the session has terminated. In line 23, threads check the UC to deter-
mine whether their transaction was committed, and if so, the thread leaves ses-
sion mode (line 24), otherwise the thread rolls-back execution and will attempt
a new session (line 25).

OnAbort is invoked whenever any transaction aborts (see Algorithm 2, line 26).
A flag is supplied to the abort handler to identify whether the abort was made
implicitly (a concurrent conflict) or explicitly (a semantic conflict). In the case
of explicit aborts, the aborting thread sets its session mode flag (effectively
entering session mode).

OnTzSuccess is invoked when a transaction is successfully executed in ses-
sion mode. The thread updates its bit mask (line 28), and decrements a pri-
vate counter (line 29). If the counter has reached 0, the onTimeout handler is
invoked (line 29). Threads invokes onTimeout (line 27) to determine whether
they should continue executing transactions in the transaction table, or perform
the onPreCommit handler (thus attempting consensus).

2.3 Session Locks

As with conventional TinySTM, locking is used to guarantee consistent reading
and writing of shared data (TinySTM provides both read and write locks). To
accommodate our CMP, however, we have added an extra type of lock, called a
session lock, with the following properties:

— Once locked, a session lock grants access to a word of shared data for any
thread operating in the same session, hence a session lock is locked only
once per Session;

468 C. Sharp, W. Blewitt, and G. Morgan

— A session lock is never explicitly unlocked. A session lock has a viable life-
time for the duration of the session in which it was locked. Once the ses-
sion has ended, the session lock is considered stale and may be removed at
the discretion of any encountering thread.

Algorithm 2. TinySTM and Session Lock Handlers

function onAbort (tz, explicit)
26 if explicit = true then tx.sessionMode <+ true;

function onTimeout (tz)
27 if commitCount (tz.tzMask) > 0 then return 0;
else return (tz.counter < newLimit);

function onTxSuccess(tz, tzcall)

28 setBit (tz.txMask, tzcall.id);
29 if decrement (tz.counter) = 0 then return onTimeout (tz);
30 return tx.counter;

function onSharedAccess(tz, lock)

31 ctr < sessionCounter;

32 if —tx.sessionMode then

33 if —sessionLocked(lock) then return proceed;
34 if ctr # sessionNo(lock) then return stale;
35 tx.sessionMode «+ true;

36 return killself;

if consensusReached(sessionNo(tz.id)) then return killself;
if —sessionLocked(lock) then return proceed;

37 if nextctr # sessionNo(lock) then return stale;

38 return sessionLocked;

function onLock(tz, lock, accessResult, accessType)

39 if —tx.sessionMode then

40 lockval < createTinyStmLock(lock, accessType);

41 return (cas(lock.addr, lock.val, lockval) = success);
42 if accessResult = sessionLocked then return true;

43 nextctr < sessionCounter;

44 sLockV alue < createSessionLock(nextctir);

45 return (cas(lock.addr, lock.val, sLockVal) = success);

In TinySTM, a lock is represented by a word-sized integer, with the value of
the last two bits denoting the type of lock (binary 0 is unlocked, 1 denotes write
locked and 2 denotes read locked). A session lock is represented by setting both
bits. The remaining bits of the word value hold the session number in which the
lock was set. Algorithm 2 (lines 31-45) shows two handlers which are invoked
when dealing with session locks:

OnSharedAccess is called before a shared word is locked for reading or writing.
Non session mode threads may attempt to lock shared data which is not ses-
sion locked (line 33) or if the session lock is stale (line 34). Otherwise the thread
enters session mode (line 35) and aborts (line 36). Threads in session mode,
however, can attempt access of shared data as long as the session is still active.

OnLock is called whenever a thread attempts to lock shared data (lines 39-45).
Non session mode threads create a normal TinySTM type lock and attempt

Resolving Semantic Conflicts in Word Based Software Transactional Memory 469

to lock the data (line 41) while session mode threads can immediately access
session locked data (line 42). If the shared word is not session locked, then a
session mode thread must attempt to lock the data (line 45).

3 Related Work

A range of CMPs currently exist but which can be categorised as either wait
based and schedule-based. Wait-based CMPs [10,11] (e.g. Greedy, Karma, Polka
etc), are typically trivial to implement, versatile and offer good performance.
Heber et al, however, noted in [12] an inefficiency with wait-based approaches
due to the difficulty in finding an adequate back-off period, given the dynamic na-
ture of execution in STMs. Conversely, schedule-based CMPs typically resched-
ule or serialise aborted transactions. [13] exemplifies one such approach. Bai
et al produced several ‘transaction executor’ models with the aim of equitably
distributing transactions as ‘jobs’ among the threads of an application. ‘Keys’
are also used to predict the likelihood that conflicts will arise between execut-
ing transactions. Transactions which are likely to conflict are scheduled to be
executed by the same ‘worker’ thread (thus enforcing serialisation).

CAR-STM [14] and Steal on Abort [15] are also schedule-based CMPs where
transactional jobs are assigned to per-thread work queues. Both CAR-STM and
Steal on Abort move aborted transactions to the work queues of conflicting
transactions upon the occurrence of a conflict, to serialise the conflicting trans-
action’s execution. Steal on Abort experiments with various techniques when
rescheduling transactions among work queues. Additional work queues can also
be created when the number of transactional jobs is high. Hugh2 differs from the
cited approaches of both wait-based and schedule-based CMPs, insofar as Hugh2
is the only approach which focuses on the resolution of semantic conflicts. In ad-
dition, Hugh2 requires a single transaction table to hold transactional jobs, but
does not require the overhead of a thread pool to administer such jobs. Hugh2
also explores multiple schedules in parallel during the process of contention man-
agement.

Similarly with Hugh?2, several approaches to STM have been developed which
rely on a Universal Construction (UC). Herlihy [16] introduced the UC concept
to enable multiple threads to access shared data structures via a wait-free algo-
rithm. Wamhoff [17] and Chuong [18] combined the UC technique with trans-
actions to handle certain failure conditions. Crain et al have shown that it is
possible to remove the abort semantics of STM using a UC [19]. While the cited
approaches apply the UC technique for a STM system, Hugh2 uses the UC for
contention management.

Finally, TL-STM [20] is an adaptation of SwissTm which incorporates Thread-
Level-Speculation (TLS) into memory transactions. TL-STM bears similarity to
Hugh?2 insofar that platform parallelism is exploited to explore different per-
mutations of transactional elements. More specifically, TL-STM seeks to en-
hance transactional throughput by reordering the internal execution elements
of a transaction to better reflect concurrent schedules of execution. Conversely,

470 C. Sharp, W. Blewitt, and G. Morgan

Hugh?2 seeks to reorder whole transactions to accommodate semantic schedules
of execution. Whereas TL-STM applies internal reordering based on the seman-
tics of a transaction, Hugh2 applies external reordering based on the semantics
of an application.

4 Evaluation

In this section we present results from a series of benchmarks to demonstrate the
performance of our system. The tests were carried out on a desktop PC featuring
2 x dual-core 3.07GHz Intel(R) processors with 4GB of RAM. The Operating
System used was Ubuntu (Linux) version 13.04 and the Transactional Memory
software was TinySTM version 1.04 with the Write-Back, Eager Transactional
Locking scheme using visible reads. Experiments were carried out with increasing
numbers of threads (from 2 to 16) with each run executed 5 times with the aver-
age results provided. Two existing CMPs were used as a measure of comparison
with Hugh?2, specifically Karma and Polka [11].

Two benchmarks were used to test the performance of Hugh2. The first sce-
nario (bank) is provided in the TinySTM software and allows the execution of a
number of transaction types on a set of simulated bank accounts. The ‘bank’ in
this case is an array of account data structures. The second scenario (vacation)
is part of the STAMP benchmark suite [7] and provides transactional accesses
over several red-black trees to represent a holiday booking database system. Both
scenarios provide update, read-all and write-all transaction types which can be
generated at varying intensities. Transactions from the wvacation scenario differ
from the bank simulation insofar as they tend to execute more statements of
greater complexity.

Semantic transactions were introduced into bank and vacation. In the bank sce-
nario, two extra transactions (called service charge and pay interest) were cre-
ated which explicitly call abort based on the balance of certain bank accounts. In
the vacation scenario an additional red-black tree was created and two transac-
tion types (called create customer and remove customer) which add and remove
nodes while explicitly aborting if the contents of the tree is deemed incorrect.
The semantic transactions introduce a consumer-producer relationship where a
producer transaction should precede a consumer to grant mutual success. The
semantic transactions interact with numerous other shared data elements, so it
is expected that if semantic transactions must abort frequently, this activity will
also increase the frequency of concurrent conflicts. Increasing the number of se-
mantic transactions in a scenario means we can measure the impact of semantic
conflicts on the application (for example, we might set up a scenario with 16
threads and specify that 8 of the threads execute semantic transactions to ob-
serve the effects of 50% semantic conflicts on the throughput of the application).

4.1 Transaction Throughput

Figure 2 provides graphs showing results for transaction throughput. Y-axes
shows the number of transactions committed per second and X-axes show the

Resolving Semantic Conflicts in Word Based Software Transactional Memory 471

__ (A)TX. THROUGHPUT IN BANK WITH 0% SEMANTIC CONFLICTS (D) TX. THROUGHPUT IN VACATION WITH 0% SEMANTIC CONFLICTS
Q 8000 8000

1) | HUGH2 | HUGH2
; O KARMA O KARMA
= 60000+ W POLKA 60000 W POLKA
=

Z 400004 40000

I

9]

S 200004 20000

o)

o

I

=

2 4 8 16

. (B) 50% SEMANTIC CONFLICTS (E) 50% SEMANTIC CONFLICTS

[

%140000— m HUGH2 140000 m HuGH2
52 120000+ O KARMA 120000 O KARMA
1000004 - PoLkA 100000 - PoLkA

80000
60000
40000
20000+

2 4 8 16 2 4 8 16

(C) 100% SEMANTIC CONFLICTS (LOG SCALE) (F) 100% SEMANTIC CONFLICTS (LOG SCALE)

= HUGH2
O KARMA
W POLKA

= HUGH2
O KARMA
W POLKA

10000+ 10000+

100+ 100+

THROUGHPUT (TX/SEC)

NO. OF THREADS NO. OF THREADS

Fig. 2. Average transaction throughput for the Bank/Vacation scenario

number of threads used. Graphs 2(A) and 2(D) provide comparison between
the Karma, Polka and Hugh2 CMPs in the absence of semantic conflicts, for
the bank and vacation scenarios respectively. The system which employs Hugh2
for semantic conflicts, resorts to calling the Karma on occurrence of concurrent
conflicts. As expected, with no semantic conflicts being generated in either graph,
the performance of Hugh2 and Karma are practically the same.

In Graphs 2(B) and 2(E) semantic conflicts have been introduced into both
scenarios such that 50% of the threads generate semantic transactions in the case
of thread numbers: 4, 8 and 16!. At this point the throughput for Karma and
Polka have both fallen noticeably relative to the throughput for Hugh2 which
has increased substantially. In Graphs 2(C) and 2(F), semantic transactions are
generated by 100% of the threads; once again the throughput for both Karma
and Polka has reduced dramatically, whereas Hugh2 outperforms both.

When comparing the vacation scenario to the bank scenario we can see that
the Polka CMP mostly outperforms both the Karma and Hugh2 CMPs when
semantic conflicts are absent, and indeed, Karma CMP and has been cited as
providing the best average performance of wait-based CMPs [15] (one notable
exception, however, is in the vacation scenario when 16 threads are used). It is
encouraging, however, to see that Hugh2 can function in combination with an

! Two or more threads are required to resolve semantic conflicts (i.e. a producer and
consumer). To show 50% semantic conflicts therefore requires at least four or more
threads. The results for 2 threads show 0% semantic conflicts instead.

472 C. Sharp, W. Blewitt, and G. Morgan

(A) AVG. TX. MAX. RETRIES IN BANK WITH 0% SEMANTIC CONFLICTS (D) AVG. TX. MAX. RETRIES IN VACATION WITH 0% SEMANTIC CONFLICTS

(ﬁ 700 m HUGH2 3000+ ™ HUGH2
T O KARMA O KARMA —
E 6007 @ PoLka [l 2500- m POLKA
oc 2000
% —
= 1500+
= 1000
g 5004
z -
2 4 8 16 2 4 8 16
(B) AVG. TX. MAX. RETRIES IN BANK WITH 0% SEMANTIC CONFLICTS (E) 50% SEMANTIC CONFLICTS (LOG SCALE)
3500000 m HuGH2 m HUGH2] =
T O KARMA 1e+06- O KARMA
W POLKA - W POLKA
00000 —
a 1e+04-
% —
<
=500000- 1e+02-
| i
— 1e+00-~ — — — —
2 4 8 16 2 4 8 16
(C) 100% SEMANTIC CONFLICTS (LOG SCALE) (F) 100% SEMANTIC CONFLICTS (LOG SCALE)
@ | 1 1 —
w
T 1e+06- 1e+06
=
w
T 1e+04 1e+044
%
<
= qe402- W HUGH2 1e+02-] W HUGH2
15} O KARMA O KARMA
z = POLKA = POLKA
1e+00-— ML — — 1e+00-— - — —
2 4 8 16 2 4 8 16
NN NF THREANS NN OF THRFANQ

Fig. 3. Average maximum transaction retries for the Banking/Vacation scenario

existing CMP (in this case Karma), without degrading the performance with
respect to resolving concurrent conflicts. Conversely, as semantic conflicts are
introduced, neither Karma or Polka can approach the effectiveness of Hugh2
in terms of transaction throughput. Although Polka almost always produces a
higher throughput than Karma, neither approach maintains good performance
when semantic conflicts are present (regardless of scenario). Throughput also
diminishes for Hugh2, in the case of 50% semantic conflicts and to a lesser ex-
tent with 100% semantic conflicts. This suggests that the greater occurrence of
threads producing concurrent conflicts has a negative impact on Hugh?2.

4.2 Maximum Transaction Retries

Figure 3 presents results showing the average maximum retries for a transaction
during the bank and wvacation scenarios respectively. The format of the graphs
in Figure 3 mirrors the previous results for transaction throughput with the
exception that the Y-axis now shows average retries. A higher average number
of retries is indicative of threads experiencing difficulty in resolving semantic
conflicts. Hence, we expected that the average maximum retries should increase
in tandem with an increase in semantic conflicts for the Polka and Karma man-
agers, whereas this should not be the case for the Hugh2 CMP.

Graphs 3(A) and 3(D) provide comparison between the Karma, Polka and
Hugh?2 CMPs when no semantic conflicts are present. As expected, Polka CMP
produces the smallest average maximum retries (graphs 2(A) and 2(D) have
already shown that Polka produces the highest throughput in the absence of

Resolving Semantic Conflicts in Word Based Software Transactional Memory 473

semantic conflicts). In Graphs 3(B) and 3(E), however, semantic conflicts have
been introduced at a rate of 50% (half the threads in the scenario generate
semantic transactions in the case of thread numbers: 4, 8 and 16). A substantial
increase in average maximum transaction retries is now observable in all CMPs,
although Hugh?2 produces the best performance.

In Graphs 3(C) and 3(F), semantic transactions are being created by 100% of
threads. Once again the average maximum number of retries has increased for
both Karma and Polka CMPs. In the case of Hugh?2, the average maximum has
fallen, with neither Karma or Polka tackling semantic conflicts more effectively
than Hugh2. In addition, there is only a negligible difference in performance
between Polka and Karma (suggesting that neither policy is more effective at
resolving semantic conflicts).

5 Conclusion

This paper presents Hugh2, a CMP which deals with semantic conflicts via the
speculative execution of aborted transactions. We have described how Hugh2 can
be integrated with a word based STM using a new session locking mechanism.
Two substantial benchmarks demonstrated performance improvements once se-
mantic conflicts are introduced. Given that Hugh2 can be incorporated with any
existing CMP, it would be interesting to test the performance of Hugh2 against
a wider range of CMPs. In addition, incorporating semantic conflicts into the
remaining STAMP benchmarks may be useful in order to observe how semantic
conflicts affect a diverse range of scenarios.

Going forward, we believe the session lock mechanism raises some exciting
possibilities for exploring our work within a distributed STM application. In par-
ticular, session locks may provide a greater scalability in the context of DSTM,
given session locks may be shared across threads and need not be explicitly
unlocked.

References

1. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 48-60. ACM (2005)

2. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284-298. Springer, Heidelberg
(2006)

3. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: ACM SIGPLAN Notices, vol. 41, pp. 253-262.
ACM (2006)

4. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 237-246. ACM
(2008)

474

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C. Sharp, W. Blewitt, and G. Morgan

Dragojevié¢, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
ACM Sigplan Notices, vol. 44, pp. 155-165. ACM (2009)

Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional
memory. IEEE Transactions on Parallel and Distributed Systems 21(12), 1793-1807
(2010)

Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization, IISWC 2008, pp. 35-46. IEEE (2008)

Sharp, C., Morgan, G.: Hugh: A semantically aware universal construction for
transactional memory systems. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par
2013. LNCS, vol. 8097, pp. 470-481. Springer, Heidelberg (2013)

Sharp, C., Morgan, G.: Introducing semantic conflict resolution to word based
software transactional memory. Technical report, 10 p. Newcastle University, UK
(2014)

Guerraoui, R., Herlihy, M., Pochon, B.: Towards a theory of transactional con-
tention managers. In: Annual ACM Symposium on Principles of Distributed Com-
puting: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of
Distributed Computing, vol. 23, pp. 316-317 (2006)

Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, pp. 240-248. ACM (2005)
Heber, T., Hendler, D., Suissa, A.: On the impact of serializing contention manage-
ment on stm performance. Journal of Parallel and Distributed Computing (2012)
Bai, T., Shen, X., Zhang, C., Scherer, W., Ding, C., Scott, M.: A key-based adaptive
transactional memory executor. In: IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2007, pp. 1-8. IEEE (2007)

Dolev, S., Hendler, D., Suissa, A.: Car-stm: Scheduling-based collision avoidance
and resolution for software transactional memory. In: Proceedings of the Twenty-
seventh ACM Symposium on Principles of Distributed Computing, pp. 125-134.
ACM (2008)

Ansari, M., Lujan, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: Improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HIiPEAC 2009. LNCS, vol. 5409, pp. 4-18. Springer, Heidelberg (2009)

Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13(1), 124-149 (1991)

Wambhoff, J., Fetzer, C.: The universal transactional memory construction. Tech-
nical report, 12 p. University of Dresden, Germany (2010)

Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for wait-free
transaction friendly data structures. In: Proceedings of the 22nd ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 335-344. ACM (2010)

Crain, T., Imbs, D., Raynal, M.: Towards a universal construction for transaction-
based multiprocess programs. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A.
(eds.) ICDCN 2012. LNCS, vol. 7129, pp. 61-75. Springer, Heidelberg (2012)
Barreto, J., Dragojevic, A., Ferreira, P., Filipe, R., Guerraoui, R.: Unifying thread-
level speculation and transactional memory. In: Narasimhan, P., Triantafillou, P.
(eds.) Middleware 2012. LNCS, vol. 7662, pp. 187-207. Springer, Heidelberg (2012)

	Resolving Semantic Conflicts in Word Based Software Transactional Memory

	1 Introduction
	2 Implementation
	2.1 Overview
	2.2 Sessions
	2.3 Session Locks

	3 Related Work
	4 Evaluation
	4.1 Transaction Throughput
	4.2 Maximum Transaction Retries

	5 Conclusion
	References

