
Parallel Computation of Echelon Forms�

Jean-Guillaume Dumas1, Thierry Gautier2,
Clément Pernet3, and Ziad Sultan1,2

1 LJK-CASYS, UJF, CNRS, Inria, G’INP, UPMF, Grenoble, France
2 LIG-MOAIS UJF, CNRS, Inria, G’INP, UPMF, Grenoble, France

3 LIP-AriC UJF, CNRS, Inria, UCBL, ÉNS de Lyon, France

Abstract. We propose efficient parallel algorithms and implementations
on shared memory architectures of LU factorization over a finite field.
Compared to the corresponding numerical routines, we have identified
three main specifities of linear algebra over finite fields. First, the arith-
metic complexity could be dominated by modular reductions. Therefore,
it is mandatory to delay as much as possible these reductions while mix-
ing fine-grain parallelizations of tiled iterative and recursive algorithms.
Second, fast linear algebra variants, e.g., using Strassen-Winograd al-
gorithm, never suffer from instability and can thus be widely used in
cascade with the classical algorithms. There, trade-offs are to be made
between size of blocks well suited to those fast variants or to load and
communication balancing. Third, many applications over finite fields re-
quire the rank profile of the matrix (quite often rank deficient) rather
than the solution to a linear system. It is thus important to design par-
allel algorithms that preserve and compute this rank profile. Moreover,
as the rank profile is only discovered during the algorithm, block size has
then to be dynamic. We propose and compare several block decompo-
sitions: tile iterative with left-looking, right-looking and Crout variants,
slab and tile recursive. Experiments demonstrate that the tile recursive
variant performs better and matches the performance of reference nu-
merical software when no rank deficiency occurs. Furthermore, even in
the most heterogeneous case, namely when all pivot blocks are rank de-
ficient, we show that it is possbile to maintain a high efficiency.

1 Introduction

Triangular matrix factorization is a main building block in computational linear
algebra. Driven by a large range of applications in computational sciences, par-
allel numerical dense LU factorization has been intensively studied since several
decades which results in software of great maturity (e.g., LINPACK is used for
benchmarking the efficiency of the top 500 supercomputers. More recently, effi-
cient sequential exact linear algebra routines were developed [5]. They are used in
algebraic cryptanalysis, computational number theory, or integer linear program-
ming and they benefit from the experience in numerical linear algebra. In partic-
ular, a key point there is to embed the finite field elements in integers stored as

� This work is partly funded by the HPAC project of the French Agence Nationale de
la Recherche (ANR 11 BS02 013).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 499–510, 2014.
c© Springer International Publishing Switzerland 2014

500 J.-G. Dumas et al.

floating point numbers, and then rely on the efficiency of the floating point matrix
multiplication dgemm of the BLAS. The conversion back to the finite field, done
by costly modular reductions, is delayed as much as possible. Hence a natural in-
gredient in the design of efficient dense linear algebra routines is the use of block
algorithms that result in gathering arithmetic operations in matrix-matrix mul-
tiplications. Those can take full advantage of vector instructions and have a high
computation per memory access rate, allowing to fully overlap the data accesses
by computations and hence deliver close to peak performance efficiency. In order
to exploit the power of multi-core and many-core architectures, we now investi-
gate the parallelization of the finite field linear algebra routines. We report in this
paper the conclusions of our experience in parallelizing exact LU decomposition
for shared memory parallel computers. We try to emphasize which specificities of
exact computation domains led us to use different approaches than that of nu-
merical linear algebra. In short, we will illustrate that numerical and exact LU
factorization mainly differ in the following aspects:

– the pivoting strategies,

– the cost of the arithmetic (of scalars and matrices),

– the treatment of rank deficiencies.

Those have a direct impact on the shape and granularity of the block decompo-
sition of the matrix used in the computation.

Types of block algorithms. Several schemes are used to design block linear al-
gebra algorithms: the splitting can occur on one dimension only, producing row
or column slabs [11], or both dimensions, producing tiles [2]. Note that, here,
we denote by tiles a partition of the matrix into sub-matrices in the mathemat-
ical sense regardless what the underlying data storage is. Algorithms processing
blocks can be either iterative or recursive. Figure 1 summarizes some of the
various existing block splitting obtained by combining these two aspects. Most
numerical dense Gaussian elimination algorithms, like in [2], use tiled iterative
block algorithms. In [4] the classic tiled iterative algorithm is combined with a
slab recursive one for the panel elimination. Over exact domains, recursive al-
gorithms are preferred to benefit from fast matrix arithmetic (see below). Slab
recursive exact algorithms can be found in [10] and references therein and [6]
presents a tiled recursive algorithm.

Slab iterative Slab recursive Tile iterative Tile recursive

Fig. 1. Main types of block splitting

Parallel Computation of Echelon Forms 501

The granularity is the block dimension (or the dimension of the smallest blocks in
recursive splittings). Matrices with dimensions below this threshold are treated
by a base-case variant (often referred to as the panel factorization). It is an
important parameter for optimizing efficiency: a finer grain allows more flexibil-
ity in the scheduling when running numerous cores, but it also challenges the
efficiency of the scheduler and can increase the bus traffic.

The cost of the arithmetic. In numerical linear algebra, the cost of arithmetic op-
erations is more or less associative: with dimensions above a rather low threshold
(typically a few hundreds), the BLAS sequential matrix multiplication attains
the peak efficiency of the processor. Hence the granularity has very little impact
on the efficiency of a block algorithm run sequentially. On the contrary, over
a finite field, a small granularity can imply a larger number of costly modular
reductions, as we will show in Section 3.1. Moreover, numerical stability is not
an issue over a finite field, and asymptotically fast matrix multiplication algo-
rithms, like Winograd’s variant of Strassen algorithm [8, §12] can be used on
top of the BLAS. Their speed-up increases with matrix dimension. The cost of
sequential matrix multiplication over finite field is therefore not associative: a
larger granularity delivers better sequential efficiency.

Pivoting strategies and rank deficiencies. In dense numerical linear algebra, a
pivoting strategy is a compromise between the two competing constraints: en-
suring good numerical stability and avoiding data movement. In the context of
dense exact linear algebra, stability is no longer an issue. Instead, only certain
pivoting strategies will reveal the echelon form or, equivalently, the rank profile
of the matrix [10,6]. This is a key invariant used in many applications using exact
Gaussian elimination, such as Gröbner basis computations [7] and computational
number theory [13].

In the case of numerical LU factorization, quite often all panel blocks have
full rank. Therfore the splitting can be done statically according to a granularity
parameter. Over exact domains, on the contrary, the large blocks are almost
always rank deficient. Thus, the tiles or slabs have unpredictable dimensions
and the block splitting necessarily dynamic, as will be illustrated in Section 4.

Consequently the design of a parallel exact matrix factorization necessarily
differs from the numerical algorithms as follows:

– granularity should be as large as possible, to reduce modular reductions and
benefit from fast matrix multiplication;

– exact algorithms should preferably be recursive, to group arithmetic opera-
tions in matrix products as large as possible;

– block splitting and pivoting strategies must preserve and reveal the rank
profile of the matrix.

It also implies several requirements on the parallel run-time being used:

– the block splitting has to be dynamically computed;
– the computing load for each task is not known in advance (some panel blocks

may have high rank deficiency), making the tasks very heterogeneous.

502 J.-G. Dumas et al.

This motivated us to look into parallel execution runtimes using tasks with
work-stealing based scheduling.

All experiments have been conducted on a 32 cores Intel Xeon E5-4620 2.2Ghz
(Sandy Bridge) with L3 cache(16384 KB). The numerical BLAS is ATLAS
v3.11.4, LAPACK v3.4.2 and PLASMA v2.5.0. We used X-KAAPI-2.1 version
with last git commit: xkaapi 2.1-30-g263c19c638788249. The gcc compiler ver-
sion used is gcc 4.8.2 that supports OpenMP 3.1.

We introduce in Section 2 the algorithmic building blocks on which our al-
gorithms will rely and the parallel programming models and runtimes that we
used in our experiments. In order to handle each problem separately, we focus
in Section 3 on the simpler case where no rank deficiency occur. In particular
Section 3.1 presents detailed analysis of the number of modular reductions re-
quired by various block algorithms including the tiled and slab recursive, the
left-looking, right-looking and Crout variants of the tiled iterative algorithm.
Lastly Section 4 deals with elimination with rank deficiencies. We there present
and compare new slab iterative, tiled iterative and tiled recursive parallel algo-
rithms that preserve rank profiles. We then show that the latter can match state
of the art numerical routines, even when taking rank deficiencies into account.

2 Preliminaries

2.1 Auxiliary Sequential Routines

All block algorithms that we will describe rely on four types of operations that
we denote using the BLAS/LAPACK naming convention:

gemm: general matrix multiplication, computing C ← αA×B + βC,
trsm: solving upper/lower triang. syst. with matrix right/left h.s B ← BU−1.
laswp: permuting rows or columns by sequence of swaps.
getrf: computing (P,L, U,Q), L and U stored in place of A, s.t. A = PLUQ.

A first prefix letter d or f specifies if the routine works over double precision
floating point numbers or finite field coefficients and an optional prefix p stands
for parallel implementation. Our implementations use the sequential routines of
the fflas-ffpack library1 [5]. There, the elements of a finite Z/pZ for a prime
p of size about 20 bits are integers stored in a double precision floating point
number. The sequential fgemm routine combines recursive steps of Winograd’s
algorithm calls to numerical BLAS dgemm and reductions modulo p when neces-
sary. The ftrsm and fgetrf routines use block recursive algorithms to reduce
most arithmetic operations to fgemm. More precisely fgetrf is either done by a
slab recursive algorithm [5] or a tile recursive algorithm [6].

2.2 Parallel Programming Models

We base our implementation on the task based parallel features of the OpenMP
standard. This is motivated by the use of recursive algorithms where tasks are

1 http://linalg.org/projects/fflas-ffpack

http://linalg.org/projects/fflas-ffpack

Parallel Computation of Echelon Forms 503

mandatory. Now in tile iterative algorithms, loops with tasks happen to perform
at least as well as parallel loops.

libgomp is the GNU implementation of the OpenMP API for multi-platform
shared-memory parallel programming in C/C++ and Fortran. Alternatively, we
also used libkomp [1], an optimized version of libgomp, based on the XKaapi

runtime, that reduces the overhead of the OpenMP directives and handles more
efficiently threads creation, synchronization and management. In the experi-
ments of the next sections, we will compare efficiency of the same code linked
against each of these two libraries.

2.3 Parallel Matrix Multiplication

In the iterative block algorithms, all matrix product tasks are sequential, whereas
the recursive block algorithms must call parallel matrix products pfgemm, which
we describe here. Operation pfgemm is of the form C ← αA×B + βC. In order
to split the computation into independent tasks, only the row dimension of A
and the column dimension of B only are split. The granularity of the split can
be chosen in two different ways: either as a fixed value, or by a ratio of the
input dimension (e.g. the total number of cores). We chose the second option
that maximizes the size of the blocks while ensuring a large enough number of
tasks for the computing resources. All our experiments showed that this option
performs better than the first one. When used as a subroutine in a parallel
factorization, it will create more tasks than the number of available cores, but
this heuristic happens to be a good compromise in terms of efficiency.

Figure 2 shows the computation time on 32 cores of various matrix multi-
plications: the numerical dgemm implementation of Plasma-Quark, the imple-
mentation of pfgemm of fflas-ffpack using OpenMP tasks, linked against the
libkomp library. This implementation is run over the finite field Z/131071Z or
over field of real double floating point numbers, with or without fast Strassen-
Winograd’s matrix product. One first notices that most routine perform very
similarly. More precisely, Plasma-Quark dgemm is faster on small matrices but
the effect of Strassen-Winograd’s algorithm makes pfgemm faster on larger ma-
trices, even on the finite field where additional modular reductions occur. In
terms of speed-up, the pfgemm reaches a factor of approximately 27 (using 32
cores) whereas the numerical dgemm of Plasma-Quark reaches a factor of 29, but
this mostly reflects the fact that dgemm has a less efficient sequential reference
timing since it does not use Strassen-Winograd’s algorithm.

Similarly, other basic routines used in the recursive block algorithms, such
as ftrsm (solving matrix triangular systems) and flaswp (permuting rows or
columns), have been parallelized by splitting a dimension into a constant number
of blocks (typically the number of cores).

3 Eliminations with No Rank Deficiency

In this section, we make the assumption that no rank deficiency occurs during
the elimination of any of the diagonal block. This hypothesis is satisfied by

504 J.-G. Dumas et al.

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000 30000

2n
3 /

tim
e/

10
9

matrix dimension

parallel dgemm (PLASMA-QUARK) vs parallel fgemm

libKomp Winograd p-fgemm<131071>
libkomp Winograd p-fgemm<double>

libkomp classic p-fgemm<131071>
libkomp classic p-fgemm<double>

PLASMA-QUARK dgemm

Fig. 2. Speed of exact and numerical matrix multiplication routines

matrices with generic rank profile (i.e. having all their leading principal minor
non zero). This assumption allows us to focus on the problem of reducing the
modular reduction count.

3.1 Modular Reductions

When computing over a finite field, it is of paramount importance to reduce
the number of modular reductions in the course of linear algebra algorithms.
The classical technique is to accumulate several multiplications before reducing,
namely replacing

∑n
i=1(aibi mod p) with (

∑n
i=1 aibi) while keeping the result

exact. If ai and bi are integers between 0 and p−1 this is possible with integer or
floating point units if the result does not overflow, or in other words if n(p−1)2 <
2mantissa, see, e.g., [5] for more details.

This induces a splitting of matrices in blocks of size the largest n∗ satisfying
the latter condition. Now the use of block algorithms in parallel, introduces a
second blocking parameter that interferes in the number of reductions. We will
therefore compare the number of modular reductions of three variants of the
tile iterative algorithm (left-looking, right-looking and Crout, see [3]), the slab
recursive algorithm of [5], and the tile recursive algorithm of [6]. For the sake of
simplicity, we will assume that the block dimensions in the parallel algorithms
are always below n∗. In other words operations are done with full delayed re-
duction for a single multiplication and any number of additions: operations of
the form

∑
aibi are reduced modulo p only once at the end of the addition,

but a · b · c requires two reductions. For instance, with this model, the num-
ber of reductions required by a classic multiplication of matrices of size m × k
by k × n is simply: Rgemm(m, k, n) = mn. From [6, Theorem 3], this extends
also for triangular solving with an m × n unknown matrix: with unit diagonal,
Rutrsm(m,m, n) = mn (actually the computation of the last row of the solution
requires no modulo reduction as it is just a division by 1, we will therefore rather

Parallel Computation of Echelon Forms 505

use Rutrsm(m,m, n) = (m− 1)n) and Rtrsm(m,m, n) = 2mn (with the previous
refinement for Rutrsm(m,m, n), this also reduces to Rtrsm(m,m, n) = (2m−1)n).
Table 1 sketches the different shapes of the associated routine calls in the main
loop of each variant.

Then the number of modular reductions required for these different LU factor-
ization strategies is given in Table 2. The last two rows of the table corresponds
to [6, Theorem 4] where Rutrsm has been refined to (m−1)n as mentioned above.
The first three rows are obtained by setting k = 1 in the following block versions.
The next three rows are obtained via the following analysis where the base case
(i.e. the k × k factorization) always uses the best unblocked version, that is the
Left variant described above. Following Table 1, we thus have:

Table 1.Main loops of the Left looking, Crout and Right looking tile iterative block LU
factorization, n and k are respectively matrix and block dimensions (see [3, Chapter 5])

Left looking Crout Right looking

for i=1 to n/k do
utrsm ((i-1)k,(i-1)k,k)
gemm (n-(i-1)k,(i-1)k,k)
pluq (k,k)
trsm (k,k,n-ik)

for i=1 to n/k do
gemm (n-(i-1)k,(i-1)k,k)
gemm (k,(i-1)k,n-ik)
pluq (k,k)
utrsm (k,k,n-ik)
trsm (k,k,n-ik)

for i=1 to n/k do
pluq (k,k)
utrsm (k,k,n-ik)
trsm (k,k,n-ik)
gemm (n-ik,k,n-ik)

The right looking variant performs n
k such k× k base cases, pluq(k, k), then,

at iteration i, (nk − i)(utrsm(k, k, k) + trsm(k, k, k)), and (nk − i)2 gemm (k,k,k),

for a total of n
k (

3
2n

2 − 5
2n + 1) +

∑n
k
i=1(n − ik)

(
(3k − 2) + (nk − i)k

)
= 1

3kn
3 +(

1− 1
k

)
n2 +

(
1
6k − 3

2 + 1
k

)
n.

The Crout variant requires, at each step, except the first one, to compute
Rgemm(n − ik, ik, k) reductions for the pivot and below and Rgemm(k, ik, n− (i −
1)k) for the other block; at each step, to perform one base case for the pivot
block, to solve unitary triangular systems, to the left, below the pivot, using
(nk − i)Rutrsm(k, k, k) reductions and to solve triangular systems to the right,
using (nk − i)Rtrsm(k, k, k) reductions.

Similarly, the Left looking variant requires Rgemm(n − ik, ik, k) + Rpluq(k) +
Rutrsm(ik, ik, k) +Rtrsm(k, k, n− ik) reductions in the main loop.

In Table 2 we see that the left looking variant always performs less modular
reductions. Then the tiled recursive performs less modular reductions than the
Crout variant as soon as 2 ≤ k ≤ n

2+
√
2
. Finally the right looking variant clearly

performs more modular reductions. This explains the respective performance
of the algorithms shown on Table 3 (except for larger dimensions where fast
matrix multiplication comes into play). Also, we see that even when the number
of modular reductions is an order of magnitude lower than that of the integer
operations the cost of the divisions is nonetheless not negligible. Moreover, the
best algorithms here may not perform well in parallel, as will be shown next.

506 J.-G. Dumas et al.

Table 2. Counting modular reductions in full rank block LU factorization of an n×n
matrix modulo p when np(p− 1) < 2mantissa, for a block size of k dividing n

k
=

1 Iterative Right looking 1
3
n3 − 1

3
n

Iterative Left Looking 3
2
n2 − 5

2
n+ 1

Iterative Crout 3
2
n2 − 5

2
n+ 1

k
≥

1 Tile Iterative Right looking 1
3k
n3 +

(
1− 1

k

)
n2 +

(
1
6
k − 3

2
+ 1

k

)
n

Tile Iterative Left looking
(
2− 1

2k

)
n2 − 5

2
kn+ 2k2 − 2k + 1

Tile Iterative Crout
(
5
2
− 1

k

)
n2 +

(−2k − 3
2
+ 1

k

)
n+ k2

Tiled Recursive 2n2 − n log2 n− 2n

Slab Recursive (1 + 1
4
log2 n)n

2 − 1
2
n log2 n− n

Table 3. Timings (in seconds) of sequential LU factorization variants on one core

k = 212 k = n
3

Recursive

Right Crout Left Right Crout Left Tile Slab

n=3000 3.02 2.10 2.05 2.97 2.15 2.10 2.16 2.26

n=5000 11.37 8.55 8.43 9.24 8.35 8.21 7.98 8.36

n=7000 29.06 22.19 21.82 22.56 22.02 21.73 20.81 21.66

3.2 Parallel Experiments

In Figure 3 we compare the tiled iterative variants with the tiled recursive al-
gorithm. The latter uses as a base case an iterative Crout algorithm too which
performs fewer modular operations, The tiled recursive algorithm performs bet-
ter than all other tiled iterative versions. This can be explained by a finer and
more adaptive granularity and a better locality. The left looking variant per-
forms poorly for it uses an expensive sequential trsm task. Although Crout and
right-looking variant perform about the same number of matrix products, those
of an iteration of the right-looking variant are independent, contrarily to those of
the Crout variant, which explains a better performance despite a larger number
of modular reductions.

Figure 4 shows the performance without modular reductions, of the tiled re-
cursive parallel implementation on full rank matrices compared to Plasma-Quark.
The best block size for the latter library was determined by hand for each matrix
size. The two possible data-storage for Plasma-Quark are used: the collection of
tiles or the row-major data-storage. Our tiled recursive parallel PLUQ imple-
mentation without modular reductions behaves better than the Plasma-Quark

getrf tile. This is mainly due to the bi-dimensional cutting which allows for a

Parallel Computation of Echelon Forms 507

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

(2
/3

)n
3 /

tim
e/

10
9

number of cores

Exact Parallel LU for matrix dim. 16000*16000 with k=212

tiled recursive pFFPACK <mod131071>
tiled iterative Right pFFPACK <mod131071>
tiled iterative Crout pFFPACK <mod131071>

tiled iterative Left pFFPACK<mod131071>

Fig. 3. Parallel LU factorization on full rank matrices with modular operations

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

(2
/3

)n
3 /

tim
e/

10
9

number of cores

computation performance for Parallel LU for matrix dim. 16000*16000

FFPACK-pfgetrf<double>: tiled recursive
PLASMA-dgetrf: tiled iterative, tiled data-storage k=212

PLASMA-dgetrf: tiled iterative, row major data-storage k=212

Fig. 4. Speed (normalized to 2/3n3 of parallel LU factorization on full rank matrices
without modular operations

faster panel elimination, parallel trsm computations, more balanced gemm com-
putations and some use of Strassen-Winograd’s algorithm. This explains why
performance become similar again on more than 24 cores: the size of the sequen-
tial blocks get below the threshold where this algorithm speeds up computations
(typically 2400 on this machine).

4 Elimination with Rank Deficiencies

4.1 Pivoting Strategies

We now consider the general case of matrices with arbitrary rank profile, that
can lead to rank deficiencies in the panel eliminations. Algorithms computing
the row rank profile (or equivalently the column echelon form) used to share

508 J.-G. Dumas et al.

Fig. 5. Slab iterative factorization of a matrix with rank deficiencies, with final recon-
struction of the upper triangular factor

a common pivoting strategy: to search for pivots in a row-major fashion and
consider the next row only if no non-zero pivot was found (see [10] and references
therein). Such an iterative algorithm can be translated into a slab recursive
algorithm splitting the row dimension in halves (as implemented in sequential
in [5]) or into a slab iterative algorithm. More recently, we presented in [6] a
more flexible pivoting strategy that results in a tile recursive algorithm, cutting
both dimensions simultaneously. As a by product, both row and column rank
profiles are also computed simultaneously.

A slab iterative algorithm. In the slab iterative algorithm shown in Figure 5,
each panel factorization has to be run by a sequential algorithm. This sequential
task is costly and therefore imposes a choice of a fine granularity, which, as we
saw, on the other hand implies more modular reductions and a lesser speed-up
of Strassen-Winograd’s algorithm.

Another difficulty is the fact that the starting column position of each panel is
determined by the rank of the blocks computed so far. It can only be determined
dynamically upon the execution. This implies in particular that no data-storage
by tiles, that fit the tiles of the algorithm is possible here. Moreover, the work-
load of each block operation may strongly vary, depending on the rank of the
corresponding slab. Such heterogeneous tasks lead us to opt for work-stealing
based runtimes instead of static thread management.

Tiled iterative elimination. In order to speed-up the panel computation, we
can split it into column tiles. Thanks to the pivoting strategy of [6], it is still
possible to recover the rank profiles afterwards. Now with this splitting, the
operations remain more local and updates can be parallelized. This approach
shares similarities with the recursive computation of the panel described in [4].
Figure 6 illustrates this tile iterative factorization obtained by the combination
of a row-slab iterative algorithm, and a column-slab iterative panel factorization.

This optimization used in the computation of the slab factorization improved
the computation speed by a factor of 2, to achieve a speed-up of 6.5 on 32 cores
with libkomp.

Fig. 6. Panel PLUQ factorization: tiled sub-calls inside a single slab and final recon-
struction

Parallel Computation of Echelon Forms 509

Tiled recursive elimination. Recursive algorithms in dense linear algebra is a
natural choice for hierarchical memory systems [14]. For large problems, the
geometric nature of the recursion causes that the total area of operands for re-
cursive algorithms is less compared to iterative algorithms [9]. We use the tile
recursive algorithm described in [6]: the recursive splitting is done in four quad-
rants. Pivoting is done first recursively inside each quadrant and then between
quadrants. It has the interesting feature that if the top-left tile is rank deficient,
then the elimination of the bottom-left and top-right tiles can be parallelized.
Thus it can be run in parallel using recursive tasks and the pfgemm, ftrsm and
flaswp routines.

Figure 7 shows performance obtained for the tiled recursive and the tiled
iterative factorization. Both versions are tested using libgomp and libkomp li-
braries. The input S16K is a 16000×16000 matrix with low rank deficiency (rank
is 15500). Linearly independent rows and columns of the generated matrix are
uniformly distributed on the dimension.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

(2
/3

)n
3 /

tim
e/

10
9

number of cores

tiled recursive pFFPACK<131071> libkomp
tiled recursive pFFPACK<131071> libgomp
tiled iterative pFFPACK<131071> libkomp
tiled iterative pFFPACK<131071> libgomp

Fig. 7. Performance of tiled recursive and tiled iterative factorizations using libgomp

and libkomp. Matrix dimension n = 16000 with rank 15500

The implementation with OpenMP of the tiled recursive LU maintained high
efficiency in the case of rank deficient matrices. It attained a speed-up of 13.6 on
32 cores. Besides the fact that it benefits from Strassen-Winograd implementa-
tion, it is adapted to minimize memory accesses and optimize data placement.
Using libkomp instead of libgomp library and numactl, for round and robin
interleave memory placement, that helps reducing dependency on bus speed, we
manage to obtain high performance for our tiled recursive LU factorization.

5 Conclusion

We analyzed five different algorithms for the computation of Gaussian elimina-
tion over a finite field. The granularity surely optimizes the parallelization of

510 J.-G. Dumas et al.

these algorithms but at the cost of more modular operations. Algorithms opti-
mizing modular reductions are unfortunately not the most efficient in parallel.
The best compromise is obtained with our recursive tiled algorithm that per-
forms best in both aspects.

Perspective. Our future work focuses on two main issues. First, the use of spe-
cific allocators that can be used for a better mapping of data in memory and
reduce distant accesses. Second, parallel programming frameworks for multicore
processors [12] could be more effective than binding threads on each NUMA
node. Dataflow based dependencies, like when using OpenMP 4.0 directives, can
ensure more parallelism for recursive implementation using libkomp [1] library.

References

1. Broquedis, F., Gautier, T., Danjean, V.: libKOMP, an Efficient OpenMP Run-
time System for Both Fork-Join and Data Flow Paradigms. In: Chapman, B.M.,
Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312,
pp. 102–115. Springer, Heidelberg (2012)

2. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing 35(1), 38–53
(2009), http://dx.doi.org/10.1016/j.parco.2008.10.002

3. Dongarra, J.J., Duff, L.S., Sorensen, D.C., Vorst, H.A.V.: Numerical Linear Alge-
bra for High Performance Computers. SIAM (1998)

4. Dongarra, J.J., Faverge, M., Ltaief, H., Luszczek, P.: Achieving numerical accu-
racy and high performance using recursive tile LU factorization. Concurrency and
Computation: Practice and Experience 26(7), 1408–1431 (2014),
http://hal.inria.fr/hal-00809765

5. Dumas, J.-G., Giorgi, P., Pernet, C.: Dense linear algebra over prime fields. ACM
TOMS 35(3), 1–42 (2008), http://arxiv.org/abs/cs/0601133

6. Dumas, J.-G., Pernet, C., Sultan, Z.: Simultaneous computation of the row and
column rank profiles. In: Kauers, M. (ed.) Proc. ISSAC 2013, Grenoble, France,
pp. 181–188. ACM Press, New York (2013)

7. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139(1–3), 61–88 (1999)

8. Gathen, J.V., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, New York (1999)

9. Gustavson, F.G.: Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBMJournal ofResearch andDevelopment 41(6), 737–756 (1997)

10. Jeannerod, C.-P., Pernet, C., Storjohann, A.: Rank-profile revealing Gaussian elim-
ination and the CUP matrix decomposition. J. Symb. Comp. 56, 46–68 (2013)

11. Klimkowski, K., van de Geijn, R.A.: Anatomy of a parallel out-of-core dense linear
solver. In: ICPP, vol. 3, pp. 29–33. CRC Press (August 1995)

12. Kurzak, J., Ltaief, H., Dongarra, J., Badia, R.M.: Scheduling dense linear algebra
operations on multicore processors. Concurrency and Computation: Practice and
Experience 22(1), 15–44 (2010)

13. Stein, W.: Modular forms, a computational approach. Graduate studies in mathe-
matics. AMS (2007), http://wstein.org/books/modform/modform

14. Toledo, S.: Locality of reference in lu decomposition with partial pivoting. SIAM
Journal on Matrix Analysis and Applications 18(4), 1065–1081 (1997)

http://dx.doi.org/10.1016/j.parco.2008.10.002
http://hal.inria.fr/hal-00809765
http://arxiv.org/abs/cs/0601133
http://wstein.org/books/modform/modform

	Parallel Computation of Echelon Forms
	1 Introduction
	2 Preliminaries
	2.1 Auxiliary Sequential Routines
	2.2 Parallel Programming Models
	2.3 Parallel Matrix Multiplication

	3 Eliminations with No Rank Deficiency
	3.1 Modular Reductions
	3.2 Parallel Experiments

	4 Elimination with Rank Deficiencies
	4.1 Pivoting Strategies

	5 Conclusion
	References

