A Generic Strategy for Multi-stage Stencils

Mauro Bianco and Benjamin Cumming

Swiss National Supercomputing Centre (CSCS)

Abstract. Stencil computations on regular grids are widely used in sci-
entific simulations. Optimization techniques for such stencil computa-
tions typically exploit temporal locality across time steps. More complex
stencil applications, like those in meteorology and seismic simulations,
cannot easily take advantage of these techniques, since the number of
physical fields and computation stages to consider at each time step
flush all data present in the cache at the beginning of the next time step.
In this paper we present a technique for improving performance of such
computations, based only on spatial tiling, which is implemented as a
generic algorithm.

More specifically, we investigate how to take advantage of producer-
consumer relations of stencil loops, in a single time step, to improve
memory hierarchy utilization. This approach makes it possible to bal-
ance computation and communication to improve resource usage. We
implement our methods using generic programming constructs of C++,
which we compare with hand-tuned implementations of the stencils. The
results show that this technique can improve both single-threaded and
multi-threaded performance to closely match that of hand-tuned imple-
mentations, with the convenience of a high-level specification.

1 Introduction

Stencil computations are an important algorithmic motif in scientific computing.
When applied on regular grids, stencil computation is essentially a set of nested
for loops in which the body of the innermost loop computes a function using
grid values at fixed offsets from the coordinates specified by the loop variables.
Stencil computations are often used in the solution of (partial) differential equa-
tions with explicit temporal integration. Such applications use a time loop which
applies the same stencils on each iteration. Scientific simulations often employ
3D stencils because they map better to real world cases. From an algorithmic
point of view, the 3D stencil computations typically used in scientific comput-
ing pose specific challenges when optimizing the use of memory hierarchy [10].
The literature focusing on this kind of algorithms is abundant, and very clever
techniques have been developed to improve their performance.

Many of these optimization strategies take advantage of the fact that, for sim-
ple differential equations at least, temporal locality may be exploited across time
steps (among others, [4,9,12,6,13]). However, for more complicated applications,
such as meteorological simulations, the number of stencil functions applied in
each time step is very high. In such applications, it is not possible, or very hard,

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 584-595, 2014.
© Springer International Publishing Switzerland 2014

A Generic Strategy for Multi-stage Stencils 585

struct stencil operator {
template <class S1, class S2>
void
operator()(S1 &v, S2 const& u) const

for (i=bi—b10; i<ei+el0; ++i)
for (j=bj—b12; j<ej+ell; ++j)
for (k=bk—b12; k<ek+el2; ++k)
t[i][J1k] =in[i+2][i][k]...
e . v() = 1.0/36.0 x(6x*u
for (i=bi; i<ei; ++i) 0 _ u/(l,0,0)(— u(()—l,0,0)

for (j=bj; j<ej; ++j)
bk . —u(0,1,0) — u(0,-1,0)
for (k=bk; k<ek; ++k) —u —u —1)):
out [15 1[K] = tli—1][][k —1]... ' (0,01) —u(0,0,-1));

(a) (b)

Fig. 1. (a) Example of a typical structure of a stencil application. (b) Example of a
GSCL stencil operator implementation for a 7-point Laplacian.

to retain data in cache between time steps, due to the complicated dependencies
between the different stencil stages in each time step.

However, it is possible to exploit temporal locality in such applications. Here
we investigate temporal locality in the producer-consumer relations between con-
secutive stencil loops. A trivial example of this is illustrated in Figure 1.a, where
the output of the first stencil loops, stored in t is used in the second loop.

In this paper, we refer to a nested loop as a stencil stage, and a sequence
of such stages as a multi-stage stencil computation. An example stencil from
the numerical weather forecasting code COSMO (Consortium for Small-scale
Modeling) [5] is the horizontal diffusion (HD) stencil, which applies a fourth-
order dispersion operator to an input field, and writes the result to an output
field. The horizontal diffusion stencil can be expressed using four stages: the first
computes the Laplacian of the input field, then two independent stages that use
the Laplacian values to compute orthogonal fluxes in the horizontal plane, and
a final stage that combines the fluxes to compute the output.

In our work we distinguish between data that is the output of a multi-stage
stencil, and temporary data that is produced and consumed in intermediate
stages of a multi-stage stencil. For instance, the Laplacian and fluxes in the hor-
izontal diffusion stencil are only consumed by the stages inside the stencil, so
they can be discarded after the output has be computed. For such data fields
that are only consumed in the stencil where they are computed, we take ad-
vantage of blocking techniques that allow us to balance computation intensity
and memory bandwidth. We call the stencil stages that produce intermediate
output intermediate stages, and in this paper we focus on multi-stage stencil
computations with at least one intermediate stage.

We will describe an algorithm that each thread in a shared memory parallel
program, uses to trade computation intensity and communication bandwidth
of multi-stage stencils, and show how this improves both the performance and
scalability of the multi-stage stencil computation. We present our solution imple-
mented in context of the Generic Stencil Computing Library (GSCL) [2], which
is a generic C++ library for specifying stencil computations on different architec-
tures, including multicore processors, graphic accelerators, up to large parallel

586 M. Bianco and B. Cumming

machines. The library expresses computations as stencil operators applied to
some data fields according to iteration spaces, which specify data dependencies.
An example of a stencil operator can be found in Figure 1.b. We show that our
technique is capable of matching the performance of hand-tuned versions, while
retaining ease of use through the generic interface of GSCL. Being generic, our
solution also is suitable for being implemented in other contexts, such as a DSL.

2 Related Work

Stencil computations are typically bandwidth limited. As such, much of the re-
search in this field has focused on optimizations that reduce global memory
bandwidth by taking advantage of cache hierarchies. In [4,9,12] the optimiza-
tion of simple stencil computations inside time loops was investigated. Similar
stencils were studied in [6,13] in the context of cache obliviousness. The most
complicated stencil computation investigated in the aforementioned papers is
Jacobi iteration with two grids, while real applications like climate modeling or
earthquake simulations [11,5] have between 5 to 15 grids. It is not clear to what
extent the reasoning behind many optimizations for simpler stencils might be
directly ported to real-world use cases. A similar problem is addressed in [10],
in which, however, the Authors discuss solutions for other cases.

In this paper we use GSCL which is a C++ template library, as opposed to [3],
which employes a DSL, and [8] which heavily uses macros. This gives us the ability
to reach good expressivity in design and a robust implementation. In [7,3] Authors
use auto-tuning techniques, which we are planning to investigate in future papers,
but are not the aim of current work. More specific compiler approaches, such as
[1], are also out of our scope, but try to solve similar problems.

3 Tiling and Buffering

In this section we describe how each thread in a multithread stencil execution can
optimize the trade-off between computation intensity and memory bandwidth
in order to improve execution time.

These computations are specified in GSCL by using functional stencils, or
f stencils. Functional stencils specify that the value needed at the point of eval-
uation depends on a stencil operator computed at a given offset, specified through
relative coordinates. The syntax is as follows: f stencil <F, i,j,k>(a,b,...)
where i, j and k are coordinates relative to the current point of evaluation where
F is to be computed, and (a,b ,...) is the list of arguments to be passed to F.

Figure 2 shows an implementation of the stencil operator simpleHD that
computes a simplified version of the Horizontal Diffusion (HD) stencil from the
COSMO weather forecasting code. Computing HD first requires the computation
of a Laplacian (lap), then two fluxes (luxx and fluxy). Finally, the simpleHD
computes the output values. The figure also illustrates the call graph.

Functional stencils employ a functional specification of the stencil operation
instead of the imperative approach illustrated in Figure 1.a. Loop bounds are

A Generic Strategy for Multi-stage Stencils 587

lap

struct lap {
template <typename up t>
double operator()(up t const& up) {
return —4.xu()
+ up(1,0,0) + up(—1,0,0)
+ up(0,1,0) — up(0,—1,0);

((0,0,0),(1,0,0)) ((0,0,0),(0,1,0))
fluxx fluxy
struct fluxx { struct fluxy {
template <typename U> template <typename U>
double operator()(U const& u) { double operator()(U const& u) {
double fx; double fy;
fx = f stencil <lap,1,0,0>()(u) fy = f stencil <lap,0,1,0>()(u)
f stencil <lap,0,0,0>()(u); f stencil <lap,0,0, 0>()(u)
if (fx*(u(1,0,0)—u()>0)) fx = 0,; if (fy*(u(0,1,0)—u())>0) fy =
return fx; return fy;
3 h

((-1,0,0),(0,0,0)) ((0,-1,0),(0,0,0))

simpleHD

struct simpleHD {
template <typename out t, typename up t, typename c t>
void operator()(out t & out, up t const & up, ct const & c) {

out() = up() — <() * _
(f stencil <fluxx,0,0,0>()(up) — f stencil <fluxx,—1,0,0>()(up) +
f stencil <fluxy,0,0,0>()(up) — f stencil <fluxy,0,—1,0>()(up));

M

Fig. 2. The illustration of the GSCL implementation of the HD multi-stage stencil

determined automatically from the output dimensions, removing the burden of
manually adjusting the loop limits b10, b11, €10, etc.. When executed as func-
tions, functional stencils reduce memory transactions in memory-bound stencil
computations by computing intermediate fields on the fly, at the expense of in-
creasing the number of arithmetic operations. Hence, as the depth and arity
of the call tree increases, the use of functional stencils can make the computa-
tion compute-bound with possible poor performance. However, the functional
flavor of the algorithm specification allows the implementation to choose to
buffer intermediate results in order to trade memory pressure with computa-
tion redundancy, thus transforming calls to functional stencils into reads from
pre-computed buffers.

3.1 The Algorithm

The algorithm for executing a multi-stage stencil has two phases. The first is an
analysis phase that computes the sizes of the intermediate buffers, the second is
the computation of the stencil itself.

588 M. Bianco and B. Cumming

Algorithm: Analysis Algorithm: Update &
Input: Sets E,, set V of operators Input: Current node u, graph G
Output: Graph G = (V, E, ¢) Output: Updated &, values
E + 0 for v such that (u,v) € E do
for u,v € V do @, <+ MBR(®,, Py @ duv);
duv — MBR{p : (u,v,p) € Evu}; Update @(v, G);
Insert (u,v) in E; end
end
for v € V do
@, < Empty rectangle;
end

s < Source of G}
Update &(s, G);

Algorithm 1. Algorithms for determining the buffer sizes of the nodes of the
call graph

We start with a set V' of stencil operators that call other operators as func-
tional stencils. For each stencil operator v € V' we have the set E, = {(v,p)},
where v is a stencil operator called as a functional stencil by u at position p
relative to current evaluation point of u, where p is a tuple of (integer) relative
coordinates.

We can obtain a weighted direct graph G = (V, E, ¢) such that F = {(u,v) :
(v,p) € E, for some p}, and the weight ¢y, represent the minimum bounding
rectangle (MBR) of the points in {p : (v,p) € E,}, the set of all the offsets at
which u calls v. A rectangle is a pair of tuples with minimum and maximum
coordinates among the points in the set. We indicate a rectangle as (p®,p?) to
indicate the coordinates of the “bottom” (typically with non positive coordi-
nates) and the “top” corners (typically with non negative coordinates) of the
rectangle. The structure of the graph G for the HD stencil is shown in Figure 2
along with the weights. We are interested in computations where graph G is
acyclic (a DAG) (an operator cannot call a predecessor in the graph) and with
a single source node that we indicate as s.

After having obtained the DAG G, we need to compute the extent (a rectan-
gle) at which each of the nodes v € V' is needed during the computation and we
call it @,. To do this, we first set &, = (0,0) as an empty rectangle, centered at
the origin, representing the point of evaluation. Next we traverse the graph in
pre-order. When node u is visited we update the values @,, of nodes v adjacent to
u, to the MBR including the rectangles @, and @, ® ¢y, where the sum for two
rectangles (p°, p') and (¢*, ¢") is defined as (p°,p") ® (¢°, ¢") = (" + ¢", p' + ¢").
When @, is updated for the first time, it is set to @, @ ¢py,, which are defined
since G is traversed in pre-order. Algorithm 1 shows the pseudo-code for this
procedure.

Proof: We now offer an informal proof that the node v is never invoked outside
of the bounding box &, computed using Algorithm 1. If we assume that all the
duy are correct, then if v was needed at a coordinate outside &,,, a predecessor u

A Generic Strategy for Multi-stage Stencils 589

of v would have to be accessed outside of @,,. Likewise, if u is not the source we
can apply the same reasoning backward. When we reach the source it means that
it is accessed outside the point of evaluation, which is against the hypotheses.
We can also see that if there are no conditional branches that can falsify this
statement in particular cases, the edges of the rectangles are always accessed, so
the bounding is tight.

There may be values in the rectangles that are not needed. However, if the
call tree is wide enough, the additional storage overheads are compensated for
by the use of simple affine expressions to access data. The final objective is to
tile the computation with blocks of size By x By x Bk . Before doing so, given
@, = (p°,p'), we associate a buffer with each stencil operator in G, where the
buffer b, has dimension (B — p? + pt) x (B — p? +ph) x (B — pb + pl) with
origin set to —pp so that accesses to the halo region are valid.

To balance the computation/communication ratio, nodes in the DAG can be
marked be either buffered or to computed on the fly. Execution of the stencil
then proceeds as a post order visit on the DAG G, so first the adjacency list of
a node is evaluated and then the node itself. If a node is marked to compute
values in a buffer, it is executed, otherwise nothing is done, and the node will
be invoked as a functional stencil in subsequent stages.

3.2 Implementation

The algorithm described in the previous subsection is modified for implemen-
tation in GSCL because some of the required information is computed during
compilation. Since C++ does not allow introspection, the structure of the un-
weighted version of the DAG G has to be provided to GSCL in the form of a call
graph object. The object type encodes the topology of the graph as a list of lev-
els corresponding to the topological sort of the DAG to guarantee the producer
consumer relations of the computation. The interface requires the first level to
be a procedure, i.e. it behaves as a regular GSCL stencil operator that writes
the results into some of the output arguments. The other levels can either be
functions, or a list of functions that are independent, all of which will be
called as functional stencils. Additionally, since GSCL cannot know which ar-
guments will be passed to the functional stencils, an argument mapping is also
needed. For the simple HD stencil in Figure 2, the call-graph type is

typedef call graph type <procedure<simpleHD>,

independent <function <fluxx,arg map<l1> >,

function <fluxy,arg map<1> > >,
function <lap,arg map<1> > > cg type;

We would like to emphasize that, although our implementation uses C+-+,
the technique is more general. For instance a specialized compiler could collect
the information about the call graph from the code without user intervention.

To execute the multi-stage stencil, an object of type call graph type, which
is the implementation of call graph object mentioned before, can then be passed
to a do all ms, i.e., a special iteration space that process call graph types,
where the suffix ms stands for multi-stage. After some transformations to adapt

590 M. Bianco and B. Cumming

Fig. 3. Graphical representation of the different implementations that GSCL provides
for the HD stencil. Circles are procedure/function nodes, while rectangles are node
buffers.

the call graph, do all ms computes the rectangles ¢ and @ for determining
the sizes of the blocks by simulating the computation passing to the operators
test stencils to collect the proper information.

To mark nodes to compute on the fly and other to buffer, two compile time
constant parameters are given as do all ms<low, high>(...), where low and
high indicates where to turn buffering on and off, respectively. This mecha-
nism allows the programmer to specify different thresholds for different com-
putations in the same program, and incurs no runtime overhead by virtue of
being performed at compile time. Figure 3 shows different implementations for
the horizontal diffusion (HD) stencil. If the thresholds for turning on and off
the buffering define an empty interval, the implementation turns all of the func-
tional stencils into function calls to compute values on the fly (Figure 3.a). If
the thresholds include all levels then all functional stencil calls read results from
previously computed blocks (Figure 3.b). We can specify that levels 1 and 2 are
to be buffered, and have the fluxes computed on the fly as in Figure 3.c, or that
levels 0 and 1 are to be buffered, and get the behavior shown in Figure 3.d.

At this point the execution of the multi-stage by stencil computation is per-
formed through a post-order visit of the call-graph, which is inlined and has
virtually no runtime overhead. The OpenMP implementation of GSCL, first
partitions the global iteration space, then each thread applies the multi-stage
stencil on its partition.

3.3 Analysis

The versions of simpleHD obtainable by GSCL, and depicted in Figure 3, plus
the base version that does not use loop tiling, have different computation to main
memory access ratios. By analyzing the code in Figure 2, it is not difficult to
see that the a base version, that does not use f stencils, perform 18 operations
per output value. For the tiling, in this example the operation count does not
depend on By (no halo in the third dimension). By picking B; = B; = 8, we
obtain block sizes that provide good cache usage. In this case the version that
computes everything on the fly, corresponding to Figure 3.a, needs 61 operations

A Generic Strategy for Multi-stage Stencils 591

Nabla* 1024x1024x100 intel vs gnu Nabla* 1024x1024x100 intel vs gnu
T T T T T

©
=
=}

T T T
I intel buffered —k— intel buffered
800~ _ I intel no buffered 2 L| —%— intel no buffered
[gnu buffered —O— gnu buffered
700 [gnu not buffered —&— gnu not buffered
[C__1GSCL not buffered| ~ 6| == GSCL not buffered
6001 I GSCL buffered —#— GSCL buffered
= I GSCL base > || =& GSCL base
L £ 57
£ 500]
) K]
£ 400t S 4L J
[@ q
300
3l b
200
of g A mm i m A
100 -
0 1 -
1 2 8
Number of threads Number of threads
(a) (b)

Fig. 4. Comparison of execution times and scalability of hand-coded implementations
of V* (Intel C+4 and GNU C++4 compilers) and GSCL (only GNU)

per output value. When we buffer all the intermediate results, Figure 3.b, we
obtain 21.8 operations per output value, which is higher that the base version
since the computation on the tiles is redundant. The cases of Figure 3.c and
Figure 3.d have respectively 28.8 and 36.5 operations per output value.
Assuming that the block sizes are small enough to keep all the intermediate
storage in cache, the characteristics of memory accesses of the GSCL implemen-
tations, other than the base, are similar thanks to the loop tiling. Counting the
number of operations is then enough to give an indication of the ratio between
computation and main memory requests, whose rate is limited by the physi-
cal bandwidth. We would expect the versions that buffer only the Laplacian
to perform better than the version the buffer the fluxes, since the computation
intensity is quite high for the latter version and because two buffers have to be
kept in cache instead of one, thus increasing the cache pressure. In general the
performance of the actual computation depends on the arity and depth of the
call three and it not easy to predict a priori which implementation is the best.
For the base version we draw a somewhat different conclusion. As the problem
size increases we should see a gap between this and the tiled versions as the
intermediate fields for the base version become to large to reside in cache.

4 Results

In this Section we show and discuss some performance results obtained with our
algorithm. We test on the cores of a single socket in this paper to avoid NUMA
effects, and with the understanding that GSCL typically has one MPI process
per NUMA domain. Testing was performed on an eight-core Intel Sandybridge
processor (Xeon E5-2670) running at 2.60GHz, without hyper-threading. Each
core of the chip has 32KB of L1 cache, with all 8 cores sharing 256KB of L2
on-chip cache and 20MB of L3 off-chip cache. Version 4.7.1 of the GNU C++
compiler and version 13.0.1 of the Intel C++ compiler were used. The benchmark

592 M. Bianco and B. Cumming

code is designed to run a test multiple times and to flush the caches at the
beginning of each iteration, so as to test the hypothesis that no data is held in
cache at the beginning the iterations. To obtain stable measurements we show
the minimum execution times of several iterations. However, we note that the
execution times exhibit little noise on average. We also instrumented the code
with PAPI counters to measure vectorization and cache behaviors.

4.1 Fourth-Order Dispersion

We first show the results for a fourth-order dispersion operator V*, also referred
to as nabla*, which can be implemented by twice applying a Laplacian operator
to an input field. The base version uses two separate do alls and an explicit
temporary storage area.

To validate performance, we implemented hand-tuned versions of compute-on-
the-fly and buffered implementations. They were developed in a distinct source
files, since the modularity is reduced in these versions. It should be noted that
the hand-tuned versions are not generic at all and their code is much longer
than GSCL code. It is made of several loop nests (for tiling and iterating within
blocks), plus pointer arithmetic, and specific #pragmas for the compiler!.

In Figure 4.a we show the execution times of V# for different number of
threads (one per core on the chip) and a fairly large input size (in the con-
text of COSMO). The versions not labelled with “GSCL” are hand-tuned ver-
sions. The GNU compiler did not perform well when no buffering is employed in
GSCL, that is, when we compute all values needed by V* on the fly. In this case
the GNU compiler is unable to exploit vectorization, and because this version
is the most computationally intense, the penalty for not using vector instruc-
tion is the highest. On the other hand this results in almost ideal scalability. As
we can see, the base implementation scales poorly due to bandwidth memory
limitations do to lack of loop-tiling (Figure 4.b).

For this input size, GSCL performs comparably to hand tuned versions. On
smaller inputs GSCL is slightly slower but still competitive (results not showed
for space constraints). The compute-on-the-fly hand-tuned version is quite fast
compared to the corresponding GNU compiled version. This is because unlike
the GNU compiler, the Intel compiler can vectorize this computation very well,
which is important for this computationally intensive case.

4.2 SimpleHD

In this section we discuss the performance of the simpleHD example we ana-
lyzed throughout the paper. simpleHD implementation corresponds to Figure 2
which allows us to test with turning on and off buffering. First, we show how
performance varies as we tune the levels for turning buffering on and off. Fig-
ure 5 shows a comparison of the base GSCL version against the four different

! For a fair comparison of compiler generated code, explicit prefetching and intrinsics
were not used in the hand-tuned codes.

Time (ms)
N

SimpleHD GSCL vs hand-tuned (64x64x60)

A Generic Strategy for Multi-stage Stencils

593

SimpleHD GSCL vs hand-tuned (1024x1024x100)

I Basc version

[No buffering

[Buffering all (0-2)

[Buffering first level (0-1)
[Buffering second level (1-2)
I Intel buffered (1-2)

1600 T

i 1400 -

i 1200 -

I Base version

[No buffering

[Buffering all (0-2)

[Buffering first level (0-1)
[Buffering second level (1-2)
I Intel buffered (1-2)

1 2

4 8

Number of threads

SimpleHD 64x64x60 intel vs GSCL/gnu

(a)

SimpleHD 1024x1024x100 intel vs GSCL/gnu

2 4 8
Number of threads

(b)

Scalability

—— intel buffered 1-2
= +— GSCL not buffered

—%— - GSCL buffered 1-2|
=& GSCL base

—— intel buffered 1-2
= +— GSCL not buffered

—%— - GSCL buffered 1-2|
= GSCL base

7H

Scalability

Number of threads

(c)

Number of threads

(d)

Fig.5. Comparison of hand-tuned implementation and different thresholds to trig-
ger buffering on and off in the simpleHD example. The versions are indicated by the
thresholds used to turn on buffering. (a) and (b) shows times, (c) and (d) scaling.

combinations shown in Figure 3. When we turned off buffering at all levels the
performance was low on a single thread. This is mostly due to the inability of the
GNU compiler to employ vectorization in this compute bound case, as can be
seem in Table 1 entry for “GSCL-none”, which is the version that does not em-
ploy buffering. As the number of threads and problem size increases (Figure 5.a
and .b) the performance increases, getting better than the base version, due to
better memory use. This observation is also evident in Figure 5.c and .d, which

shows scaling with thread count for the implementations.

As expected from the analysis in Section 3.3, the performance of buffering
all the nodes (threshold from 0 to 2, dubbed 0-2) was similar to buffering the
computation of the fluxes while computing the Laplacian on the fly (threshold
from 0 to 1, so dubbed 0-1). Buffering the Laplacian and computing the fluxes
on the fly (dubbed 1-2) gave the best performance for both the small and large
meshes. As the number of threads increased, the advantage of on the fly com-
putation increased since it is less bandwidth-eager. The execution time for the

594 M. Bianco and B. Cumming

Table 1. Floating point operations issued and cache misses for different number of
for each implementation of the simpleHD stencil, 8 threads. The total is the total
operations amount of scalar floating point operations performed in each case. The last
column is the ratio between accessed to main memory with those that fail in L1 cache.

Version Scalar SSE-128 AVX-256 Tot. ops L1 misses L3 misses L1/L3 ratio

GSCL-Base 91 0 505 2111 212.174 44.97 0.212
GSCL-none 5455 0 0 5455 106.252 2.012 0.0189
GSCL-0-2 0 0 654 2616 250.056 7.203 0.0288
GSCL-0-1 0 0 1134 4536 153.379 4.235 0.0276
GSCL-1-2 0 0 785 3154 190.338 3.789 0.0199
Intel-1-2 0 426 575 3152 180.408 5.771 0.0319

base version on one thread is 8.63 x 10~ !s, while the “1-2” version is 4 x 10~ 1s,
which is 2.15 times faster. On 8 threads the ratio is 3.8 x 1071/9.5 x 1072 ~ 4.

In Figure 5 we also compare the performance of GSCL implementation with
Intel compiled hand-tuned version (Intel buffered 1-2). The performance of these
two equivalent algorithms are very similar, even though the source codes are com-
pletely different. This can also be seen clearly in Table 1 which shows that the
operation counts for “Intel-1-2” and “GSCL-1-2” are in the range of the noise
of the performance counters, despite the two implementations having a different
mixture of 128 bit and 256 bit vector instructions. This indicates that the GSCL
implementation does not loose performance by employing sophisticated generic
programming techniques, thus ensuring that cost of abstraction in GSCL is neg-
ligible. In the same table it can be noted that, while the base implementation
has very poor cache performance, since 21% of the accesses that fails to L1 reach
main memory. The other implementations shows ratios of 2-3%. It is interesting
to note that GSCL-none has the best ratio, since there the computation does
not use buffers at all, while GSCL-1-2 exhibits the best ration between cache
accesses and operation counts, which explains why Intel-1-2, even though with
a similar operation count, is slower than the GSCL one.

5 Conclusions

We presented a generic method to optimize complex stencil applications by ex-
pressing the computation using a functional approach to fuse otherwise distinct
loops, and buffer intermediate results for best memory hierarchy exploitation.
The implementation can be tuned by selecting for which levels to use buffer-
ing and for which to compute on the fly, thus trading computation for memory
bandwidth. We shown that we can achieve the performance of hand tuned im-
plementations of the same computations.

In future we also plan to employ auto-tuning techniques to select tile sizes
and to select which nodes to buffer. For the latter case it is possible to work at
the finer granularity of single nodes instead of levels.

A Generic Strategy for Multi-stage Stencils 595

References

10.

11.

12.

13.

Bandishti, V., Pananilath, I., Bondhugula, U.: Tiling stencil computations to maxi-
mize parallelism. In: Proc. of the 2012 ACM/IEEE Conference on Supercomputing,
SC 2012, pp. 40:1-40:11. IEEE Computer Society Press, Los Alamitos (2012)
Bianco, M., Varetto, U.: A generic library for stencil computations. CoRR,
abs/1207.1746 (2012)

Christen, M., Schenk, O., Cui, Y.: Patus for convenient high-performance stencils:
Evaluation in earthquake simulations. In: SC, p. 11 (2012)

Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51, 129-159 (2009)

Doms, G., Schéatter, U.: A description of the nonhydrostatic regional model Im,
part i, dynamics and numerics (2002)

Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proc. of the
19th Annual International Conference on Supercomputing, ICS 2005, pp. 361-366.
ACM, New York (2005)

Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations. In: IPDPS, IPPS 2010, pp. 1-12 (2010)
Maruyama, N., Nomura, T., Sato, K., Matsuoka, S.: Physis: An implicitly parallel
programming model for stencil computations on large-scale gpu-accelerated super-
computers. In: Proc. of 2011 ACM/IEEE Conference on Supercomputing, SC 2011,
pp. 11:1-11:12. ACM, New York (2011)

Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-d blocking opti-
mization for stencil computations on modern cpus and gpus. In: Proc. of the 2010
ACM/IEEE Conference on Supercomputing, SC 2010, pp. 1-13. IEEE Computer
Society, Washington, DC (2010)

Rivera, G., Tseng, C.-W.: Tiling optimizations for 3D scientific computations. In:
Proc. of the 2000 ACM/IEEE Conference on Supercomputing, SC 2000. IEEE
Computer Society, Washington, DC (2000)

Rojas, O., Dunham, E.M., Day, S.M., Dalguer, L.A., Castillo, J.E.: Finite dif-
ference modelling of rupture propagation with strong velocity-weakening friction.
Geophysical Journal International 179(3), 1831-1858 (2009)

Shimokawabe, T., Aoki, T., Takaki, T., Endo, T., Yamanaka, A., Maruyama, N.,
Nukada, A., Matsuoka, S.: Peta-scale phase-field simulation for dendritic solidifica-
tion on the tsubame 2.0 supercomputer. In: Proc. of 2011 ACM/IEEE Conference
on Supercomputing, SC 2011, pp. 3:1-3:11. ACM, New York (2011)

Strzodka, R., Shaheen, M., Pajak, D., Seidel, H.-P.: Cache oblivious parallelograms
in iterative stencil computations. In: Proc. of the 24th ACM International Confer-
ence on Supercomputing, ICS 2010, pp. 49-59. ACM, New York (2010)

	A Generic Strategy for Multi-stage Stencils
	1 Introduction
	2 Related Work
	3 Tiling and Buffering
	3.1 The Algorithm
	3.2 Implementation
	3.3 Analysis

	4 Results
	4.1 Fourth-Order Dispersion
	4.2 SimpleHD

	5 Conclusions
	References

