GPU Accelerated Range Trees with Applications

Manoj Kumar Maramreddy and Kishore Kothapalli

International Institute of Information Technology, Hyderabad,
Gachibowli, Hyderabad, India, 500 032

Abstract. Range searching is a primal problem in computational ge-
ometry with applications to database systems, mobile computing, geo-
graphical information systems, and the like. Defined simply, the problem
is to preprocess a given a set of points in a d-dimensional space so that
the points that lie inside an orthogonal query rectangle can be efficiently
reported.

Many practical applications of range trees require one to process a
massive amount of points and a massive number of queries. In this con-
text, we propose an efficient parallel implementation of range trees on
manycore architectures such as GPUs. We extend our implementation to
query processing. While queries can be batched together to exploit inter-
query parallelism, we also utilize intra-query parallelism. This inter- and
intra-query parallelism greatly reduces the per query latency thereby in-
creasing the throughput. On an input of 1 M points in a 2-dimensional
space, our implementation on a single Nvidia GTX 580 GPU for con-
structing a range tree shows an improvement of 12X over a 12-threaded
CPU implementation. We also achieve an average throughput of 10 M
queries per second for answering 4 M queries on a range tree containing
1 M points on a Nvidia GTX 580 GPU. We extend our implementation
to an application where we seek to report the set of maximal points in a
given orthogonal query rectangle.

1 Introduction

Manycore accelerators such as GPUs have occupied a prominent place in the the-
ory and practice of parallel computing. This is aided in part by their ubiquitous
nature, low cost, and importantly compute power. Several programming models
and utility libraries such as CUDA [12], Thrust (See http://thrust.github.io/),
and OpenAcc (See http://www.openacc-standard.org/) are being currently sup-
ported for writing general purpose programs on GPUs. It is possible to arrive
at very efficient implementations of general purpose computations using such
programming support [11,2].

On the other hand, there is very little work on how to efficiently build and
operate on data structures on architectures such as GPUs. Hierarchical data
structures such as trees and multi-dimensional data structures render the nature
of the problem more difficult. In fact, there are very few such reported instances
in the literature. Some early work in this direction by Lefohn et al. [10] proposes

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 740-751, 2014.
© Springer International Publishing Switzerland 2014

GPU Accelerated Range Trees with Applications 741

a template library that can be used to build data structures and also identify
common themes across existing GPU based data structures. It is to be noted
that very few of the existing data structures deal with hierarchical ones [3,6].

We posit that it is possible to build hierarchical data structures on GPUs
by introducing novel techniques that improve the way the data structures are
built and accessed. Given the plethora of programming support available for
programming GPUs, we show that it is also possible to build such data structures
with a minimal programming effort. Our work indicates that one should make
use of available primitives such as sort, merge, and scan.

As a case-study, we consider data structures for multi-dimensional datasets
such as the range tree. A d-dimensional range tree is a data structure that
can store a set of points in a d-dimensional space so that operations such as
searching on d-dimensional datasets is efficiently supported. A d-dimensional
range tree for storing n points requires a space of O(n log?~! n) and involves
creating a nested set of d trees. In a sequential setting, this construction can
be done efficiently in time O(n logd_1 n), and the data structure can be stored
using pointers. However, creating and accessing pointer based data structures
is difficult in many-threaded settings. Hence, one has to identify alternate ways
to represent the data structure while keeping access to the data structure as
efficient as possible. Fortunately, the nested trees that arise in the range tree are
all full binary trees, i.e., for n nodes where n is a power of 2, these trees have
exactly logn levels. We use this fact, along with additional novel considerations
to represent a d-dimensional range tree. For building a 2-dimensional range tree
on an input dataset of 220 points we achieve a speed up of 12X compared to the
12-threaded CPU implementation.

We also show that accessing the range tree in our representation is also efficient
by considering two canonical applications. One of the prominent applications of
range trees is range searching. In range searching, one is interested in reporting
the points that lie in a given orthogonal query rectangle. An orthogonal query
rectangle is a rectangle whose sides are parallel to the axes of the d-dimensional
space. Such a query finds applications in several areas such as database systems,
geographical information systems, mobile computing, CAD tools and the like
[1]. In this case, it is easy to notice that there is natural inter-query parallelism.
However, we also modify the querying algorithm to exploit also intra-query par-
allelism. The combination of the two help us in increasing the query throughput.

The second application we consider is that of reporting the set of maximal
points that lie in a given orthogonal query rectangle. A point P = (z1, z2, -, Zq)
is said to be mazimal if no point P’ = (a7, x5, - ;) exists with z; < «} for
1 <4 < d. The set of maximal points, also called as skyline points offer a good
summarization of the points. For this problem also, we exploit intra-query par-
allelism and by introducing a standard primitive called the All-Nearest-Larger-
Values (ANLV) [7]. This primitive that we develop as part of this work can be of
independent interest to the parallel computing community.

742 M.K. Maramreddy and K. Kothapalli

For both of our applications, on trees with 2'° points and 1 M queries, our im-
plementation on an NVidia GTX 580 GPU achieves around 7x more throughput
compared to a 12-threaded implementation on an Intel i7 X980 CPU.

1.1 Related Work

Efficient constructions of hierarchical data structures on modern architectures is
an emerging research theme. Construction of B+ trees is studied in [5], and of
KD-trees in [6]. Kim et al [9] had proposed solutions for implementing R-trees on
GPUs. They propose solutions to avoid irregular memory access and improved
efficiency. A Massively Parallel Three-phase Scanning (MPTS) algorithm for R-
tree traversal for processing multi-dimensional range queries is proposed in [9].
Both of the works focuses on R-tree search algorithms, but not on constructing
the trees in parallel. To the best of our knowledge this is the first attempt to
implement range trees on GPUs. We provide solutions for both efficient con-
struction and accessing of range trees on GPUs.

2 Preliminaries

For ease of exposition, we describe the 2-dimensional range tree in the following.
In this case, we assume that each point has a z-coordinate and a y-coordinate.
In a 2-dimensional range tree, we start with a primary tree that is a balanced
binary search tree T" built on x-coordinate of points in P. Each internal node in
the primary tree can be the median of the canonical subset of v. Further, every
node v in T contains a pointer to a secondary tree that is a binary search tree on
y-coordinate of the canonical subset of v. The space required for a 2-dimensional
range tree is O(nlogn). An example is shown in Figure 1. The time required for
constructing a 2-dimensional range tree is O(nlogn). Points stored in the leaves
of a subtree rooted at an internal node v are called the canonical subset of v and
v is called the canonical node of the subset.

Primary tree Secondary tree at an internal node

Fig.1. A 2-dimensional range tree. Each node in the primary tree has a corresponding
secondary tree.

GPU Accelerated Range Trees with Applications 743

2.1 Range Querying

We first describe a 1-dimensional range query. To report the points in a 1-
dimensional query [a, b] we proceed as follows. We first search for a and b in the
1-dimensional range tree. Let u and v be the leaves where this search ends. The
points in the interval [a, b] are the points stored in the leaves in between u and
v and possibly the points stored at w and v. Let 74, be the node where the
search paths to v and v separate. Starting from rgp;;; we then follow the search
path to u. At each node where the path goes left we report all the leaves in the
right subtree. Similarly, we follow the path to v and report all the points in the
left subtree when the path goes right.

For a 2-dimensional query [a, b] X [c, d], we first perform a 1-dimensional query
[a,b] on primary tree. At each node where the search path to u goes left we do
a 1-dimensional range query on y-coordinate in the secondary tree associated at
the right child of the node. Similarly, at each node where the search path to v
goes right we do a 1-dimensional range query on y-coordinate in the secondary
tree associated at the left child of the node.

3 A Parallel Range Tree

In this section we describe our new implementation of a multi-dimensional range
tree. We argue that our new representation is efficient on GPU architectures
in the way that it is represented and accessed in parallel. In a standard two-
dimensional range tree (cf. Section 2), every node in the primary and secondary
tree contains left and right child pointers. Porting this representation of range
tree directly on to the GPU platform is not efficient due to the below mentioned
reasons.

— Accessing multiple levels of pointer indirection will lead to massively in-
creased memory access latency and will break the little cache coherency
available on the GPU.

— The irregular tree traversals cause thread divergence when implemented on
GPUs. Also, one needs to regularize the work done by each thread in order
to achieve maximum efficiency.

— Copying a complex structure such as range trees, consisting of nested point-
ers, on to GPU requires a deep copy functionality for which there is no
available API. Copying back the same structure poses the same problem in
reverse.

For addressing the above mentioned challenges, we use an array based rep-
resentation of complete range tree. We flatten-out the hierarchical structure of
the range tree into a structure containing two 1-dimensional arrays, one storing
x-coordinates and other storing y-coordinates. We first store the primary tree in
an array, followed by the secondary trees from bottom up approach. We label
the nodes in the tree in inorder starting from ’0’. Rather than storing inorder
traversal of the complete tree, we only store the leaves of primary and secondary
trees. By using bitwise representation of the nodes it is possible to dynamically

744 M.K. Maramreddy and K. Kothapalli

Table 1. Conversion formulas between array representation and standard range tree

converting array index 7 to corresponding index j j=2xi+1
of the leaf in primary tree

converting internal node(range tree) index i to ar- j =12 -1
ray index j

h =log,(i& — 1)

computing offset of secondary tree at node i of offsct = hxn + ix 20+ x (i& — i)

primary tree

compute the offset of secondary trees and corresponding internal nodes of the
trees. Formula for converting indices from array representation to virtual range
tree is given in table 1. An example of this representation is given in Figure 2.
The point set used is same as in Figure 1.

This simple structure also helps in building the range tree using existing
primitives such as sorting and merging. The representation not only helps us
in regularizing the work done by threads while processing the queries but also
avoids the increased memory access latency that might arise due to multiple
levels of pointer indirection. We use the bit representation to exploit intra-query
parallelism as explained in Section 4. Further, our representation requires the
same space asymptotically as the standard representation. Finally, though we
perform our experiments in a two dimensional space, the same representation
can be extended to higher dimensions.

Point set, P = {(0,1), (1,0), (2,6), (3,5, (4,2), (5,3), (6,7, (7,4}

x: |1]0(3|2|4]|5]|7]|6 .
] Primary tree

4 716]1(0]3[2[4]5[7]6/1[0]4|5]|7]3[2[6]y Secondary
y: |o|1|5|6|2(3|a|7|o]1|5|6]2]3|a|7|0|1|2]3]4a]|5]6|7 |f trees

Fig. 2. In the new representation only leaves of each tree (primary & secondary) are
stored in an array. The trees are stored contiguously. The offset of secondary trees and
the corresponding internal nodes can be dynamically computed.

3.1 Implementation Details

Our array based representation of range trees helps us in using existing prim-
itives for construction. In the following, we show the steps for constructing a
2-dimensional range tree.

1. Sort the points on their x-coordinates. Sorting is a well studied problem on
GPUs. For this purpose, we use sort by key implementation provided by
Thrust library.

GPU Accelerated Range Trees with Applications 745

2. Merge the points recursively on their y-coordinates and store the merged re-
sult in each iteration. The merged result at each iteration in fact represents
secondary trees from bottom to top. Though thrust provides a merge imple-
mentation, we use a more recent merge sort implementation (kernelMerge)
provided by Baxter (See http://nvlabs.github.io/moderngpu/).

Algorithm 1. BUILDRANGETREE(P)

: Input. Set of points in a two dimensional plane P := {p1, p2, ..., pn}
Output. A 2d Range tree T
T[1...n] < sort by key(P)
numPasses < log(n)
for pass = 0,numPasses do
coop = 2(pass+1)
source = T'[n X pass...n X (pass + 1)]
dest = T[n x (pass + 1) + 1..n X (pass + 1) + n|
kernelMerge(source, dest, coop)

3.2 Results and Performance Analysis

Platform: All our experiments are performed on a machine with Intel core
i7 X980 CPU and Nvidia Geforce GTX 580 GPU. The Intel core i7 X980 is a
3.33-GHz six-core CPU with Intel’s hyper-threading technology. It can work on
12 streams at once. It has a 12MB L3 cache. GTX 580 has 512 CUDA cores.
For all our experiments we used OpenMP specification 3.0 and the CUDA 5.0
programming model for programming multi-core CPUs and Nvidia many-core
GPUs respectively.

Dataset: For input data we have randomly generated points from a uniform dis-
tribution. We perform our experiments on data sets with small trees containing
few thousand points to large trees with over 1 M points.

Our simplified structure of range tree enables us to achieve faster construction
times using existing primitives such as sorting and merging. With minimal pro-
graming effort we are able to achieve faster construction times. Figure 3 shows
the speed up of constructing a range tree on GPU over a multi-core CPU imple-
mentation. It is evident from the graph that our implementation can easily scale
to huge datasets. For constructing a range tree on a dataset with 1 M points,
we achieve a speed up of 12X on GPU over 12-threaded CPU implementation.

4 Application I: Range Searching
The problem of range searching is to report the set of points that lie in a given

orthogonal query rectangle. An orthogonal query rectangle has its sides paral-
lel to the axes of the underlying space. An orthogonal rectangle can then be

746 M.K. Maramreddy and K. Kothapalli

25

20

15

Speed up

12 14 16 18 20 22
log(#points)

Fig. 3. Speedup of building range tree on GPU vs 12-threaded CPU implementation

represented by considering the cross product of ranges in each dimension. In
particular, in a 2-dimensional setting, the rectangle [a,b] X [c,d] refers to the
rectangle consisting of points whose x-coordinates are in [a, b] and y-coordinates
are in [c, d]. Given a range tree for n points in a 2-dimensional space and a range
query ¢ of the form [a,b] X [c,d], the algorithm to process the query has the
following three main steps (cf. Section 2).

1.
2.
3.

4.

in

Finds the nodes that are closest to a and b in the primary tree

Find the canonical nodes in the primary tree, and

Find the result by repeating the above steps in the secondary tree for each
canonical node of the primary tree

Transfer results to host CPU

In the following, we show how each of the above steps can be also performed
parallel for a given query. This helps us extract intra-query parallelism apart

from the standard inter-query parallelism?.

1

. Binary Search on Primary tree: In the first phase, we binary search for

a and b in the primary tree. We assign a search key per thread. In order to
avoid conditional branching of threads we store our sorted array in level-order
rather than in-order. This technique was used in [11] to avoid conditional
branching of threads.

Let w and v are the indices of the nodes where the binary search for a and
b in the primary tree ends. The split node 74, is computed by taking xor
of u and v. The number of canonical nodes can be obtained by counting the
number of set bits. The result of the binary search and the split nodes are
saved and passed as input to Phase-2.

. Find canonical nodes: In the second phase, we compute the indices of the

canonical nodes in parallel. While the standard range search implementation
is bounded by sequential search for canonical nodes, we present a method to
find all the canonical nodes in parallel. In order to get the total number of

! Detailed pseudocode is available at

http://cstar.iiit.ac.in/~kkishore/rangetree.pdf

http://cstar. iiit.ac.in/~kkishore/rangetree.pdf

GPU Accelerated Range Trees with Applications 747

canonical nodes for the batch of queries we perform a parallel reduce on the
number of canonical nodes for each query obtained from Phase-I.

The inorder labeling of the nodes in the tree provides information about
the path traced from root to that node. A '0’ bit at i*" position from right
indicates the path has traversed left and a ‘1’ bit indicates the path has
traversed right. Using this path information and the corresponding split node
obtained in Phase-I, we give a technique to compute the canonical nodes in
parallel.

In the path from split node to u, a ‘0’ bit indicates the presence of a
canonical node. Similarly, for the right path to v a ‘1’ bit indicates the
presence of a canonical node.

3. Binary Search on Secondary tree: For every canonical node found in
Phase-2, we perform binary search for ¢ and d in the corresponding secondary
tree. The output of the binary search for each canonical node is stored.

4. Reporting results: The number of output points generated per query can
be of the order of O(n). Copying back such huge data to the host CPU con-
sumes a significant amount of time. We alleviate this problem substantially
by reporting only the left and right indices of our search in secondary trees.
A sequential scan of these ranges on the host would output the points on
the host side. This greatly reduces the amount of data to be transfered to
O(logn) per query. In order to further hide the copy time we process our
queries in batches so that the copy time of output of the i® batch can be
completely hidden by computation of the (i — 1)** batch.

4.1 Performance Analysis

Dataset: To generate the queries, we study three different datasets. These
datasets are dictated by the number of canonical nodes that each query re-
sults in. Since the number of canonical nodes in each query directly impacts the
work done in Phase II and III of our querying algorithm, this study helps us
understand the efficacy of our implementation. It is easy to note that in a range
tree containing n points, the average number of canonical nodes in a query whose
range is generated uniformly at random is O(logn/2). Based on this average, we
study the following query datasets.

1. Short-range Queries: We define a query as a short-range query if the
number of canonical nodes for the query is between zero and logn/2.

2. Medium-range Queries: A medium-ranged query has canonical nodes
between logn/2 and 3logn/4.

3. Long-range Queries: Any query with canonical nodes greater than
3log(n)/4 is defined as a long-range query.

Throughput: In our experiments, we consider trees with 2'° points as small trees

and trees with 220 points as large trees. The throughput graph for the three
datasets is show in Figure 4. We see from Figure 4 that our algorithm scales

748 M.K. Maramreddy and K. Kothapalli

200 throughput GPU - short range queries —4— 1 throughput GPU - short range queries —4—
throughput GPU - medium range queries -®- throughput GPU - medium range queries -®-
25 throughput GPU - large range queries @
throughput CPU - small range queries —4—
throughput CPU - medium range queries -®-
throughput CPU - large range queries =@

throughput GPU - large range queries ~®

throughput CPU - small range queries —4—
throughput CPU - medium range queries -®-

throughput CPU - large range queries @

>-
@
S

@
S

throughput(in million queries per sec)
=
S
S

throughput(in million queries per sec)

10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 24
log(#queries) log(#queries)

(a) Throughput graph on Small trees (b) Throughput graph on Large trees

Fig. 4. Throughput of GPU range searching vs. a 6-core CPU

for both small trees and large trees and also over the three query datasets. This
suggests that a batch of queries that come with a mix of short-range to long range
queries can also be processed without any further rearrangement of the queries.
We do notice a higher throughput for the Short-range Query dataset compared
to other datasets. This is due to the fact that as the number of canonical nodes
is small in that dataset, the amount of computation spent in phase 2 and 3 is
minimal.

Batch Size: We finally study the impact of batch size on our implementation.
Recall from Section 4, Phase IV of our querying algorithm can be made to
overlap with Phases I-III of the querying algorithm a scenario, finding the right
value for the batch size is crucial. In Figure 5 we show the throughput achieved
by our algorithm as a function of the batch size. As can be intuitively observed,
the throughput increases with increasing batch size up to a certain point. This
is due to the fact that the time spent in Phase IV can be completely hidden by
the time spent in Phase I-III, except for the time spent in Phase IV for the last
batch. However, as we increase the batch size further, the increase in time spent
in Phase IV will decrease the throughput achieved. From Figure 5, we notice
that for a dataset of 26 points and 2'¢ queries, a batch size of 2'3 is ideal.

5 Application II: Reporting Maximal Points in an
Orthogonal Query

A traditional range search query focuses on returning all the points inside a given
range. But when dealing with large datasets, the resulting number of points
may be huge and hence it is impractical to return the entire result. One such
scenario may be server returning results to mobile devices where bandwidth and
screen resolution are constrained. In such scenarios, it is beneficial to return a
summary of the result. Maximal points offer a good summary of the results [1].
Using range trees, a sequential algorithm to report the set of maximal points in

GPU Accelerated Range Trees with Applications 749

15

throughput —é—

14

throughput (in million queries per sec)

10 11 12 13 14 15 16
log (#batchsize)

Fig. 5. Variation of query throughput with batch size for a dataset of 2'¢ points and
216 queries

a given orthogonal query region is proposed in [4]. In this section, we use our
GPU-based construction of a range tree to provide a parallel solution to problem
of reporting the maximal points in a given orthogonal query region.

o
4.2)

Secondary tree at
an internal node

a b Primary tree

(a) Skyline points in-(b) In the associated structure we only store the skyline of the
side a rectangle points rooted at that internal node

Fig. 6. An application of range trees to find maximal points inside a query rectangle

In order to efficiently report the maximal points, also called as the skyline
points, or simply the skyline, inside a given range, we preprocess the input point
set into a data structure. This data structure is similar to range tree we described
in Section 3 with a difference that we store the maximal points of the canonical
subset of points at each internal node of the secondary tree. This solution is
described in detail in [8].

The algorithm for reporting skyline points inside an orthogonal range query
is similar to that of range searching described in Section 4. At the end of Phase-
3, we get a skyline corresponding to each canonical node in the primary tree.

M.K. Maramreddy and K. Kothapalli

Merging these canonical-skylines produces the final skyline inside the query
range. Below we explain the steps required to merge the skylines.

1. Filtering overshadowed skylines: A skyline S; is said to be overshadowed

by skyline S; if the maximum y-coordinate of points in S; is greater than
maximum y-coordinate of points in ;. All canonical-skylines may not con-
tribute to the final merged output as they may be overshadowed by a skyline
to their right. We filter such skylines prior to merging them as follows.

Let Yiaz = {v1,¥2,...yx} be maximum y-coordinates of the points in
each of the canonical-skylines. For filtering the skylines we perform an All
Nearest Larger Value (ANLV) to the left on Yj,q.. The problem of ANLV is
defined as follows. Given an array A of n elements, for each element A[i],
find the element closest to the left of 7 that is greater than A[i]. ANLV is a well
studied problem in parallel algorithms [7]. For solving this problem, we use
the algorithm from [7]. For every canonical-skyline we find a target skyline
to be merged with. An example of the problem is illustrated in Figure 7.

. Merging skylines: Assuming S; and S; are the two skylines to be merged
where S; lies left of S;. Let y; be the maximum y-coordinates of the points
in S;. In order to merge S; and S; we find the merge point by searching
for y; in S;. For all the canonical-skylines that are not filtered in the above
step we find the merge point by searching their maximum y-coordinate in
the corresponding target skyline.

. Reporting results: By traversing the skylines from right to left through
the merge points, we can obtain the final skyline. But since this operation is
sequential in nature, we perform the traversal on the host CPU. The set of
canonical-skylines that are not filtered and their corresponding merge points
are returned as a result set from GPU to host CPU.

(a) We compute ANLV on the maximum y-(b) Final skyline is obtained by merging in-
coordinates of points in skylines dividual skylines

Fig. 7. Finding skyline inside an orthogonal range query

5.1 Performance Results

For the experiments, we generate random queries from a uniform distribution.
The throughput graph is show in Figure 8. As can be seen, our implementation
offers a good speed-up over a corresponding multi-core CPU.

throughput(in million queries per sec)

6

In

GPU Accelerated Range Trees with Applications 751

14 throughput GPU (height=10) A~ 4 throughput GPU (height=20) —&—
throughput CPU (height=10) -e— throughput CPU (height=20) —e~

throughput(in million queries per sec)

' ;/\—\,/’—'-<
2
10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 24

log(#queries) logf#queries)

(a) Small trees (b) Large trees

Fig. 8. Throughput graph of GPU vs 6-core CPU

Conclusions

this paper, we show that hierarchical data structures can be efficiently con-

structed on modern parallel architectures. Our method involves identifying effi-
cient ways to store and represent the data structure without compromising on
the access efficiency of the representation. As a case-study, we considered the
range tree along with two applications of the same.

References

1.

2.

o 3

10.

11.

12.

Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Ad-
vances in Discrete and Computational Geometry, vol. 223, pp. 1-56

Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. Tech-
nical report, NVIDIA Technical Report NVR-~2008-004 (2008)

Coombe, G., Harris, M.J., Lastra, A.: Radiosity on graphics hardware. In: Pro-
ceedings of the 2004 Conference on Graphics Interface, pp. 161-168 (2004)

. Das, A.S., Gupta, P., Srinathan, K.: On Finding Skyline Points for Range Queries

in Plane. In: CCCG (2011)

. Fix, J., Wilkes, A., Skadron, K.: Accelerating Braided B+ Tree Searches on a GPU

with CUD. In: Proc. ISCA Workshops (2011)

. Foley, T., Sugerman, J.: Kd-tree acceleration structures for a gpu raytracer. In:

Proc. Graphics Hardware, pp. 15-22 (2005)

. Jaja, J.: An Introduction To Parallel Algorithms. Addison-Wesley (2004)
. Kalavagattu, A.K., Agarwal, J., Das, A.S., Kothapalli, K.: Counting Range Max-

ima Points in Plane. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp.
263-273. Springer, Heidelberg (2012)

. Kim, J., Kim, S.-G., Nam, B.: Parallel multi-dimensional range query processing

with R-trees on GPU. J. Par. Dist. Comp. 73(8), 1195-1207 (2013)

Lefohn, A.E., Sengupta, S., Kniss, J., Strzodka, R., Owens, J.D.: Glift: Generic, Effi-
cient, Random-access GPU Data Structures. ACM Trans. Graph. 25(1), 60-99 (2006)
Leischner, N., Osipov, V., Sanders, P.. GPU sample sort. In: IEEE International
Parallel and Distributed Processing Symposium, IPDPS (2010)

NVidia Corporation, Cuda: Compute Unified Device Architecture programming
guide. Technical report, Nvidia. Tech. Rep. (2007)

	GPU Accelerated Range Trees with Applications
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Range Querying

	3 A Parallel Range Tree
	3.1 Implementation Details
	3.2 Results and Performance Analysis

	4 Application I: Range Searching
	4.1 Performance Analysis

	5 Application II: Reporting Maximal Points in an Orthogonal Query

	5.1 Performance Results

	6 Conclusions
	References

