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Abstract. Nowadays, HPC systems frequently emerge as clusters of commod-
ity processors with attached accelerators. Moving from tedious low-level accel-
erator programming to increased development productivity, the directive-based
programming models OpenACC and OpenMP are promising candidates. While
OpenACC was completed about two years ago, OpenMP just recently added sup-
port for accelerator programming. To assist developers in their decision-making
which approach to take, we compare both models with respect to their programma-
bility. Besides investigating their expressiveness by putting their constructs side
by side, we focus on the evaluation of their power based on structured parallel
programming patterns (aka algorithmic skeletons). These patterns describe the
basic entities of parallel algorithms of which we cover the patterns map, sten-
cil, reduction, fork-join, superscalar sequence, nesting and geometric decompo-
sition. Architectural targets of this work are NVIDIA-type accelerators (GPUs)
and specialties of Intel-type accelerators (Xeon Phis). Additionally, we assess the
prospects of OpenACC and OpenMP concerning future development in soft- and
hardware design.

Keywords: OpenACC, OpenMP 4, GPU, Xeon Phi, programmability, parallel
patterns.

1 Introduction

Heterogeneity and specialized accelerating hardware add a further level of complexity
to parallel programming. Although, accelerator programming with low-level APIs like
CUDA or OpenCL opens up opportunities for performance tuning, it also challenges the
software design or may lead to error-prone tasks or even hardware-specific implemen-
tations. By attempting to overcome these difficulties, directive-based models for accel-
erator programming gained more interest, lately. Up to now, the most prominent one is
OpenACC [13] that was released as industry standard in November 2011 and incorpo-
rates two years of maturity now. While OpenMP [14] has been the de-facto standard for
programming multi-core CPUs for over ten years, it also covers high-level accelerator
programming since version 4.0 (July 2013). Having two well-promoted directive-based
models for accelerators around, developers are currently wondering which program-
ming model to chose. Emerging questions relate to the power of the programming para-
digm, opportunities for performance and the long-term perspective of the usage of the
programming model and its mapping to future hardware architectures.
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In this paper, we discuss answers to most of these questions to assist developers in
their decision-making process between OpenACC and OpenMP. We examine the pro-
grammability and potency of the two models by comparing both the available constructs
side by side and the expressiveness taking a pattern-based approach, following the clas-
sification by McCool et al [12]. Covered patterns are map, stencil, reduction, fork-
join, superscalar sequence, nesting and geometric decomposition. Implementations are
illustrated for NVIDIA-type accelerators (GPGPUs) and occasionally for Intel-type ac-
celerators (Intel Xeon Phis). From these, we derive similarities and differences in pro-
grammability. A comparison of performance measurements is currently not possible
since OpenACC/ OpenMP implementations for the same device hardware do not exist.

The paper is structured as follows: Section 2 covers related work. In Section 3, we
give an overview on available accelerator directives in OpenACC and OpenMP and
show fundamental differences in their expressiveness. The pattern-based comparison is
carried out in Section 4 and examines the fit for certain algorithmic tasks. Finally, we
conclude our findings in Section 5 and discuss future perspectives of both models.

2 Related Work

Over the years, numerous approaches to characterize parallel algorithms have been un-
dertaken. An early work [5] classifies algorithms into skeletons. A pattern language for
parallel programming that uses design patterns and makes up four design spaces is de-
fined by Mattson et al [11]. A famous categorization is given by Berkley’s dwarfs (or
motifs) [1] that characterize workloads for the evaluations of parallel architectures, for
instance, dense/ sparse linear algebra, (un-)structured grids or n-body applications. We
chose a lower level of abstraction by applying parallel patterns for structured program-
ming defined by McCool et al [12]. While few works applied different categorizations
of parallel algorithms to accelerator paradigms (e.g. [4]), we are the first to our knowl-
edge that use the novel characterization by McCool et al. The relative low abstraction
level and the applicability to scientific programming makes this characterization specif-
ically suitable to compare parallel programming paradigms.

Various directive-based paradigms fed into the current OpenACC and OpenMP
standards. Some of these approaches (PGI Accelerator, hiCUDA, HMPP, OpenMPC, R-
Stream) have been compared to OpenACC (CAPS, PGI, accULL) in [6,15,9]. Ground-
work for OpenMP for accelerators [3] was done by our author Beyer (et al).

While few works deal with OpenMP for accelerators so far, much research has
been carried out on OpenACC in the last years. However, most of it focuses on per-
formance evaluations rather than on programmability—as we do. In [7], the authors
compare the performance of Cray’s, PGI’s and HMPP’s OpenACC implementation to
a low-level CUDA version using two micro-benchmarks and one real-world code. Our
previous work [17] covers performance results on two real-world applications com-
paring OpenCL with Cray’s OpenACC and the PGI Accelerator Model. Performance
investigations also cover different architectures such as Intel Xeon Phi and NVIDIA
GPUs [16]. Some of these works [17,9,6] also include programmability aspects with
respect to learning curve, code size, development effort or adaptability. For evaluating
expressiveness, we follow a more general approach and exhibit a structured comparison
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by well-defined parallel patterns. With respect to the OpenMP accelerator model, only
few investigations have been published yet at all. The research implementation HOMP
is introduced in [10] for NVIDIA GPUs. The authors compare performance of HOMP
to PGI’s and HMPP’s OpenACC versions. To the best of our knowledge, we provide
the first comparison of programmability between OpenACC and OpenMP for acceler-
ator programming (basing on Beyer’s webinar [2]). Wolfe [19] makes rather skeptical
comments on the extension of accelerator offload regions to OpenMP. We contribute our
own view that bases on experiences in academia, industry and our work in the OpenMP/
OpenACC committees on the prospects of both standards in Section 5.

3 Overview on OpenACC and OpenMP for Accelerators

OpenMP has been the de-facto standard for shared-memory multi-core programming
since about ten years. Additionally, the OpenMP language committee has been work-
ing on the integration of accelerator support since 2009, which resulted in the target
construct as part of OpenMP 4.0. In between, the independent sub group of Cray, CAPS,
PGI, and NVIDIA released their own industry standard as OpenACC in 2011. OpenMP
aims to extend known concepts from multi-core programming to accelerators and al-
lows heterogeneous programming with just one paradigm, while OpenACC was mo-
tivated by GPGPU users being tired of low-level APIs. OpenACC’s specification 2.0
from June 2013 contains advances and feedback gathered from the last two years. Simi-
larly, the OpenMP language committee is already working on improving the accelerator
support for the next (minor) standard update.

Both models build on a host-directed execution model in which the host offloads data
and compute-intensive loops to an accelerator (or as fallback to the host itself). An ab-
stract machine model is presented in [20, p. 5]. Both models also exhibit a weak device
memory model so that memory coherence between operations executed by different
threads is not assured. The memory entities between host and device are presumed to
be separate. However, the devices may share memory with the host [13, p. 9f.] [14, p.
17ff.]. OpenACC and OpeMP both contain constructs, clauses, runtime library routines
and environment variables to control the workflow and express parallelism. A direct
comparison of important features is given in Table 1.

4 Pattern-Based Comparison

Patterns are the basic structural entities of algorithms and represent common control
flows and data organizations in applications. We apply these parallel patterns as defined
by McCool et al to accelerator programming models and focus on these special accel-
erator features rather than on the base language characteristics of C/C++ or Fortran. By
parallel patterns, we show concepts and differences of the programmability and potency
of OpenACC and OpenMP.

4.1 Map

The elementary map pattern is the foundation of numerous algorithms (e.g. Monte Carlo
sampling) and other patterns. It represents a parallel version of a serial iterating loop of
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Table 1. Comparison of constructs and clauses of OpenACC and OpenMP

OpenACC OpenMP Remark

parallel target offload of computational work to the device (synchronously)
parallel teams, parallel creation of in parallel running threads
kernels compiler may find parallelism in associated block automatically
data target data structured data management between host & device
loop distribute, do,

for, simd
worksharing across the parallel units

host data interoperability with low-level languages like CUDA
cache move object closer to the execution units in the memory hierarchy
update target update data movement between host & device within data environment
declare declare target declaration of global, file static or extern objects used inside a par-

allel region
routine declare target declaration of functions called inside a parallel region
enter data unstructured data management to the device
exit data unstructured data management from the device

tasks creation of explicit tasks for task parallelism
async(int) task depend asynchronous execution with dependencies
wait synchronization of streams
async wait asynchronous waiting on a specific stream
parallel in
parallel

parallel in
parallel or team

nested parallelism on the device

tile strip-mining of data collections
device type device-specific tuning of clauses
atomic atomic atomic operations

sections,
critical, barrier,
master, single

non-iterative workshare, critical sections, synchronization, control
flow for single thread

which all iterations of the body are independent and the number of iterations is known
in advance. This pattern maps in parallel the different elements of the input data within
the index space to an output collection using a so-called elemental function.

The elemental function f of the map example in Listings 1.1–1.4 describes a naive
scaled matrix transpose: B = p·A T with p ∈ R, A ∈ R

n×m, B ∈ R
m×n. OpenACC

and OpenMP both support the map pattern. Listings 1.1 and 1.2 show implementations
for NVIDIA-type accelerators that leverage the GPU’s two levels of parallelism. While
the parallel construct in OpenACC directly starts the parallel execution on the de-
vice, an additional target construct must be specified in OpenMP to differentiate
between host and device execution. OpenMP is also verbose on the different hierar-
chies of parallelism: on a GPU, the teams distribute spreads the work of the
outer loop in independent chunks onto the compute units (as defined in [8, p. 23f.]).
Here, teams creates a parallel teams region; distribute indicates the workshare.
It does not contain an implicit barrier at its end and must be closely nested in or com-
bined with teams. Then, the parallel for distributes the work of the inner loop
across the processing elements [8, p. 23f.] within a compute unit. With OpenACC, the
loop directive is sufficient for worksharing, but should be extended by an efficient loop
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Listing 1.1. Map with two levels of paral-
lelism in OpenACC (GPU)

1 #pragma acc routine seq
2 double f(double p, double aij) {
3 return (p * aij);
4 }
5

6 // [..]
7 #pragma acc parallel
8 #pragma acc loop gang
9 for(i=0; i<n; i++) {

10 #pragma acc loop vector
11 for(j=0; j<m; j++) {
12 b[j][i] = f(5.0,a[i][j]);
13 } }

Listing 1.2. Map with two levels of paral-
lelism in OpenMP (GPU)

1 #pragma omp declare target
2 double f(double p, double aij) {
3 return (p * aij);
4 }
5 #pragma omp end declare target
6 // [..]
7 #pragma omp target
8 #pragma omp teams distribute
9 for(i=0; i<n; i++) {

10 #pragma omp parallel for
11 for(j=0; j<m; j++) {
12 b[j][i] = f(5.0,a[i][j]);
13 } }

Listing 1.3. Map in OpenACC (Phi)

1

2 #pragma acc routine seq
3 double f(double, double);
4

5 // [..]
6 #pragma acc parallel
7 #pragma acc loop gang vector
8 for(i=0; i<n; i++) {
9 for(j=0; j<m; j++) {

10 b[j][i] = f(5.0,a[i][j]);
11 } }

Listing 1.4. Map in OpenMP (Phi)

1 #pragma omp declare target
2 #pragma omp declare simd
3 double f(double, double);
4 #pragma omp end declare
5 // [..]
6 #pragma omp target
7 #pragma omp parallel for simd
8 for(i=0; i<n; i++) {
9 for(j=0; j<m; j++) {

10 b[j][i] = f(5.0,a[i][j]);
11 } }

scheduling clause. Here, loop gang and loop vector equal the work distribution
of the OpenMP example. Additionally, OpenACC provides the “magical” kernels
directive that delegates the responsibility of finding parallelism to the compiler.

Closely related to the map pattern is the elemental function that is implemented as
function call. OpenACC (2.0) supports function calls by the routine construct which
needs the declaration of a parallelism level (gang, worker, vector, seq). A seq
clause is used in the example to denote that the function does not express any parallelism
itself, as it is already sufficiently exploited at the loop level. In turn, OpenMP has a
more flexible way by denoting the declare target directive without specifying
the parallelism. Thus, the function can be called from different contexts. Contrary, the
absence of this hint might prevent some optimizations. In the following, we express the
elemental function of the fundamental map pattern in formulas for better reading.

The same implementations will also work on an Intel Xeon Phi as OpenACC and
OpenMP guarantee portability. However, performance portability may be implementa-
tion dependent. A more appropriate approach applies another level of parallelism (no
hierarchy) and emphasizes vectorization (compare Listings 1.3 and 1.4). The mapping
of work onto the threads on the Phi is employed by loop gang and parallel for.
Vectorization is requested by vector and simd clauses, respectively.
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Listing 1.5. Stencil in OpenACC (GPU)

1 #pragma acc parallel
2 #pragma acc loop tile(64,4) gang vector
3 for(i=1; i<n-1; i++) {
4 for(j=1; j<m-1; j++) {
5

6 #pragma acc cache(a[i-1:3][j-1:3])
7

8 anew[i][j] = (a[i-1][j] + a[i+1][j] +\
a[i][j-1]+ a[i][j+1]) * 0.25;

9 }
10 }

Listing 1.6. Stencil in OpenMP (GPU)

1 #pragma omp target
2 #pragma omp teams distribute collapse(2)
3 for(i=1; i<n-1; i+=64) {
4 for(j=1; j<m-1; j+=4) {
5 #pragma parallel for collapse(2)
6 for(k=i; k<min(n-1,i+64); k++){
7 for(l=j; l<min(m-1,j+4); l++){
8 anew[k][l] = (a[k-1][l] + \

a[k+1][l] + a[k][l-1] + \
a[k][l+1]) * 0.25;

9 } } } }

4.2 Stencil

The elemental function of the stencil pattern allows several input elements that can be
accessed in a regular way, i.e. with fixed offsets. This structure of neighboring input
elements enables data reuse and cache optimizations. To fit data into the software- or
hardware-managed cache (especially) for multi-dimensional stencils, the ’layer condi-
tion’ must be fulfilled. A common solution is the spatial blocking of data that is also
known as strip-mining.

In Listings 1.5 and 1.6, a small part of a Jacobi solver for the Laplace equation is
presented, omitting the matrix swap and the convergence iteration. The presented two-
dimensional stencil can be tiled into blocks using OpenACC. The tile clause hides
loop splitting and collapsing. This is illustrated in the OpenMP example since tiling
must be explicitly expressed in OpenMP. Here, distribute teams collapse(2)
combines the index space of the outer two loops for distribution to the compute units of
a GPU and parallel for collapse(2) for distribution across the processing
elements within the compute units. In addition to blocking, OpenACC provides the
cache-ing capability (line 6) to let the developer specify that sub arrays should be
fetched into the highest-level memory for data reuse. OpenMP does not yet support
leveraging the on-chip caches explicitly. Summarizing, both models do not have built-
in functions for stencils, but OpenACC provides some features for optimization.

4.3 Reduction

Another pattern that is often required in linear algebra is the reduction pattern. It com-
bines every element of an input data set into a single element using a certain reduction
operation (combiner function). For parallelization, the combiner function must be asso-
ciative to support reordering of operations.

OpenACC and OpenMP allow directly to compute reductions with a clause. Re-
ductions are supported at worksharing levels and parallel regions (parallel,teams).
Listings 1.7 and 1.8 present an example for reductions on different levels of paral-
lelism, i.e. a matrix vector multiply extended with a checksum computation: b = A ·x,
checksum =

∑n
i=1 bi with b ∈ R

n, x ∈ R
m, A ∈ R

n×m and bi ∈ R. The reduc-
tion value of the scalar tmp is already needed right after the inner loop to compute the
checksum. For vector parallelism in OpenACC (line 5), it is necessary that the vari-
able also appears in a private clause to get it updated right at the exit of the loop and
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Listing 1.7. Reduction in OpenACC (GPU)

1 #pragma acc parallel private(tmp)
2 #pragma acc loop gang \

reduction(+:checksum)
3 for(i=0; i<n; i++) {
4 tmp = 0;
5 #pragma acc loop vector reduction(+:tmp)
6 for(j=0; j<m; j++) {
7 tmp += A[i][j] * x[j];
8 }
9 b[i] = tmp;

10 checksum += tmp;
11 }

Listing 1.8. Reduction in OpenMP (GPU)

1 #pragma omp target
2 #pragma omp teams distribute private(tmp)\

reduction(+:checksum)
3 for(i=0; i<n; i++) {
4 tmp = 0;
5 #pragma omp parallel for reduction(+:tmp)
6 for(j=0; j<m; j++) {
7 tmp += A[i][j] * x[j];
8 }
9 b[i] = tmp;

10 checksum += tmp;
11 }

Listing 1.9. Fork-join in OpenMP (Phi)

1 #pragma omp declare target
2 int fib(int n) {
3 int x, y;
4 if (n < 2) {return n;}
5 #pragma omp task shared(x)
6 x = fib(n - 1);
7 #pragma omp task shared(y)
8 y = fib(n - 2);
9 #pragma omp taskwait

10 return (x+y);
11 }
12 #pragma omp end declare target
13 // [..]
14 #pragma omp target
15 #pragma omp parallel
16 #pragma omp single
17 result=fib(n);

Listing 1.10. Unstructured data lifetime in
OpenACC (GPU)

1 class CArray {
2 public:
3 CArray(int n) {
4 a = new double[n];
5 #pragma acc enter data create(a[0:n])
6 }
7 ˜CArray() {
8 #pragma acc exit data delete(a[0:n])
9 delete(a);

10 }
11 void fillArray(int n) {
12 #pragma acc parallel loop
13 for(int i=0; i<n; i++) { a[i]=i; }
14 }
15 private:
16 double *a;
17 };

not only at the end of the parallel region. Correspondingly, the checksum variable is
put properly in the reduction at the gang parallelism (line 2). For OpenMP, there are
corresponding rules.

As an advantage, OpenMP supports user-defined reductions, especially useful on
structured data types, which is currently not possible with OpenACC. Furthermore, the
OpenMP simd construct also supports reduction operations.

4.4 Fork-Join

The fork-join pattern directs the workflow to be split (forked) into multiple parallel
and independent flows and get merged (joined) later again. OpenACC and OpenMP
both support parallel regions on the device that actually fork control into mul-
tiple threads and later return to a single master thread (compare Section 4.1). How-
ever, worksharing constructs in parallel regions only support data parallel execution
across threads. OpenMP additionally provides task parallel execution on the device via
sections or tasks. It enables parallel execution of instances with different compu-
tational work and efficient load balance. The fork-join pattern can also be applied for
recursive algorithms such as divide-and-conquer. A simple recursive application is the
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Listing 1.11. Superscalar sequence in
OpenACC (GPU)

1

2

3

4

5 #pragma acc parallel loop async(1)
6

7 // F = f(A)
8

9

10 #pragma acc parallel loop async(2)
11 // G = g(B)
12 #pragma acc wait(1,2) async(3)
13

14

15 #pragma acc parallel loop async(3)
16 // H = h(F,G)
17 #pragma acc wait(1)
18 // S = s(F)
19 #pragma acc wait
20

Listing 1.12. Superscalar sequence in
OpenMP (GPU)

1 #pragma omp parallel
2 #pragma omp single
3 {
4 #pragma omp task depend(inout:F)
5 #pragma omp target teams distribute \

parallel for
6 // F = f(A)
7 #pragma omp task depend(inout:G)
8 #pragma omp target teams distribute \

parallel for
9 // G = g(B)

10 #pragma omp task depend(in:F,G) \
depend(inout:H)

11 #pragma omp target teams distribute \
parallel for

12 // H = h(F,G)
13 #pragma omp task depend(in:F)
14 // S = s(F)
15 #pragma omp taskwait
16 }

computation of Fibonacci numbers in Listing 1.9. This algorithm forks for each recur-
sive call a new task and joins them by using the taskwait directive. This conceptual
behavior can be approximated by host-directed nested parallel constructs in OpenACC.

4.5 Superscalar Sequence

The superscalar sequence pattern describes the parallelization of the serial sequence
which executes an ordered list of tasks. In a superscalar sequence, the specific order
can be lifted by parallel execution as long as all data dependencies are satisfied. On
multi-core processors with attached accelerators, the superscalar sequence can also be
interpreted as heterogeneous or hybrid parallelization for the combination of host and
device using asynchronous execution.

To denote data dependencies, OpenACC follows a streaming concept that is known
from CUDA programming. As seen in Listing 1.11, the streams are expressed by async
clauses that take a positive integer as stream label. Data that contains dependencies
must be put into the same stream (same integer) for sequential ordering. Tasks that
can be executed in parallel should be in different streams. The wait construct and
clause help with the synchronization across different streams. For OpenMP, the tasking
model can be applied with the extension of data dependency capabilities. Tasks that do
not depend on each other can be employed in parallel. In Listing 1.12, all tasks (ex-
cept the last one listed) start a target region for execution on the device. Other than in
OpenACC, the OpenMP host thread that picks up the scheduled task has to wait until
the task has been completed to return to the thread pool to execute further tasks.

4.6 Nesting

The nesting pattern is a compositional pattern for creating hierarchies. They are needed
for a modular code structure and the incorporation of libraries. Here, we look
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Listing 1.13. Update in OpenACC (GPU)

1 void stencilOnAcc(double **a, double **\
anew, int n, int m) {

2 #pragma acc parallel present \
(a[1:n-2][0:m], anew[1:n-2][0:m])

3 #pragma acc loop
4 // stencil computation
5 }
6 // [..]
7 #pragma acc data create(Anew[0:n][0:m]) \

copyin(A[0:n][0:m]) if(test)
8 {
9

10 while (iter < iter_max) {
11 stencilOnAcc(A,Anew,n,m);
12 #pragma acc update host(Anew[1:n-2][0:m])
13

14 swapOnHost(A,Anew,n,m);
15 #pragma acc update device(A[1:n-2][0:m])
16

17 iter++;
18 } }

Listing 1.14. Update in OpenMP (GPU)

1 void stencilOnAcc(double **a, double ** \
anew, int n, int m) {

2 #pragma omp target map(tofrom: \
a[1:n-2][0:m], anew[1:n-2][0:m])

3 #pragma omp teams distribute parallel for
4 // stencil computation
5 }
6 // [..]
7 #pragma omp target data \

map(alloc:Anew[0:n][0:m]) \
map(to:A[0:n][0:m]) if(test)

8 {
9 while (iter < iter_max) {

10 stencilOnAcc(A,Anew,n,m);
11 #pragma omp target update \

from(Anew[1:n-2][0:m])
12 swapOnHost(A,Anew,n,m);
13 #pragma omp target update \

to(A[1:n-2][0:m])
14 iter++;
15 } }

especially at nested parallelism. In OpenACC, a modular composition can be explored
by the ability of nesting parallel regions or kernels into each other. For OpenMP,
some restrictions are imposed to with target and teams constructs: both are not al-
lowed to be nested in themselves. Only parallel directives can be applied inside of
target/teams/parallel directives.

4.7 Parallel Update

While various parallel data management patterns are defined by McCool et al, no spe-
cific pattern displays the data relationship between a host and an accelerator. Therefore,
we extend the parallel patterns by defining a parallel update pattern. The parallel up-
date pattern does not have a pendant in serial execution, as it exposes capabilities to
synchronize data between host and device.

Both programming models support basic parallel update methods like data clauses,
data regions and update constructs. The usage of these patterns is illustrated in List-
ings 1.13 and 1.14 that show a simplified iterative Jacobi solver with stencil computa-
tions. Data movement is controlled by data clauses next to the parallel, kernels
or target construct, which take a variable list and a map type determining the data
transfer direction or creation/deletion. Basic OpenACC map types are create, copy,
copyin and copyout. OpenMP provides alloc, tofrom, to and from, respec-
tively, in combination with the map clause. The variable list must only denote arrays
or pointers, as scalar variables are transfered automatically. Statically-allocated arrays
can be automatically recognized and moved by the compiler. Thus, we did not have to
specify them in previous examples. In contrast, the size of dynamically-allocated mem-
ory must be manually denoted in the form of array sections or sub arrays (e.g. line 12)
representing rectangular or contiguous memory (depending on the construct, base pro-
gramming language and vendor implementation). Besides data clauses, OpenACC and
OpenMP also support data regions (data, target data) which decouple the data
movement from computational regions. The same data map types apply. Hitherto un-



A Pattern-Based Comparison of OpenACC and OpenMP for Accelerator Computing 821

Listing 1.15. Partition in OpenACC (GPU)

1 // determine idDev, stIdx & #rows per dev
2 acc_set_device_num(idDev, \

acc_device_nvidia);
3 #pragma acc parallel loop copy(x[stIdx:\

rows][0:n],y[stIdx:rows][0:n])
4 // y = a * x (on distributed rows)

Listing 1.16. Partition in OpenMP (GPU)

1 // determine idDev, stIdx & #rows per dev
2

3 #pragma omp target device(idDev) map(x[\
stIdx:rows][0:n],y[stIdx:rows][0:n])

4 #pragma omp teams distribute parallel for
5 // y = a * x (on distributed rows)

mentioned are the present checks employed for data on the device. OpenACC provides
present or copy (and similar) clauses that test the existence of data on the device
and moves the data if necessary. The OpenMP runtime implies this check for all data
transfers. OpenACC also allows to explicitly express that a variable is and must be al-
ready present in a given data context (see line 2). If the variable is not accessible on
the device (if(test) evaluates to false), the runtime will throw an error. OpenMP ap-
plications must specify the map clause with inclusive present check. Thus, the program
continues executing. The update directive allows solely data movement between host
and device and can be used flexibly within the corresponding data environment.

Additionally, both models enable an automatic deep copy of flat objects to the device,
i.e. structs and classes with static member types. With OpenACC’s data API, a manual
deep copy of pointer structures is further possible, but tedious. The concept is called
unstructured data lifetime and can also be expressed by directives. In Listing 1.10,
enter data create allocates memory on the device as soon as the constructor
of class CArray is called. Respectively, enter data delete in the destructor de-
stroys the data on the device. Copy clauses are also possible. An OpenMP counterpart
does not exist, momentarily.

4.8 Geometric Decomposition

Data reorganization is a necessary pattern for many algorithms. The geometric decom-
position pattern divides the data collections into sub domains. For parallel execution on
independent data sections, the sub domains should be non-overlapping at best. If this is
the case and the sub domains are uniform in size, we call this the partition pattern.

The partition pattern is illustrated by a vector scaling in Listings 1.15 and 1.16:
y = α · x with x,y ∈ R

n, α ∈ R. Using OpenACC or OpenMP, data subdivision can
take place between host and accelerator or between multiple accelerators. The decom-
position between host and device can be employed using asynchronous call capabilities
covered in Section 4.5. The distribution across multiple accelerators of the same type
can be applied by API calls (OpenACC: line 2) or clauses (OpenMP: line 3), respec-
tively, specifying a certain device ID.

The distribution across multiple accelerators of different types (e.g. GPU, Xeon
Phi) is only supported by OpenACC. OpenACC provides API calls for setting the cur-
rent device type (acc set device type(type)) and additionally device type
clauses that enable device-specific clause tuning for computational work.

5 Conclusion

In the context of structured parallel patterns, we compared the power of OpenACC
and OpenMP for accelerators. A summary table is provided in [18]. We conclude that



822 S. Wienke et al.

OpenACC is one step ahead of OpenMP, momentarily. Although OpenACC does not di-
rectly support the fork-join pattern, it provides more features concerning the remaining
patterns. Contrary, the OpenMP model provides more general concepts such as sections
and task parallelism today. Thus, if developers want to start directive-based program-
ming on GPGPUs now, we recommend to use OpenACC. A port to OpenMP 4.0 can be
easily carried out, any time, if only features from OpenACC 1.0 were used. Similarly
to OpenACC, OpenMP aims to quickly add missing functionality.

Assessing the long-term perspective of both models, the question is whether they
will co-exist, converge or diverge. Based on our work in the OpenACC and OpenMP
accelerator committees, we assume that they will continue to live independently be-
cause of business interests. However, if users advocate for a certain model, vendors
cannot neglect their need. While accelerator capabilities of OpenMP, that target a broad
user base, might always lag behind OpenACC’s, OpenMP might have the advantage in
the long term: It is widely excepted in the user community and supported by numerous
vendors for broad portability. Additionally, it provides a unified model for program-
ming accelerators and CPUs. On the other hand, the effort for a complete OpenMP 4.0
implementation is significant, possibly preventing full support of all OpenMP concepts
in offload regions.

A further uncertainty is the development of future architectures. It is likely that ac-
celerators will get closer to the host processor and/ or might share the same memory.
Not forgetting, Amdahl’s law still holds. Then, the offload model of OpenACC and
OpenMP might lose importance and hosts with large-scaling capabilities might be su-
perior. While in principle OpenACC can also be compiled for the host, OpenMP is
already well-known for a productive usage on CPUs. Thus, OpenMP might take the
lead with its non-offload parallel features then.

At the end, developers look out for one productive parallel programming model
that also delivers performance. While directive-based models might deliver lower per-
formance than low-level approaches, performance differences between equivalent ap-
proaches in OpenACC and OpenMP are not expected, if compared on the same target
architecture. The only dissimilarity might occur if the general concept differs, for in-
stance, as with asynchronous streams and asynchronous tasks. Unfortunately, we could
not investigate performance measurements so far since current OpenACC implementa-
tions only exist for GPUs and an OpenMP 4.0 implementation with device offloading
capabilities is only existent for Intel’s Xeon Phi. These performance examinations are
left for future work. Further investigations will also cover a pattern-based comparison
between low-level and directive-based accelerator models.
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