Skip to main content

On Mittag–Leffler Stability of Fractional Order Difference Systems

  • Conference paper

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 320))

Abstract

The definition of Mittag–Leffler stability of the fractional order difference systems is introduced. The conditions for Mittag–Leffler stability of such systems with both the Riemann–Liouville– and Caputo–type operators are studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdeljawad, T.: On Riemann and Caputo fractional differences. Computers and Mathematics with Applications 62(3), 1602–1611 (2011), doi:10.1016/j.camwa.2011.03.036.

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. Journal of Computational Analysis and Applications 13(3), 574–582 (2011)

    MATH  MathSciNet  Google Scholar 

  3. Atıcı, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. International Journal of Difference Equations 2, 165–176 (2007)

    MathSciNet  Google Scholar 

  4. Axtell, M., Bise, E.M.: Fractional calculus applications in control systems. In: Proc. of the IEE 1990 Int. Aerospace and Electronics Conf., New York, vol. 311(7), pp. 536–566 (1990)

    Google Scholar 

  5. Busłowicz, M.: Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives. In: Przegla̧d Elektroniczby (Electrical Review), vol. 88(4b) (2012)

    Google Scholar 

  6. Busłowicz, M., Ruszewski, A.: Necessary and sufficient conditions for stability of fractional discrete-time linear state-space systems. Bulletin of the Polish Academy of Sciences. Technical Sciences 61, 779–786 (2013)

    Google Scholar 

  7. Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations. Electronic Journal of Qualitative Theory of Differential Equations 39, 1–18 (2011)

    Google Scholar 

  8. Chen, F., Liu, Z.: Asymptotic stability results for nonlinear fractional difference equations. Journal of Applied Mathematics 2012, 14 (2012), doi:10.1155/2012

    Google Scholar 

  9. Guermah, S., Djennoune, S., Bettayeb, M.: Asymptotic stability and practical stability of linear discrete-time fractional order systems. In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara, Turkey (2008)

    Google Scholar 

  10. Holm, M.T.: The theory of discrete fractional calculus: Development and application. Ph.D. dissertation, University of Nebraska - Lincoln (2011)

    Google Scholar 

  11. Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K.: On the stability of some discrete fractional nonautonomous systems. Abstract and Applied Analysis 2012, Article ID 476581, 9 (2012), doi:10.1155/2012

    Google Scholar 

  12. Kaczorek, T.: Fractional positive continuous–time linear systems and their reachability. International Journal of Applied Mathematics and Computer Science 18(2), 223–228 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaczorek, T.: Practical stability of positive fractional discrete-time linear systems. Bulletin of the Polish Academy of Sciences. Technical Sciences 56(4), 313–317 (2008)

    MathSciNet  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North–Holland Mathematics Studies, vol. 204. Elsevier Science B. V., Amsterdam (2006)

    Book  MATH  Google Scholar 

  15. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers and Mathematics with Applications 59, 1810–1821 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Matignon, D., d’Andréa Novel, B.: Some results on controllability and obseravbility of finite–dimensional fractional differential systems. In: IMACS, IEEE-SMC Proceedings Conference, Lille, France, pp. 952–956 (1996)

    Google Scholar 

  18. Mozyrska, D., Girejko, E.: Overview of the fractional h-difference operators. In: Operator Theory: Advances and Applications, vol. 229, pp. 253–267. Birkhäuser (2013), doi:10.1007/978-3-0348-0516-2.

    Google Scholar 

  19. Mozyrska, D., Wyrwas, M.: Z-transforms of delta type fractional difference operators. submitted to publication (2014)

    Google Scholar 

  20. Ostalczyk, P.: Equivalent descriptions of a discretetime fractionalorder linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22(3), 533–538 (2012)

    MathSciNet  Google Scholar 

  21. Pawłuszewicz, E., Mozyrska, D.: Constrained controllability of h-difference linear systems with two fractional orders. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Theory & Appl. of Non-integer Order Syst. LNEE, vol. 257, pp. 67–75. Springer, Heidelberg (2013)

    Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  23. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers S.A., Yverdon (1993)

    MATH  Google Scholar 

  24. Stanisławski, R., Latawiec, K.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability. Bulletin of the Polish Academy of Sciences. Technical Sciences 61(2), 353–361 (2013)

    Google Scholar 

  25. Stanisławski, R., Latawiec, K.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems. Bulletin of the Polish Academy of Sciences. Technical Sciences 61(2), 363–370 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Wyrwas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wyrwas, M., Mozyrska, D. (2015). On Mittag–Leffler Stability of Fractional Order Difference Systems. In: Latawiec, K., Łukaniszyn, M., Stanisławski, R. (eds) Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-09900-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09900-2_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09899-9

  • Online ISBN: 978-3-319-09900-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics