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Abstract. The diversity of a particle swarm can reflect the swarm’s
explorative/exploitative behaviour at a given time step. This paper pro-
poses a diversity rate of change measure to quantify the rate at which
particle swarms decrease their diversity over time. The proposed measure
is based on a two-piecewise linear approximation of diversity measure-
ments sampled at regular time steps. The proposed measure is the slope
of the first of the two lines. It is shown that, when comparing the mea-
sure among different algorithms, the measure reflects the differences in
the behaviour of algorithms in terms of their exploration-exploitation
trade-off. The measure can potentially be used to characterise and clas-
sify different algorithms based on algorithm behaviour.

1 Introduction

Particle swarm optimisation (PSO) is a stochastic optimisation algorithm that
maintains a swarm of particles, where each particle represents a candidate solu-
tion. An important characteristic that describes the search behaviour of a PSO
algorithm (and other population-based algorithms) is diversity. The diversity of
a swarm is the degree of dispersion of the swarm’s particles [15].

Diversity is related to the notions of exploration and exploitation: the more
diverse a swarm is, the more its particles are dispersed over the search space,
and the more the swarm is exploring. Measuring diversity, then, can give an
indication of an algorithm’s search behaviour at a certain time step. Considering
diversity measures over time can give an indication of the rate at which a swarm
converges, or alternatively, the rate at which a swarm moves from an explorative
to an exploitative behaviour, which has an impact on the performance of the
algorithm.

A single, measurable value that reflects an algorithm’s behaviour with regards
to the rate at which diversity decreases over time can potentially be used to
classify algorithms in different behavioural classes based on the rate at which the
algorithms move from exploration to exploitation. Such a measure of diversity
rate-of-change can potentially be used to predict performance for the different
behavioural algorithm classes. This paper proposes a measure that can be used to
differentiate different algorithms in terms of their behaviour with regards to the
rate at which diversity decreases. To the knowledge of the authors, this is the first
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such measure. The proposed diversity rate-of-change (DRoC) measure is based
on a two-piecewise linear approximation of the instantaneous diversity measures,
computed at regular time steps: the slope of the first line of the piecewise linear
approximation is used as the DRoC measure. A lower negative value for the
slope indicates that an algorithm’s diversity decreases faster, that the algorithm
spends less time exploring, and that its particles converge to a smaller region
faster.

The DRoC values for a number of PSO algorithms are computed in this
paper for a large set of benchmark functions. These values are then used in the
empirical section to see if the DRoC values can be used to characterise the rate
at which search behaviour changes from exploration to exploitation, and to see
if groups of algorithms can be found that exhibit the same behaviour.

The rest of the paper is organised as follows: Section 2 provides background
on PSO, the algorithms used, diversity measures, and linear approximations.
Section 3 lists expectations with reference to the rate at which diversity should
decrease for the different algorithms. Section 4 presents the proposed measure.
Section 5 summarises the experimental procedure. Section 6 provides and dis-
cusses the results.

2 Background

This section provides background information on the main concepts used.

2.1 Particle Swarm Optimisers

The basic PSO algorithm, introduced by Kennedy and Eberhart in 1995 [5, 10],
is a population-based search algorithm inspired from the behaviour of birds in
flocks. A PSO algorithm maintains a swarm of particles, where each particle
represents a candidate solution to an optimisation problem.

The original (gbest) PSO [10] updates the position of each particle xi by
adding a velocity, or step size, vi to the particle’s previous position as follows:

xi(t + 1) = xi(t) + vi(t + 1). (1)

The velocity update for each particle consists of three components: the mo-
mentum component, which is a fraction of the particle’s velocity at the previous
time step; the cognitive component, which pulls the particle to a so-called per-
sonal best; and a social component, which pulls the particle towards a global
best. The velocity update is as follows:

vi(t + 1) = ωvi(t) + c1r1(t)[ȳi(t)− xi(t)] + c2r2(t)[ŷ(t)− xi(t)] , (2)

where ω is the inertia weight, c1 and c2 are constants, and r1 and r2 are vectors
of random numbers sampled from the uniform distribution U(0, 1).

The cognitive component is a weighted difference between yi(t), the personal
best position visited by particle i up to time step t, and its current position.
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The effect of the component in the update equation is that the particle is drawn
towards its personal best position. Similarly, the social component draws the
particle in the direction of ŷ(t), the global best position found by the swarm.

2.2 Particle Swarm Optimiser Variations

Many variations of the basic PSO exist. Variations that are used in this study
are described in this section.

Some variation arises from introducing a notion of neighbourhoods. The orig-
inal PSO velocity update (Equation 2) can be changed to

vi(t + 1) = ωvi(t) + c1r1(t)[ȳi(t)− xi(t)] + c2r2(t)[ŷi(t)− xi(t)] , (3)

where ŷi(t) is particle i’s local best position, which is the best position found in
that particle’s neighbourhood. A neighbourhood is a topology which connects
each particle to some other particles; different topologies result in different varia-
tions of the PSO. Neighbourhoods have an inhibiting effect on information flow,
since particles can, at each iteration of the algorithm, only gain information
about local best positions that is already available to their direct neighbours.

The basic gbest PSO uses a star topology where each particle is connected
to every other particle. Information flow is not inhibited, and information flow
is instant.

The local best (lbest) PSO is a common variation of the gbest PSO that
uses a ring topology instead of a star topology [5, 19], such that each particle is
only connected to two other particles: its index-wise predecessor and successor.
The longest path between two particles is half the size of the swarm, so at most
ns/2 iterations might be required for information to pass from one particle to
another. Information flow is therefore quite slow.

The Von Neumann topology [11] is an intermediate topology where particles
are usually logically arranged on a 2-D grid. Information flow in Von Neumann
PSO is slower than in gbest PSO but faster than in lbest PSO.

The basic PSO has a potential problem: if xi = yi = ŷi for a particle, that
particle’s update depends only on its previous velocity. This can cause the algo-
rithm to stagnate on the swarm’s global best position, even if that position is not
a local optimum [6]. The guaranteed convergence PSO (GCPSO) [1] overcomes
this problem by using an altered position and velocity update equation for the
global best particle, which forces that particle to search for a better position in
a confined region around the global best position.

The GCPSO can be used with neighbourhood topologies such as star, ring
and Von Neumann. Neighbourhoods have a similar effect in the GCPSO [16] as
they do in the standard PSO.

Particles converge to a weighted average between their personal and local
best positions [2], referred to in this paper as the theoretical attractor point.
Kennedy [9] has proposed that the entire velocity update equation be replaced by
a random number sampled from a Gaussian distribution around the theoretical
attractor point, with a deviation the magnitude of the distance between the
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personal and global best. The resultant algorithm is called the barebones PSO
(BBPSO). Kennedy also proposed [9] an alternative barebones PSO (aBBPSO),
where the particle sampled from the above Gaussian distribution is recombined
with the particle’s personal best position.

The social PSO (SPSO) is a variation of the gbest PSO where the velocity
update does not contain a cognitive component. The particles are only guided by
the global best position and their own previous velocity. The particles converge
towards the global best position, rather than a weighted average between that
and their personal best positions, leading to very fast convergence.

2.3 Swarm Diversity

The diversity of a swarm is the degree of dispersion of its particles. Many existing
diversity measures were investigated by Olorunda and Engelbrecht [15]. Note
that these measures are instantaneous and thus only measure a swarm’s diversity
at a single time step. The two measures found in [15] to be the most accurate are
the average distance around the swarm centre, and the average distance around
all particles in the swarm. The average distance around the swarm centre was
used in this study, given by

D =
1

ns

ns∑
i=1

√√√√ nx∑
k=1

(xik − xk)
2
, (4)

where ns is the swarm size, nx is the number of dimensions of the problem, xik

is the k-th dimension of the i-th particle position, and x̄k is the average of the
k-th dimension over all particles.

2.4 Two-Piecewise Linear Approximation

A two-piecewise linear approximation of a function,

y(x) ≈ f(x) for i0 ≤ x ≤ i2 , (5)

is a mapping of two line segments, taking the form

y(x) =

{
a1 + b1x for i0 ≤ x ≤ i1
a2 + b2x for i1 < x ≤ i2

(6)

where aj and bj are the y intersection and the gradient of the j-th line segment,
respectively. The mapping is a minimisation problem aimed at finding optimal
values for a1, a2, b1, b2, and i1. The goal of the mapping is to minimise the least
squares error (LSE) between the function and the linear approximation, given
by

LSE =

i2∑
x=i0

(f(x)− y(x))
2
. (7)
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3 Algorithm behaviour

Engelbrecht [7] found that different algorithms exhibit different diversity profiles,
with reference to the rate at which diversity is decreased. Preliminary expecta-
tions about the rate at which different algorithms reduce diversity, and how this
behaviour differs among different algorithms, can be made based on observations
published in PSO literature and based on the definitions of position and velocity
updates. This section discusses these expectations.

Because neighbourhoods directly influence information flow, it is expected
that more connected neighbourhoods will converge more quickly [11, 12], and so
that their diversity will decrease more quickly. Therefore, when comparing any
PSO algorithm that uses a star topology with the same algorithm using a ring or
Von Neumann topology, it is expected that the rate of decrease in diversity for
the PSO that uses the star topology will be faster than for the other algorithms.
It is also expected that algorithms that use a Von Neumann topology will reduce
diversity faster than algorithms that use a ring topology.

When comparing the SPSO with any of the other algorithms discussed in
Section 2.2, it is expected that the SPSO will reduce diversity at a much faster
rate due to the lack of the cognitive component, which is the component that
facilitates exploration [7].

Due to the local search around the neighbourhood best that the GCPSO
does, it is expected that the GCPSO reduces diversity at a somewhat faster rate
than a basic PSO with a corresponding neighbourhood topology, but not at a
significantly different rate.

When comparing the BBPSO with the aBBPSO, it is expected that the
aBBPSO reduces diversity at a slower rate due to the random combination of
the personal best position in the position update. This is expected to strengthen
the cognitive-guided behaviour of particles, and weaken their social behaviour,
delaying the swarm’s convergence towards the theoretical attractor point.

4 Diversity Rate-of-Change Measure

Analysis of diversity measurements taken at regular time steps revealed a com-
mon pattern in the diversity profiles of the PSO algorithms studied in this paper,
as illustrated in Figure 1: The initial diversity value is very high, due to particles
being randomly initialised over the search space. The diversity shows a trend of
rapid decrease for a number of iterations, referred to as phase one in this paper.
This decrease is due to particles converging on a promising region of the search
space. After the first phase, the diversity still generally decreases, though at a
slower rate than in phase one, representing exploitation of the promising region
in order to locate a good solution. This is referred to as the second phase. The
pattern reflects a common behaviour in many PSO algorithms: that exploration
is initially high, but then gives way to exploitation. (Of the PSO algorithms
included in this study, all find a single solution in a static environment, and
none have processes implemented through which the diversity of their swarms
are managed.)
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Fig. 1. Average diversity measurements over time for the gbest (solid line) and lbest
(dashed line) PSO on Levy’s function

A two-piecewise linear approximation of diversity measurements produces
one line with a slope that is relatively larger than the second line. An example
of such a two-piecewise linear approximation is shown in Figure 2. The slope
of the first line, representing phase one, quantifies the rate at which diversity
decreases, i.e. the rate at which the swarm moves from an explorative to exploita-
tive behaviour. The DRoC measure proposed in this paper is therefore simply
the slope of this first line.
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Fig. 2. Average diversity measurements over time for the gbest PSO over Levy’s func-
tion (solid line) with two-piecewise linear approximation (dashed line).

Because the DRoC measure relies on diversity measurements over the entire
run of a simulation, the proposed DRoC measure must be calculated after a
simulation has completed.
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5 Experimental Procedure

This section describes the experimental procedure followed to evaluate the DRoC
measure.

Different PSO algorithms were run on a selection of benchmark functions
using CILib,1 an open-source framework for testing computational intelligence
algorithms. The algorithms used, and the corresponding control parameters, are
listed in Table 1. The benchmark functions are summarised in table 2. Each
algorithm was used with 25 particles. For each function, each algorithm was run
30 times from different random initial conditions, for 2000 iterations. Diversity
measures were sampled at every 10 iterations.

Table 1. Algorithms and control parameters used in this study

Algorithm name Control parameters

Lbest PSO* Ring neighbourhood topology

Gbest PSO* Star neighbourhood topology

Von Neumann PSO (V.N. PSO)* Von Neumann neighbourhood topology

Lbest GCPSO* Ring neighbourhood topology

Gbest GCPSO* Star neighbourhood topology

Von Neumann GCPSO
(V.N. GCPSO)*

Von Neumann neighbourhood topology

BBPSO* Star neighbourhood topology

aBBPSO* Star neighbourhood topology
Probability of combination = 0.5

SPSO Star neighbourhood topology
ω = 0.729844, c1 = 0, c2 = 1.49618

* ω = 0.729844, c1 = 1.49618, c2 = 1.49618

For each benchmark function, a pair-wise Mann-Whitney U test with a 95%
level of significance was performed on each pair of algorithms in order to de-
termine if significant differences occur in the left slope among the different al-
gorithms. The results were summarised to indicate whether the left slope for
the first algorithm of the pair is significantly smaller (-1) or larger (1) than the
left slope for the second algorithm, or whether no significant difference exists
between the left slopes of the two algorithms (0). It is hypothesised that, where
algorithms are intuitively expected to behave differently in terms of the rate of
decrease in diversity, this difference will be reflected by the results of the U tests.

6 Results

The results from all pair-wise U tests are summarised in Table 6. The summarised
Mann-Whitney U test result is shown for each algorithm pair (columns) and each

1 Availabe at http://www.cilib.net
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Table 2. Benchmark functions used in this study

Function name Domain Dimensions

Ackley [21] xiε[−32, 32] 25

Alpine [18] xiε[−10, 10] 25

Eggholder[13] xiε[−512, 512] 25

Elliptic [20] xiε[−100, 100] 25

Goldstein-Price [21] xiε[−2, 2] 2

Griewank [21] xiε[−600, 600] 25

Levy [13] xiε[−10, 10] 25

Michalewicz [3] xiε[0, π] 25

Quadric [21] xiε[−100, 100] 25

Quartic [21] xiε[−1.28, 1.28] 25

Rastrigin [21] xiε[−5.12, 5.12] 25

Rosenbrock [21] xiε[−2.048, 2.048] 25

Salomon [17] xiε[−100, 100] 25

Schwefel 1.2 xiε[−100, 100] 25

Schwefel 2.22 [21] xiε[−10, 10] 25

Schwefel 2.26 [21] xiε[−500, 500] 25

Six-hump camel-back [21] xiε[−5, 5] 2

Spherical [4] xiε[−100, 100] 25

Step [21] xiε[−20, 20] 25

Zakharov [8] xiε[−5, 10] 25

function (rows). The final 3 rows respectively provide the number of each result
for each algorithm pair.

As expected, the gbest PSO’s measures indicate that it usually converged at
a faster rate than the lbest PSO. Similarly, the GCPSO with a star topology
usually converged faster than the GCPSO with a ring topology. In both the
standard PSO and the GCPSO, the Von Neumann variations often produced no
significant difference from the gbest variations, but the Von Neumann variations
usually converged faster than the lbest variations.

When comparing the standard PSO algorithms with the GCPSO algorithms
using the same neighbourhood topologies, no difference was found for most of
the functions, as expected. For the few differences found, the GCPSO algorithms
decreased diversity at a slower rate than the corresponding standard PSO al-
gorithms, contrary to expectations. This may be an indication that the fitness
landscape plays a role in the DRoC; this possibility is also observed by Engel-
brecht in [7].

The SPSO usually decreased its diversity at a faster rate than any other
algorithm, as expected.

Comparison of the BBPSO with the aBBPSO supports the expectation that
the variation to BBPSO should converge more slowly, though there was often
no significant difference between the two.

Both the gbest PSO and the gbest GCPSO were usually not significantly
different when compared to the BBPSO. For most of the significant differences
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Table 3. Summarised results of pair-wise Mann-Whitney U tests for each pair of
algorithms, for each benchmark function
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Ackley -1 0 1 0 -1 0 0 1 1 1 1 0 1 1 1 1 0 -1

Alpine -1 -1 1 0 -1 -1 0 -1 0 1 1 0 1 1 0 1 1 0

Elliptic 1 1 1 0 0 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1

Eggholder -1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 0 1 1 -1

Goldstein-
Price

1 1 1 0 1 1 1 0 0 0 -1 0 0 0 -1 0 -1 -1

Griewank -1 0 1 0 -1 0 0 1 1 1 1 0 1 1 1 1 0 -1

Levy 1 0 1 0 1 0 1 1 0 1 -1 0 0 1 1 1 -1 0

Michalewicz -1 -1 1 -1 -1 -1 0 -1 1 1 1 0 1 1 1 1 1 -1

Quadric -1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 0 1 1 -1

Quartic -1 0 1 0 -1 0 0 1 1 1 0 0 0 1 1 1 -1 -1

Rastrigin -1 -1 1 0 -1 -1 0 -1 0 1 1 0 0 1 -1 1 1 0

Rosenbrock -1 0 1 -1 -1 -1 0 0 1 1 1 0 1 1 1 1 -1 -1

Salomon -1 0 1 0 -1 0 0 0 1 1 0 0 1 0 0 1 0 -1

Schwefel 1.2 -1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 0 1 1 -1

Schwefel
2.22

-1 -1 0 -1 -1 -1 1 1 1 1 1 0 1 1 1 1 0 -1

Schwefel
2.26

-1 -1 1 0 -1 -1 0 -1 1 1 1 0 1 1 1 1 1 -1

Sixhump 0 0 1 0 0 -1 0 1 0 1 0 -1 -1 0 1 1 0 0

Spherical -1 0 1 0 -1 0 0 1 1 1 1 0 1 1 1 1 0 -1

Step -1 0 1 1 -1 0 1 1 1 1 1 0 1 1 1 1 1 -1

Zakharov -1 0 1 0 -1 0 -1 -1 1 1 1 0 1 0 -1 1 0 -1

Total -1’s 16 8 0 3 16 10 1 8 0 0 3 2 1 0 3 0 5 16

Total 0’s 1 10 1 16 2 8 14 3 5 1 3 18 4 4 5 1 7 4

Total 1’s 3 2 19 1 2 2 5 9 15 19 14 0 15 16 12 19 8 0

found in both comparisons, the BBPSO decreased its diversity faster. However,
comparison of the gbest PSO and the gbest GCPSO to the aBBPSO produced
varying results: there was usually a significant difference, but the aBBPSO was
found to decrease its diversity faster than the gbest PSO and the gbest GCPSO
as often as the aBBPSO did so at a slower rate than the gbest PSO and gbest
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Ackley 0 1 1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 0

Alpine 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Elliptic 0 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 0

Eggholder 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Goldstein-
Price

-1 0 -1 -1 0 -1 0 -1 1 1 1 0 0 0 -1 0 -1 -1

Griewank 0 1 1 0 -1 -1 0 0 -1 0 0 0 1 1 1 0 1 0

Levy 0 1 1 -1 -1 -1 0 -1 1 1 1 1 0 1 1 1 1 0

Michalewicz 0 1 0 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 0 -1

Quadric 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Quartic -1 0 1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1

Rastrigin 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 1 -1 1 -1 -1

Rosenbrock 0 0 0 -1 -1 -1 -1 -1 -1 0 1 0 1 1 1 1 0 -1

Salomon 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 1 0 0 0 -1 0

Schwefel 1.2 0 1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1 -1 -1

Schwefel
2.22

0 1 1 -1 -1 -1 0 1 -1 0 1 1 1 1 1 1 1 0

Schwefel
2.26

0 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0 -1

Sixhump 0 0 1 -1 -1 -1 0 0 0 0 0 1 0 1 1 1 1 0

Spherical 0 0 1 -1 -1 -1 0 0 -1 0 0 1 1 1 1 0 1 0

Step 0 1 1 0 -1 -1 0 0 -1 -1 0 0 1 1 1 1 1 0

Zakharov 0 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 1 0 -1 -1 -1 -1

Total -1’s 2 1 8 18 19 20 13 15 15 8 2 8 0 0 3 1 8 10

Total 0’s 18 6 3 2 1 0 7 4 2 9 11 5 4 3 5 4 3 9

Total 1’s 0 13 9 0 0 0 0 1 3 3 7 7 16 17 12 15 9 1

GCPSO. This indicates that the rate at which the aBBPSO decreases its diver-
sity can vary widely, possibly depending on the fitness landscape.

7 Conclusions

This paper proposed a measure to quantify the rate at which swarms, for differ-
ent particle swarm optimisation (PSO) algorithms, decrease their diversity. The
diversity rate-of-change (DRoC) measure is obtained by fitting two-piecewise



Diversity Rate of Change Measurement for Particle Swarm Optimisers 11

linear approximations to diversity measurements taken at regular time steps.
The proposed DRoC measure is the slope of the left of those two lines.

The DRoC measure was computed for different PSO algorithms for which
there are intuitive expectations about the differences in behaviour in terms of
decrease in diversity between the algorithms. The DRoC measure was shown
to reflect those expected differences. Firstly, where one algorithm was expected
to decrease its diversity faster than a second algorithm, the DRoC measure for
the first algorithm was usually a statistically significantly lower negative value
than for the second algorithm. Secondly, where no significant difference was
expected between the rate at which two algorithms decreased their diversity, no
statistically significant difference was usually found between the DRoC measures
for the algorithms.

For each comparison, the results for some benchmark functions contradicted
expectations. Furthermore, when comparing the alternative barebones PSO to
the gbest PSO and the gbest GCPSO, the results varied widely for different
benchmark functions. This could indicate that the fitness landscape has an in-
fluence on how algorithms decrease their diversity.

Future work will investigate the possible influence that the fitness landscape
may have on the behaviour of swarms in terms of decreasing diversity.

Alternative measures can possibly be obtained form the two-piecewise linear
approximations that were used to obtain the proposed DRoC measure. For ex-
ample, using the angle between the slopes of the first and the second lines of the
approximation might provide valuable information. Future work will investigate
such alternative measures.

The DRoC measure for a simulation must be calculated after the simulation
has completed. Methods will be investigated that allow the measure to be calcu-
lated in real time. Such methods can be used in algorithms where the diversity
of a population is managed in real time, such as attractive-repuslive PSO [14].
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