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Abstract. The security policies of an application can change at runtime
due to several reasons, as for example the changes on the user preferences,
the lack of enough resources in mobile environments or the negotiation of
security levels between the interacting parties. As these security policies
change, the application code that copes with the security functionalities
should be adapted in order to enforce at runtime the changing security
policies. In this paper we present the design, implementation and evalu-
ation of a runtime security adaptation service. This service is based on
the combination of autonomic computing and aspect-oriented program-
ming, where the security functionalities are implemented as aspects that
are dynamically configured, deployed or un-deployed by generating and
executing a security adaptation plan. This service is part of the INTER-
TRUST framework, a complete solution for the definition, negotiation
and run-time enforcement of security policies.

Keywords: Security enforcement, Security policy, Aspect-Oriented Pro-
gramming, Dynamicity.

1 Introduction
A security policy is a set of rules that regulate the nature and the context of 
actions that can be performed within a system according to specific roles (i.e. 
permissions, interdictions, obligations, availability, etc) to assure and enforce 
security [1]. The security policies have to be specified before being enforced. This 
specification can be based on different models, such as OrBAC [2], RBAC [3], 
MAC [4], etc. and describes the security properties that an application should 
meet. Once specified, a security policy is enforced through the deployment of 
certain security functionalities within the application. For instance, the security 
policy “the system has the obligation of using a digital certificate to authenticate 
the users that connect using a laptop” should be enforced by deploying, within 
the application, “an authentication module that supports authentication based 
on digital certificates”.

However, the security policies of an application can change at runtime due 
to many reasons, as for example the changes on the user preferences, the lack 
of enough resources in mobile environments or the negotiation of security levels 
between the interacting parties. As these security policies change, the appli-
cation code that copes with the security functionalities should be adapted in 
order to enforce at runtime the changing security policies. In this sense, the use



of the Autonomic Computing (AC) paradigm [5] is nowadays widely accepted
by the distributed systems community to endow distributed systems with this
dynamicity or self-management capacities.

Following the typical MAPE-K loop of the AC paradigm, where “MAPE”
stands for Monitoring-Analysis-Plan-Execution and ‘K’ stands for Knowledge,
the development of a software system with self-adaptation of the security func-
tionalities consists on providing support to: (1) model the security information,
including the identification of those features that are foreseen that may change
at runtime and the mapping with the security functionalities (Knowledge); (2)
model the security functionalities that need to be deployed in order to enforce
a required security level (Knowledge); 3) monitor the runtime environment to
listen for changes (e.g. contextual changes, user preferences changes, changes on
the resources availability) that may affect security (Monitor); 4) analyze how the
occurred changes affect the security configuration of the application (Analysis);
5) define a plan with the set of changes that need to be performed in the current
security configuration (Plan Generation), and 6) dynamically adapt the security
configuration according to the plan generated (Plan Execution).

In this paper we focus on presenting how the security knowledge can be mod-
eled making use of a Dynamic Software Product Line (DSPL) [6] approach, and
how the generation and execution of the reconfiguration plan can be developed
using Aspect-Oriented Programming (AOP) [7]. On the one hand, DSPL are an
accepted approach to manage the runtime (security) variability of applications.
DSPLs produce software capable of adapting to changes, by means of binding
the variation points at runtime [6]. This means that the variants of the DSPL
are generated at runtime. On the other hand, the AOP technology is very ap-
propriate to implement the dynamicity that is required in our approach. AOP
produces more modular software with a better separation of concerns and this
facilitates the runtime weaving and/or unweaving of the security functionality.
The rest of the MAPE-K loop (i.e. the monitoring and analysis phases) are out
of the scope of this paper.

Part of this work has been developed in the context of the FP7 European
Project INTER-TRUST [1]. INTER-TRUST is a framework for the specifica-
tion, negotiation, deployment and dynamic adaptation of inter-operable security
policies. Concretely, the modules that perform the dynamic generation and ex-
ecution of the security adaptation plan are also part of INTER-TRUST1. How-
ever, the use that we make of DSPLs to represent the security information and
to generate the security configurations at runtime is specific of our approach.

After this introduction, the paper is organized as follow. Section 2 presents our
proposal following the MAPE-K loop. Section 3 describes the knowledge, while
Section 4 explains how to generate a new security configuration from the security
policies. Section 5 and Section 6 describes the generation of the adaptation plan
and the execution of the plan respectively. Section 7 evaluates our proposal.

1 They are open source and can be downloaded from https://github.com/
Inter-Trust/Aspect_Generation/tree/demonstrator-version

https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version
https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version
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Fig. 1. Our MAPE-K loop approach and the Security Adaptation Service

Finally, Section 8 discusses the related work, and Section 9 presents conclusions
and future work.

2 Our proposal

Figure 1 provides an overview of our proposal. As previously said, we follow the
MAPE-K loop of the AC paradigm. An important part of the MAPE-K loop
is the Knowledge, which in our approach represents all the information that is
needed to adapt the applications to the changes on the security policies. The
details about the Knowledge are provided in Section 3.

In the MAPE-K loop, the dynamic adaptations are driven by changes on
the runtime environment. As shown in Figure 1, in our approach these changes
are monitored and analyzed by the Monitoring and the Adapting Security
Policy modules. These modules will depend on: which changes the application is
interested on, such as changes in the context, changes in the user preferences, lack
of enough resources in mobile environments, or negotiations of the security levels
between interacting parties; the languages used to define the security policies
(e.g. OrBAC [2], RBAC [3], MAC [4]), and the reasoning engine used to analyze
and adapt those policies. The proposal presented in this paper is independent of
a concrete design and/or implementation of these modules and thus the details
about them are out of the scope of this paper. Basically, we will rely on existing
approaches. For instance, in the context of the INTER-TRUST framework the
monitoring is performed by the Montimage Monitoring Tool (MMT) [8] and the
security policies are specified and analyzed using OrBAC [2].

Thus, this paper mainly focuses on the Resolving Security Configuration,
the Aspect Generation and the Aspect Weavermodules that form the Security
Adaptation Service (gray shaded in Figure 1). Firstly, the Resolving Security



Configurationmodule is in charge of selecting the proper configuration of the se-
curity functionality that needs to be deployed into the application in order to fulfill
the requirements specified in the new security policy. All the possible security con-
figurations are specified using a DSPL. Concretely, we use the Common Variability
Language (CVL) [9] to specify and resolve the variability of the security function-
alities. The details of this approach can be found in [10]. The main difference of
both papers is that in [10] we used a SPL based on the use of CVL to generate
a particular configuration of security during the design of applications. Now, we
have extended that approach to use those security models at runtime and to inte-
grate it in our Security Adaptation Service. These security functionalities are
encapsulated into aspects by using AOP.

Secondly, the new security configuration is sent to the Aspect Generation
module that dynamically generates a generic security adaptation plan with the
actions that need to be performed with the security aspects (e.g. add a new
aspect, remove an aspect, re-configure an aspect,. . . ), taken into account the
difference between the current security configuration deployed within the ap-
plication and the new security configuration required, and using the available
aspectual knowledge of the application (e.g. pointcuts and advices definitions).

Finally, the Aspect Weaver module executes the security adaptation plan at
runtime by performing the particular actions of the AOP framework being used
(e.g. weave/unweave). This module supports different AOP frameworks (AspectJ
and Spring AOP) since the use of a unique AOP solution does not cover all the
dynamicity, expressiveness, versatility, and performance requirements that the
applications may need. For instance, Spring AOP allows weaving aspects at run-
time (in contrast to AspectJ), and thus, we can add new security functionalities
at runtime that were not taken into account when the application was initially
deployed.

The Security Adaptation Service represents a generic solution that can be ap-
plied to many types of applications (e.g. pervasive applications, service-oriented
applications, etc.) and can be used for the adaptation of any functionality, not
only security. For instance, to illustrate our approach, we use an e-voting case
study which is one of the demonstrators of the INTER-TRUST project where
security requirements are complex and can change at runtime. This case study is
provided by a enterprise partner of INTER-TRUST and a complete description
of the e-voting application can be found in [1].

3 Knowledge

The knowledge represents all the information required in order to adapt the
applications to changes on the security policies. The knowledge is available at
runtime and includes: (1) the security policies that can be specified in any se-
curity model (e.g. OrBAC); (2) the security variability specifications; (3) the
current security configuration deployed within the application; (4) the security
aspectual knowledge; and (5) a repository with the security aspects files (i.e.
class files, jar files, xml files,. . . ).
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Fig. 2. Modeling security concepts in CVL

On the one hand, as previously said, the security knowledge is specified making
use of DSPLs to manage the security variability at runtime. Figure 2 represents
the security variability modeled in CVL. Top of Figure 2 shows the abstract part
in which all the security concerns, functionalities, attributes and parameters that
can be re-configured at runtime are specified — i.e. the variability specifications
tree for security. Bottom of Figure 2 shows a representation of the particular im-
plementation of the security functionalities encapsulated into aspects. Details of
the parameters of each security concern in the variability specifications tree and
in the aspects are hidden in Figure 2 to simplify it. Figure 3 shows a complete
example for the authentication functionality and will be detailed in the next
section. Finally, the security features of the tree and the specific functionality of
the aspects are linked by using the CVL variation points2 (middle of Figure 2).
A particular selection of the features in the tree defines a particular configu-
ration of the aspects. This configuration will be generated by the Resolving
Security Configuration module, taking as input the requirements specified
in the security policies.

On the other hand, the aspectual knowledge used by the Aspect Generation
module depends on the application and on the implementation of the aspects
since this information includes the points of the application where the security

2 A complete description of CVL can be found in http://www.omgwiki.org/
variability/

http://www.omgwiki.org/variability/
http://www.omgwiki.org/variability/


Listing 1.1. Security aspectual knowledge.
1 <ak:pointcuts>
2 <ak:pointcut id="Voter" exp r e s s i on=" execut ion (∗ ∗ Connection .∗ (

Voter , . . ) ) && th i s ( Vote rCl i ent ) " />
3 <ak:pointcut id="sendingVoteJP" exp r e s s i on=" execut ion ( pub l i c ∗

Elec t ionVote . sendVote (Vote , . . ) ) && args (Vote ) " />
4 </ak:pointcuts>
5 <ak:advices>
6 <ak:advice id=" c e r t i f i c a t eAu th " classname="uma. caosd . sas .

Authent i cat ion"><ak:functional it ies>
7 <ak:functionality id=" au then t i c a t i on#d i gC e r t i f i c a t e " />
8 <ak:functionality id=" au then t i c a t i on#x5 0 9 c e r t i f i c a t e " />
9 </ ak:functional it ies></ak:advice>

10 <ak:advice id="userPassAuth" classname="uma. caosd . sas .
Authent i cat ion"><ak:functional it ies>

11 <ak:functionality id=" au then t i c a t i on#userPassword" />
12 </ ak:functional it ies></ak:advice>
13 <ak:advice id=" encrypt " c lassname="uma. caosd . sas . Encryption"><

ak:functional it ies>
14 <ak:functionality id=" c o n f i d e n t i a l i t y#encrypt " />
15 <ak:functionality id=" c o n f i d e n t i a l i t y#rsa−encrypt ion " />
16 </ ak:functional it ies></ak:advice>
17 </ak:advices>
18 <ak:advisors>
19 <ak:advisor id=" certAuth " advice−r e f=" c e r t i f i c a t eAuth " pointcut−

r e f="Voter" />
20 <ak:advisor id="userPassAuth" advice−r e f="userPassAuth " pointcut

−r e f="Voter" />
21 <ak:advisor id="encryptRSA" advice−r e f=" encrypt " pointcut−r e f="

sendingVoteJP" />
22 </ak:advisors>

functionality can be incorporated (i.e. the pointcuts definitions) and the list of
functionalities provided by each aspect (i.e. the advices). The aspectual informa-
tion is represented in a mapping table with the information needed to relate the
different security functionalities required by the security configuration with the
available advices implemented in the aspects. This information also includes the
associations between the defined pointcuts and the advices — i.e. the advisors,
following the Spring AOP terminology. The excerpt XML file in Listing 1.1 is an
example of the aspectual knowledge for the e-voting application. We observe the
lists of pointcuts (lines 2–7), the list of advices with the functionalities provided
by each aspect (lines 9–38), and the list of advisors (lines 40–50).

4 Resolving Security Configurations
This section describes the generation a new security configuration that enforces
the new security policy received from the Adapting Security Policy module.

When a request of a new security policy is received, the Resolving Security
Configuration module extracts the security information from the rules of the
security policy, selects the proper security features, and assigns the appropri-
ate parameters in the security variability specifications tree of the DSPL. For
instance, Figure 3 shows a particular configuration for the authentication func-
tionality in the e-voting application, and thus the required configuration for the
attributes and parameters of the authentication aspect. The configuration in-
cludes the use of an X.509 digital certificate as authentication mechanism; this
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Listing 1.2. New security configuration aspects.
1 <sca:aspects>
2 <sca:aspect id=" Authent i cat ion">
3 <sc a : j o i n p o i n t id="Voter" />
4 <sca : funct iona l i t ies>
5 <sca : functional ity id=" au then t i c a t i on#d i gC e r t i f i c a t e " />
6 <sca : functional ity id=" au then t i c a t i on#x 5 0 9 c e r t i f i c a t e " />
7 </ sca : funct ional it i es><sca:configuration>
8 <sca:parameter name="SessionKey">
9 KeyAlias=" vote r001" , KeyStore=" VotersRepos i tory"

10 </sca:parameter><sca:parameter name="TrustedCA">
11 C="ES" , O="Fabrica nac i ona l de moneda y timbre" , OU="FNMT" , CN

="CERT.FNMT.ES"
12 </sca:parameter></ sca:configuration></ sca:aspect>
13 </ sca:aspects>

means that the authentication aspect must use an advice that implements an au-
thentication algorithm based on digital certificates. Moreover, the configuration
also includes the parameters for the certificate authority (TrustedCA) such as
the information about the organization that issued the certificate, and the values
of the session key to be used with the certificate (KeyAlias and KeyStore). Note
that only one kind of authentication mechanism can be selected at the same time
for the same instance of the aspect. But, the variability model allows creating
and configuring different instances of each aspect.

Then, when the CVL engine is executed at runtime, it resolves the variability
and automatically generates a configuration of the security aspects that enforces
the new security policy. Listing 1.2 shows the new configuration generated for
the authentication aspect. This new configuration must be deployed within the
application, so this configuration is notified to the Aspect Generation module.
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Listing 1.3. Current security configuration deployed in the application.
1 <sca:aspects>
2 <sca:aspect id=" Authent i cat ion">
3 <s c a : j o i n p o i n t id="Voter" />
4 <sca : funct ional it i es>
5 <sca : functional ity id=" au then t i c a t i on#userPassword" />
6 </ sca : funct ional i t ies></ sca:aspect>
7 <sca:aspect id="Privacy" . . . />
8 <sca:aspect id=" S ignature " . . . />
9 <sca:aspect id="Hashing" . . . />

10 <sca:aspect id="Pseudonymity" . . . />
11 <sca:aspect id=" Un l i n k ab i l i t y" . . . />
12 </ sca:aspects>

5 Aspect Generation

The Aspect Generationmodule receives notifications about a new security con-
figuration to be deployed, and dynamically generates a generic security adapta-
tion plan with the actions that need to be performed with the security aspects
currently deployed in the application. This module is independent from the AOP
framework used to weave the aspects. Its architecture and internal components
are specified in top of Figure 4.

The Security Aspectual Knowledge component represents the part of the
knowledge related to the security aspects (e.g. classnames, functionalities) and to
the applications (e.g. pointcuts) that the Aspect Generation module requires
(Listing 1.1), as well as the current security configuration of the aspects deployed
in the application (Listing 1.3). The information is incorporated at the initializa-
tion of the module and can be updated at runtime, including the incorporation
of new aspects (pointcuts and/or advices) to the aspect repository.

The Configuration Difference component analyses the notified new con-
figuration and the aspectual knowledge and determines whether the security
aspects, currently instantiated in the application, fulfil the new configuration or



Listing 1.4. Security adaptation plan
1 <sap:ADD>
2 <sap:advisor id="certAuth " />
3 <sap:advisor id="encryptRSA" />
4 <sap:advisor id="decryptRSA" />
5 </sap:ADD>
6 <sap:REMOVE>
7 <sap:advisor id="userPassAuth " />
8 <sap:advisor id="Pseudonymity" />
9 <sap:advisor id=" Un l i n k ab i l i t y" />

10 </sap:REMOVE>
11 <sap:CONFIGURE>
12 <sap:advisor id="certAuth " ><sap:configuration>
13 <sca :paramete r name="SessionKey">
14 KeyAlias=" vote r001" , KeyStore=" VotersRepos i tory"
15 </ sca :paramete r><sca :paramete r name="TrustedCA">
16 C="ES" , O="Fabrica nac i ona l de moneda y timbre" , OU="FNMT" , CN

="CERT.FNMT.ES"
17 </ sca :paramete r></ sap:configuration>
18 </ sap:advisor>
19 </sap:CONFIGURE>

some changes must be done in the deployed aspects. To do that, we calculate the
difference between the current security configuration deployed in the application
and the new requested configuration. Then, using the aspectual knowledge and
the security configuration calculated, the Generic Aspect Adaptation Plan
Generation component generates a list of actions that need to be performed
within the aspects in order to satisfy the security configuration calculated —
i.e. generates the security adaptation plan. The list of actions are independent
from the AOP framework and are based on the concept of advisor — i.e. the
advice with the functionality and the associated pointcut defining the points of
the application where the functionality takes place (see the aspectual knowledge
in Listing 1.1). The possible actions are:

1. ADD. Deploys a new advisor within the application.
2. REMOVE. Undeploys an advisor currently deployed in the application.
3. CONFIGURE. Re-configures the parameters of an advisor currently de-

ployed in the application or to be deployed.

For instance, as a result of the difference between the current security config-
uration deployed in our e-voting application (Listing 1.3) and the new configura-
tion to be deployed (Listing 1.2), the list of actions to fulfill the calculated new
configuration are presented in Listing 1.4. Since the authentication mechanism
has changed, we need to remove the userPassAuth advisor and add a certAuth
advisor, but we also need to configure the new certAuth advisor with the ap-
propriate parameters (lines 16–28). Moreover, there are some other advisors to
be added (encryptRSA and decryptRSA) and to be removed (Pseudonymity
and Unlinkability) — see the selections of Figure 2. Advisors related to the
Privacy, Signature, and Hashing aspects do not change, so no actions need to
be performed for these three aspects.



The security adaptation plan is the input to the Aspect Weaver module de-
scribed in the next section.

6 Aspect Weaver
The Aspect Weaver module receives a security adaptation plan and dynamically
weaves, unweaves, and configures the security aspects at runtime interacting
directly with them. Bottom of Figure 4 overviews the architecture of this module.

Since the security aspects can be implemented in more than one AOP frame-
work in order to fulfill all the application needs, the Aspect Weaver module
works as a wrapper that translates the generic security adaptation plan to the
particular syntax of the AOP weaver being used (AspectJ, Spring AOP, etc).
This means that different instantiations of the Execute Security Adaptation
Plan component of this module for using different AOP weavers are available.
The output of this component is a direct interaction with the selected AOP
weaver in order to add, remove, and configure the corresponding aspects into
the applications.

The specific actions to be performed depend on the dynamicity provided by
each AOP weaver. On the one hand, the AspectJ weaver only supports compile-
time and load-time weaving, while the Spring AOP weaver supports run-time
weaving. This means that, in case of the AspectJ weaver, the security aspects
need to be woven with the application at compile- or load-time weaving. However,
we improve the dynamicity of our solution by using the if() pointcut construc-
tor that AspectJ provides to define a conditional pointcut expression which will
be evaluated at runtime for each candidate join point3. This mechanism increases
the degree of dynamicity by coding patterns that can support dynamically en-
abling and disabling advice in aspects [11,12]. An example of the use of this
mechanism to increase the dynamicity of the AspectJ aspects is shown in List-
ing 1.5. The Authentication aspect includes two advisors (certificateAuth
and userPassAuth) that can be enabled or disabled at runtime by changing the
advisor status. These advisors associate the pointcut with the proper advices
defined in the aspect. The execution of each advice is based on the conditional
pointcut to be evaluated at runtime. So, in this case, the action of adding (de-
ploying) an advisor corresponds to enabling an advisor, and removing (undeploy-
ing) an advisor corresponds to disabling an advisor. This is done by the custom
instance of the Execute Security Adaptation Plan component for AspectJ.

On the other hand, in the case of the Spring AOP aspects, the actions cor-
responding with the addition/deletion of an advisor are real operations allowed
by the Spring AOP API4 and are implemented following the proxy-based mech-
anism used by the Spring AOP framework to perform the run-time weaving. In
this case, the instance of the Execute Security Adaptation Plan component
for Spring AOP is in charge of managing all the Spring artifacts (e.g. advisors,
proxies, XML configuration files,. . . ) and performing the appropriate actions
specified in the adaptation plan.
3 http://eclipse.org/aspectj/doc/released/progguide/index.html
4 http://projects.spring.io/spring-framework/

http://eclipse.org/aspectj/doc/released/progguide/index.html
http://projects.spring.io/spring-framework/


Listing 1.5. Authentication aspect in AspectJ.

1 public aspect Authent i cat ion {
2 . . .
3 pointcut Voter ( Vote rCl i ent v ) : execut ion (∗ ∗ Connection . ∗ ( Voter ,

. . ) ) && this (v ) ;
4 pointcut c e r t i f i c a t eAu th ( Vote rCl i ent v ) : i f ( Advi sorsStatus .

i sEnab led (" c e r t i f i c a t eAu th " ) ) && Voter (v ) ;
5 pointcut userPassAuth ( Vote rCl i ent v ) : i f ( Adv i sorsStatus . i sEnab led (

"userPassAuth" ) ) && Voter (v ) ;
6
7 Object around( Vote rCl i ent v ) : c e r t i f i c a t eAuth (v ) {
8 Ce r t i f i c a t eAu th en t i c a t i o n auth = new Ce r t i f i c a t eAu th en t i c a t i o n (

AdvisorsParameters . getParams ( " c e r t i f i c a t eAu th " ) ) ;
9 i f ( auth . au then t i c a t e ( v . getVoter ( ) ) )

10 proceed ( ) ;
11 }
12
13 Object around( Vote rCl i ent v ) : userPassAuth (v ) {
14 UserPassAuthent icat ion auth = new UserPassAuthent icat ion(

AdvisorsParameters . getParams ( "userPassAuth" ) ) ;
15 i f ( auth . au then t i c a t e ( v . getVoter ( ) ) )
16 proceed ( ) ;
17 }
18 . . .
19 }

7 Evaluation

Our approach uses consolidated software engineering technologies (DSPLs and
AOP), and a proposed standard language (CVL). So, in this section we first
qualitatively discuss our work to argue about its correctness, maintainability,
extensibility, separation of concerns, and reusability, from the point of view of
the use of DSPLs and AOP. Regarding AOP, in spite of its benefits, the main
concern about the use of this technology in real projects is the performance
overhead introduced by AOP. This means that a critical part of the evaluation
of our approach should be the evaluation of the performance overhead intro-
duced by the use of a specific AOP weaver. As part of our participation in the
INTER-TRUST project, the Aspect Generation and the Aspect Weaver mod-
ules presented in this paper has been used to implement a demonstrator of the
project that provides dynamic adaptation of security for an e-voting applica-
tion5. This demonstrator has been evaluated both quantitatively, by controlled
tests performed for the implementation of the Aspect Generation and Aspect
Weaver modules, and qualitatively, by collecting the opinion of software devel-
opers with different expertise on both security and AOP. The main results of
this evaluation are discussed in this section.6

5 The code and the documentation of this demonstrator can be downloaded from
https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-
version

6 For more detailed information the reader can consult the project deliverables [13,14].

https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version
https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version


7.1 Qualitatively Results

Correctness. DSPLs and AOP do not improve the correctness of applications
or security functionalities as such. However, modularizing security function-
alities in separate modules with AOP considerably facilitates the verification
of the security properties of an application since a security expert does not
have to check all the modules in the base application to ensure that all secu-
rity requirements are correctly enforced. Instead, only the code of the aspects
and the definition of the pointcuts where the aspects will be introduced need
to be checked. Additionally, it is well-known that the use of AOP can intro-
duce vulnerabilities and security risks [15]. In our proposal, the Monitoring
module is responsible for testing the behavior of the aspects [8] preventing
these kinds of issues.

Separation of Concerns. The use of AOP improves modularization by allow-
ing the separation of crosscutting concerns (i.e. the security functionalities
in our approach). Moreover, following the MAPE-K loop we separate the dif-
ferent phases of our approach maintaining the independence of each module
and facilitating the replacement of them.

Maintainability and extendibility. The use of DSPL allows us to easily re-
configure the security functionality according to the changes in the security
policies. The variability model used (Figure 2) can also be extended to cover
more security concerns.

Reusability. Our proposal is a generic solution that can be applied to many
types of applications. The main drawback is that we cannot reuse completely
the generated aspects for all the applications because they contain applica-
tion dependent knowledge (e.g. pointcuts in the case of AspectJ). However,
the security functionality (advices) can be reused in different contexts.

7.2 Performance overhead of AOP

AOP has important benefits in comparison to OO, such as achieving a better
modularization of crosscutting concerns, improving the maintainability and the
dynamic evolution of applications both at design and at runtime. These benefits
are at the cost of a certain performance overhead, produced by the weaving
process. In this evaluation, the main goal is to measure this performance overhead
for the different AOP weavers and weaving mechanisms that we have used in the
Aspect Weaver module, so we can reason about the suitability of using AOP
for the Security Adaptation Service.

We have measured the time overhead introduced by the weaving process based
on the lifetime of the application (compile-time, load-time, and run-time weav-
ing) when the aspects are instantiated (Table 1) and when the advices of the
aspects are executed (Table 2). We also consider the scalability of our solution
when more than one aspect are applied at the same join point of the application.
Results are summarized in Figure 5 and Figure 6. We observe that the overhead
introduced by the AOP weavers is lower than the one initially expected. Accord-
ing to the data in Table 1, there is a penalty when the aspects are instantiated,



Table 1. Aspect weavers performance: aspects instantiation time (in milliseconds)

#aspect at the same join point: 1 5 10 20 50 100 1000
Compile-time weaving (AspectJ) 58.79 61.40 64.54 71.51 92.69 119.34 535.31
Load-time weaving (AspectJ) 19.81 20.91 30.11 53.72 109.46 196.22 1410.35
Run-time weaving (Spring AOP) 28.81 29.25 28.48 29.36 23.73 23.84 32.77

Fig. 5. Aspect weavers performance: aspects instantiation time

but, once the aspects have been created, the execution of them are faster (see
Table 2). In any case, the results are similar for both the compile-time and
load-time weaving. However, as expected, the runtime weaving introduces more
overhead when the aspects are executed. Moreover, both AspectJ and Spring
AOP weavers provide a great degree of scalability since a high number of as-
pects can be simultaneously applied at the same join point without reaching a
non-acceptable performance overhead.

7.3 Results of the Software Developers Questionnaire

In [14] you can find a questionnaire about the usefulness of the INTER-TRUST
framework in general, and in particular about the ‘Aspect Generation and As-
pect Weaver’ demonstrator. That questionnaire was filled by evaluators that
were selected mainly among software developers with different backgrounds and
different levels of knowledge and experience in security issues and AOP.

Five participants who were experts in security modeling and negotiation
answered the questions related to the Aspect Generation and Aspect Weaver
demonstrator. In general, the results obtained are mainly in line with the ex-
pected target values (see [14] for more details about the metrics used to evalu-
ate the demonstrator and the expected target values). However, some answers
indicate that improvements can still be done for the next version of the demon-
strator (and consequently, for the next version of the Aspect Generation and
the Aspect Weaver modules). For instance, some evaluators were not convinced
about the capacity of the Aspect Generation and Aspect Weaver modules to
automatically deploy the security policies using aspects, its capacity for weaving
the proper aspects or the runtime management of security policies and contex-
tual information.

Additionally, five participants who were experts in security testing and moni-
toring also answered the questions related to the demonstrator. As for the experts
on security modeling and negotiation, the results obtained were mainly in line
with the expected target values.



Table 2. Aspect weavers performance: aspects execution time (in nanoseconds)

#aspect at the same join point: 1 5 10 20 50 100 1000
Compile-time weaving (AspectJ) 683 1280 1706 2560 5120 9813 106665
Load-time weaving (AspectJ) 426 854 1280 2560 4693 8960 111785
Run-time weaving (Spring AOP) 443301 439035 457808 474447 447568 479140 451408

Fig. 6. Aspect weavers performance: aspects execution time

Finally, four participants who were experts in AOP answered the question-
naire. In general, we can say that the results obtained from AOP experts are
better than the expected target values. Only one expert in AOP has considered
that the security rules are not automatically deployed in the application original
code. Since the rest of answers to this question are ‘quite likely/extremely likely’,
we understand than the reviewer probably did not understand well either the
question or how the modules functions regarding the automatic deployment of
the aspects.

7.4 Discussion

The evaluation results obtained support our decision to use DSPLs and AOP in
the design and implementation of our runtime Security Adaptation Service.
However, we need to complete the evaluation with more interesting and con-
clusive empirical experiments. For instance, we need to evaluate the overhead
of using AOP when different degrees of dynamicity are considered (e.g. when
adding/removing advices and pointcuts) or when different instantiation mod-
els are used (e.g. aspect per object, aspect per control cflow,. . . ). Moreover, we
have not evaluated the global overhead introduced by the complete Security
Adaptation Service, but only for the aspect solutions. Also, we need to in-
crease the number of participants in the evaluation questionnaire in order to
evidence the benefits and usefulness of our approach.

8 Related Work
There are a lot of works that try to deal with runtime adaptation of security. For
instance, in [16] the authors present a policy-based approach for automating the
integration of security mechanisms into Java-based business applications. They
use security@runtime, an Domain Specific Language (DSL) for the specification
of security configurations based on authorization, obligation and reaction poli-
cies. Our approach, in contrast, is suitable for using security policies specified in



any model (e.g. OrBAC), since the mapping between the policies and the secu-
rity functionalities is made in an abstract level of the variability model. Another
difference with our approach is that we separate the monitoring of changes in
the application and the integration of the security functionality following the
MAPE-K loop while they integrate the security functionalities at the same mon-
itoring events. Moreover, they implement the security rules in separate classes
but this code is application dependent while in our approach the security rules
do not need to be hard-coded, improving the evolution of the policies.

In [17] the authors use policy-based security profiles for making logical and
knowledge-based decisions within open service environments and it uses a lay-
ered holistic model [18] for describing security — i.e. security requirements are
defined using security profiles that describe the interlinking of security policies to
instances of services. However, in our approach, the security policies are decou-
pled from the specific knowledge of the application and from the implementation
of the security functionality in aspects, and this improves the reusability of both
the security policies and the security functionalities.

Model-Driven Security (MDS) are often used to adapt dynamically security
following different approaches: UMLSec [19], SecureUML [20], OpenPMF [21,22],
SECTET [23], etc. For instance, in [24], models@runtime is used to keep syn-
chronized an architectural model with a policy, but this approach only supports
access control policies and not any kind of security functionality as in our se-
curity adaptation service. This is a general limitation in many security policy
based approaches because they are mainly focused only on access control or au-
thorization concerns ([21,22,25,26]) or focused only on a specific domain such as
mobile cloud ([27]) or Service Oriented Architecture (SOA) ([21,22,23,25]).

There are also some generic approaches for reconfiguration at runtime that are
not focused only on security concerns. In [28], Gamez et al. propose a reconfigu-
ration mechanism that switches among different architectural configurations at
run-time. The configurations are based on the specialization of feature models,
and the reconfiguration plans are automatically generated from the differences
among them. They propagate changes in configurations at architectural level
instead of directly aspects implementation, as we do.

9 Conclusions and Future Work

We have presented a complete solution for the run-time enforcement of security
policies following the MAPE-K loop of the AC paradigm that endow multiple
kinds of applications with this dynamicity and self-management capacities. We
have described in detail a security adaptation service based on the combination
of DSPL and AOP technologies, where the security functionalities are imple-
mented as aspects that are dynamically configured, deployed or un-deployed by
generating and executing a security adaptation plan. These technologies bring
significant benefits to our proposal, including a better modularization, maintain-
ability, extendibility, and reusability.



As part of our future work, we plan to complete the evaluation of our Security
Adaptation Service with empirical studies in order to evidence its benefits and
usefulness.
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