
A Consistency Framework For Dynamic
Reconfiguration in AO-Middleware Architectures

Bholanathsingh Surajbali,1, Paul Grace2 and Geoff Coulson3

1 Smart Research Development Centre, CAS Software AG, Karlsruhe, Germany
b.surajbali@cas.de

2 IT Innovation, University of Southampton, Southampton, UK
pjp@it-innovation.soton.ac.uk

3 School of Computing and Communication, Lancaster University, Lancaster, UK
geoff@comp.lancs.ac.uk

Abstract. Aspect-oriented (AO) middleware is a promising technology for the
realisation of dynamic reconfiguration in distributed systems. Similar to other
dynamic reconfiguration approaches, AO-middleware based reconfiguration re-
quires that the consistency of the system is maintained across reconfigurations.
AO middleware based reconfiguration is an ongoing research topic and several
consistency approaches have been proposed. However, most of these approaches
tend to be targeted at specific narrow contexts, whereas for heterogeneous dis-
tributed systems it is crucial to cover a wide range of operating conditions. In
this paper we address this problem by exploring a flexible, framework-based
consistency management approach that cover a wide range of operating condi-
tions ensuring distributed dynamic reconfiguration in a consistent manner for
AO-middleware architectures.

1 Introduction

A fundamental challenge for distributed systems is their need to support dynamic re-
configuration in order to maintain optimal levels of service in diverse and changing en-
vironments. In response to this challenge, aspect-oriented AO-middleware [1], [2], [3],
[4] has recently emerged as a suitable architecture to build reconfigurable distributed
systems. The core concept of AO-middleware is that of an aspect: a module that deals
with one specific concern and can be changed independently of other modules. Aspects
are made up of individual code elements that implement the concern (advices) which
are deployed at multiple positions in a system (join points).

Dynamic reconfiguration of distributed systems requires assurances that the recon-
figuration does not leave the system in an inconsistent state that can potentially lead to
incorrect execution or even complete system failure. In AO-middleware environments
reconfiguration inconsistencies arise from a range of characteristic sources - for exam-
ple, if an encryption mechanism is added to the source of a communication channel, a
corresponding decryption mechanism must be added to the sink of the channel; a given
system must be reconfigured transactionally such that a given change is applied either
to all of a specified set of targets, or to none; or a given system must be reconfigured



such that it must not expose more security vulnerabilities than it was exposed to ini-
tially. In general, avoiding these sources of inconsistency is a difficult task due to the
diversity of distributed applications (e.g. centralised/decentralised, static/mobile, small
scale/large scale etc) and also because of diverse application-specific factors (e.g. vary-
ing dependability requirements, or varying trade-offs between consistency and scalabil-
ity). Relying on the application developer to ensure the consistency of the system is not
feasible under such heterogeneous conditions. Moreover, a one-size-fits-all approach to
consistency management is not feasible either. Instead, multiple consistency strategies
should be supported within a framework-based approach so that appropriate strategies
can be applied to each set of arising circumstances.

This paper therefore focuses on this latter perspective: that of identifying and mit-
igating the numerous incidental threats that can lead to inconsistent reconfigurations
in AO-middleware systems. To address this perspective we present a novel distributed
consistency framework, named COF for AO middleware environments that maximises
the probability of consistent dynamic reconfiguration in the face of incidental factors. A
key contribution is our approach itself is highly configurable and reconfigurable, as the
frameworks mechanisms for detecting and repairing threats are themselves composed
of dynamically woven aspects.

The rest of the paper is organised as follows. Section 2 presents, a threat taxon-
omy of the various threats to consistency to AO-middleware architectures prone. Then,
in Section 3, we describe the COF framework, followed by Section 4 evaluating COF
performance overhead. Finally, Section 5 discusses related work and we offer our con-
clusions in Section 6.

2 Threat Taxonomy

In this section, we present a list of threats which may jeopardise the consistency of a
critical distributed system due to dynamic reconfigurations. To illustrate the “big pic-
ture” of our approach we present Fig.1 a generalised system model of an AO-middleware
platform; this illustrates one AO-middleware instance for simplicity but the model is re-
peated across nodes in the distributed system. The model consists of five core entities:
(i) the reconfiguration agent representing the entity initiating reconfiguration requests;
(ii) a configurator, which acts on the reconfiguration request; (iii) an AO-middleware
platform providing the necessary abstraction to support the composition and reconfig-
uration of distributed aspects to underpin the distributed application services; (iv) a set
of infrastructure servers providing a set of infrastructure services to the system, such as
hosting the system repositories (containing aspect software) and (v) the communication
service providing exchange of messages and events among the different address spaces
(referred as nodes) in the distributed environment. Also within the model, we identify a
set of core join points (numbered 1 to 5 in Fig.1) at which aspects can be woven within
a given instance of the AO-middleware deployed at each node. Hence, these are the
points where the consistency framework solutions (in the form of threat aspects) are
deployed to ensure consistency is achieved.
Compositional Threats These relate to conflicting dependencies of reconfiguration

resulting in negative interactions between system entities. For instance, some aspects



Fig. 1. Generalised model for AO-middleware platforms

are inherently dependent on each other such as a decryption aspect is dependent on the
corresponding encryption aspect. Therefore, the order in which aspects are woven is
crucial: e.g., encryption must be put in place before its associated decryption. Further,
“remote aspects” [1] which are used by several distributed client nodes can be a source
of inconsistency; for example, if a cache implemented as a remote aspect is removed
without the consent or even the awareness of its client nodes, errors can arise when
clients attempt to communicate with the cache. Finally, semantic conflicts can occur
due to incompatibilities of the reconfigured aspect with the rest of the system as may
arise in the deployment of logging and privacy aspects [10]. Moreover, the composi-
tion order in which aspects are woven can also affect their interactions, for example, if
a cache advice is executed before an authentication advice, clients may be able to get
access to resources without first authenticating themselves.
Operational Threats The inherently unstable characteristics of the networks and nodes
employed in the scenario increase the chances that a reconfiguration will be compro-
mised. For example, application nodes may fail to apply a requested reconfiguration if:
i) the node is overloaded or has crashed; ii) the node’s local policy forbids it to make the
requested change; iii) aspects may still be performing computations when an attempt
is made to remove or recompose them. Such factors can clearly lead to parts of the
intended reconfiguration not being carried out, and consequent inconsistency. Further,
aspects to be reconfigured into the system are typically stored in infrastructure service
repositories which may get congested with requests, or themselves crash, meaning that
aspects may not be available to be deployed in some cases or at some times. Addi-
tionally, different repository instances may have different versions of the aspects: e.g.
different versions of the encryption aspects may be produced over time, so that differ-
ent nodes configure different versions and be inconsistent with each other. Finally, if
reconfiguration-related messages are lost, re-ordered, duplicated or delayed, the consis-
tency of the reconfiguration can be compromised. For example, a fragmentation aspect
may be deployed but not the corresponding reassembly aspect.
User Threats. These refer to threats introduced to the AO-middleware system model by
the reconfiguration agent; this can be the developer/administrator, or software runtime
code initiated by some authority manager (e.g. in self-managed systems). For example,
if a reconfiguration request is not properly checked, it may proceed while containing
errors (for example wrongly formed declarative reconfiguration specifications) which



Fig. 2. Consistency Framework (COF)

may lead to incorrect actions and system inconsistency when the reconfiguration is
applied. Similarly, a reconfiguration request may be unauthorised or reconfiguration
messages may be spoofed by malicious nodes in an attempt to compromise consis-
tency. In addition, reconfiguration requests may arise simultaneously in the system so
that reconfiguration-related messages relating to distinct requests may be interleaved
and potentially received in different orders at different nodes. For example, one request
may ask to replace the fragmentation aspect with a different algorithm, while another
asks for it to be removed. There will clearly be different outcomes depending on the
execution order of these two requests and furthermore the outcomes might be different
at different nodes.

3 Consistency Framework (COF)

The consistency framework (COF) as shown in Fig.2 addresses the reconfiguration
threats defined in the threat taxonomy. Importantly, COF defines a canonical set of
threat aspects that mitigate the threats found in the taxonomy, and an associated set of
join point strategies to guide the application of the threat aspects within diverse AO-
middleware implementations.

3.1 Consistency Configurator

The Consistency Configurator acts as a unit of autonomy making decisions about when
and how to perform consistent reconfiguration. The Consistency Configurator is con-
nected to the Remedy Action repository providing appropriate remedy actions to the
Consistency Configurator for each reconfiguration. The Remedy Action uses a “condi-
tion action” approach that evaluates the reconfiguration request and instructs the Con-
sistency Configurator to deploy appropriate threat aspects using the three main con-
sistency engines. The consistency engines each evaluate the corresponding join points
if they already have the required threat aspects. If the join points are present, an ac-
knowledgement is returned to the Consistency Configurator, otherwise threat aspects
are loaded from the Threat Aspect Repository and deployed at the defined join points.



On receiving a reconfiguration request with consistency threat aspects, the Consis-
tency Configurator checks the aspect threat specification, associated with the reconfig-
uration script with the Remedy Action. The list of aspects required to be deployed for
the reconfiguration is returned to the Consistency Configurator, which then sends to
each consistency engine the list of threat aspects required at the join points. Each of
the consistency engines then checks using the Aspect Repository if the threat aspect is
present at the AO-middleware platform join point. If the threat aspect is present, the
consistency engine returns an acknowledgement back to the Consistency Configurator
for the reconfiguration to proceed. If no threat aspect is woven at the join point, then
the consistency engines requests the instantiation of the threat aspect from the Threat
Repository. The threat aspect instances, as well as the join point where the threat aspect
needs to be woven are sent to the AO-middleware platform weaver. In case, a threat
aspect is already woven and needs to be replaced, the Consistency Configurator first
ensures that the reconfigured threat aspect is not performing any computation.

3.2 Compositional Consistency Engine

The Compositional Consistency Engine (CCE) addresses compositional threats in AO-
middleware architectures by encapsulating and deploying:

– a coordination protocol such as Necoman protocol [5] and a transaction protocol
encapsulated as an aspect and woven as a “before” advice at the top of the commu-
nications stack at join points 4 and 5 to address dependency inconsistencies.

– a caretaker aspect that proxies the aspect being reconfigured at join point 2 to
address unsynchronised unbinding of distributed aspects; such that on receiving a
message from a client the caretaker instructs the client that the aspect has been
removed.

– semantic reasoning and resolution engine (SRE) [6] to query and resolve possible
sources of inconsistency at join points 1 and 4 to detect semantic conflicts from
incoming reconfiguration requests (from the reconfiguration agent) or from recon-
figuration requests sent from the network.

– the Resolving Cyclic Dependencies Engine (ReCycle) [7] to detect cyclic inconsis-
tencies from incoming reconfiguration requests from the reconfiguration agent or
from incoming requests from the network by encapsulating and weaving ReCycle
as aspect at join points 1 and 4.

3.3 Operating Environment Consistency Engine

The operating environment consistency engine component addresses the various dis-
tributed operating environment reconfiguration threats by encapsulating and deploying:

– a transaction aspect at the communication interface (join point 5) to detect local
node disruptions and provide consensual decision making on what to do when these
occur (e.g. accept the partial failure or roll back).

– replication [8] and load balancing strategies [9] aspects at the interface to the in-
frastructure services (join point 3) to detectinfrastructure service failures.

– a reliability threat aspect at join points 4 and 5 to create a reliable communication
service to handle communication failures.



3.4 User Consistency Engine

The user consistency engine component addresses the various user defined reconfigu-
ration threats by encapsulating and deploying:

– a reconfiguration validator aspect to validate the reconfiguration script against poli-
cies to ascertain the correctness of the reconfiguration operation at join point 1 to
resolve badly formed requests.

– an authentication aspect as “before” advice at the AO-middleware platform’s com-
munication interface at join points 4 and 5 to address unauthorised reconfigura-
tions. This ensures only authentic users can adapt the system. Furthermore, in an
un-trusted environment, additional encryption and decryption aspects can be wo-
ven at the communication interfaces (i.e. join point 4 and 5 respectively) of the
sender and receiver (e.g. public or private cryptography algorithms can be used).

– a distributed concurrency aspect at join point 1 so that each reconfiguration re-
quest is isolated within a critical section addressing simultaneous reconfigurations
inconsistencies.

4 Performance of COF

We now assess the performance characteristics of COF in two AO-middleware plat-
forms we have considered (i.e. AO-OpenCom [4], and the JBoss AOP version of DyReS
[10]). For this we use an experimental setup based consisting of a small network of four
standalone workstations employed as shown in Fig.3a: a 1.8 GHz Core Duo 2 PC with
3GB RAM (node A); a 3.4 GHz Pentium IV PC with 1GB of RAM (node B); and a
2.8GHz Pentium IV PC with 1 GB of RAM (node C); a 1.33 GHz Core Duo 2 laptop
with 2GB of RAM (node D). All of these are connected via a 100Mbps local area net-
work. Each evaluation machine was installed with the AO-OpenCom and DyReS frame-
work which was executed on a Java 1.7 virtual machine (VM). Based on this setup, the
different threat aspect are represented in Fig.3b and the reconfiguration we perform is
to dynamically weave a symmetric AES [11] encryption/decryption aspect across each
of the nodes. The overhead results are shown in Table 1. It should be pointed that we do
not claim that these results are in any sense definitive. Rather, they are indicative of the
order of magnitude of overhead to be expected of COF deployments. In particular, the
numbers are specific to our implementations.

Table1: Reconfiguration of COF with AO-OpenCom and DyReS

Overhead Using COF (ms) Steady State Latency Time (ms)
AO-OpenCom DyRes AO-OpenCom DyRes

Without COF 1994 5311 1724 5852
With COF 2995 7241 1724 5860

We can see that the base time to perform the reconfiguration without COF varies
considerably across the two platforms: AO-OpenCom is fastest, with DyReS taking
2.66 times longer. The longer time taken by DyReS over AO-OpenCom is attributed
mainly to the former’s use of the NeCoMan coordination protocol [12], which seems



Fig. 3. Experimental setup to evaluate COF

to incur a high degree of inter-node chattiness. In terms of the COF-induced over-
heads, AO-OpenCom and DyReS respectively take 1.25 and 1.36 times longer than
their respective without-COF baselines, indicating that the overheads of COF are stable
across all two implementations. Furthermore, the fact that the with-COF case for AO-
OpenCom takes less time than DyReS indicates that COF overheads seem to be well
within acceptable ranges.

5 Discussion and Related Work

Threat aspects are not completely orthogonal - in particular, the order in which they are
composed is important, and executing aspects at some common join point in a “wrong”
order could lead to problems (e.g. situations in which a message needing to be processed
by a particular aspect has already been consumed by another). This ordering issue is
particularly important for join points at the top of the communication stack (join point
4, 5) at which point numerous aspects are woven; for example, where both the consensus
and reliability threat aspects are woven, the reliability aspect should come first to ensure
that the consensus protocol uses a reliable communications service. In general, COF
mandates a particular order for the weaving of the threat aspects and enforces this order
using attributes attached to each aspect.

Few AO middleware platforms have addressed the challenges of performing consis-
tent dynamic reconfiguration. DyMac [1], FAC [13] and CAM/DAOP [2] are compo-
nent and aspect-based middleware frameworks that take a more principled approach to
distribution by offering distributed aspects. They both support distributed aspect com-
position but no support for consistency and dynamic reconfiguration. Damon [3] is
a distributed AO-middleware offering dynamic reconfiguration with remote pointcut
and remote advice capabilities similar to AO-OpenCom and DyMac. However, the ap-
proach does not provide any consistency mechanisms for use during reconfiguration.
Both DJasCo [14] and ReflexD [15] use a consistency protocol to ensure that when-
ever an aspect is woven at a specific host, mirrors are also woven at other involved
hosts. However, they do not consider any other consistency threats as discussed in the
threat taxonomy. Lasagne [2] offers semantic consistency support to prevent dangerous
combinations of aspects, and offers atomic weaving of aspects. It also checks for unau-
thorised clients requesting aspect composition. However, it does not offer solutions for
operating-environment threats and several other threats.



6 Conclusions and Future work

In this paper we have presented a framework-based approach to consistency mainte-
nance over dynamic reconfiguration operations for AO-middleware platforms. We be-
lieve that our threat taxonomy is representative of the type of threats that should be con-
sidered by all dynamic AOP platforms. Importantly, COF applies an aspect-oriented ap-
proach to consistency management, so the solutions it identifies are described in terms
of “threat aspects” and can be applied using the native compositional model of the
target AO-middleware platform. Furthermore, the evaluation result show COF: i) abil-
ity to handle reconfiguration threats; ii) flexibility of the framework as applied to two
AO-middleware platforms; and iii) overheads are acceptable. In future we plan to in-
vestigate embedding our approach in a self-managing, autonomic environment in which
reconfiguration requests are initiated by the platform itself as opposed to the user.

References

1. Lagaisse, B., Joosen, W.: True and transparent distributed composition of aspect-
components. In: Proc. International Conference, Middleware, Springer (2006)

2. Loughran, N., Parlavantzas, N., Colyer, A., Pinto, M., Sánchez, P., Webster, M.: Survey of
aspect-oriented middleware. (2005)

3. Mondejar, R., Garcia, P., Pairot, C., Urso, P., Molli, P.: Designing a distributed aop runtime
composition model. In: Proc. of ACM Symposium on Applied Computing, ACM (2009)

4. Surajbali, B., Grace, P., Coulson, G.: Ao-opencom: An ao-middleware architecture support-
ing flexible dynamic reconfiguration. In: 17th ACM Sigsoft Conference on Component-
Based Software Engineering, ACM (2014)

5. Janssens, N., Joosen, W., Verbaeten, P.: Necoman: middleware for safe distributed-service
adaptation in programmable networks. Distributed Systems Online (2005)

6. Surajbali, B., Grace, P., Coulson, G.: A semantic composition model to preserve (re) config-
uration consistency in aspect oriented middleware. In: Proceedings of the 8th International
Workshop on Adaptive and Reflective Middleware, ACM (2009)

7. Surajbali, B., Grace, P., Coulson, G.: Recycle: Resolving cyclic dependencies in dynamically
reconfigurable aspect oriented middleware. (2010)

8. Beloued, A., Gilliot, J.M., Segarra, M.T., André, F.: Dynamic data replication and consis-
tency in mobile environments. In: Proc. Doctoral Symposium on Middleware, ACM (2005)

9. Minson, R., Theodoropoulos, G.: Adaptive support of range queries via push-pull algorithms.
In: Principles of Advanced and Distributed Simulation, IEEE (2007)

10. Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for distributed adaptations in aspect-
oriented middleware. In: In Proc. of the 7th International Conference on AOSD, ACM (2008)

11. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M.: Report on the development
of the advanced encryption standard (aes). Technical report, DTIC Document (2000)

12. Truyen, E., Joosen, W.: Run-time and atomic weaving of distributed aspects. In: Transactions
on Aspect-Oriented Software Development II. Springer (2006)

13. Pessemier, N., Seinturier, L., Duchien, L., et al.: A component-based and aspect-oriented
model for software evolution. Journal of Computer Applications in Technology (2008)

14. Navarro, L., Benavides, D., Südholt, M., al.: Explicitly distributed aop using awed. In: Proc.
5th International Conference on AOSD, ACM (2006)

15. Tanter, É., Toledo, R.: A versatile kernel for distributed aop. In: Distributed Applications
and Interoperable Systems, Springer (2006)


