Skip to main content

fMRI-Guided Subdural Visual Motion BCI with Minimal Invasiveness

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Electrocorticography (ECoG) is a promising technology for high performance brain-computer interfaces (BCIs). To implement practical ECoG based BCIs, minimizing the invasiveness of the electrode implantation is critical. In this study, we advanced our recently proposed ‘N200 speller’ BCI paradigm that utilizes the attentional modulation of visual motion response. Non-invasive functional magnetic resonance imaging (fMRI) was employed to localize the visual motion processing regions. The subdural electrodes within these fMRI defined regions were associated with a negative deflection around 200 ms post-stimulus, and a power increase of the high gamma (60–140 Hz) frequency range around 100–500 ms post-stimulus, when the corresponding visual motion stimuli were attended. In subsequent BCI analyses, these electrodes showed top classification accuracies among all electrodes, suggesting the optimal locations for electrode implantation can be determined prior to surgery using fMRI imaging. Our findings demonstrate the feasibility of implementing a minimally invasive ECoG based N200 speller.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brunner P, Ritaccio AL, Emrich JF, Bischof H, Schalk G (2011) Rapid communication with a P300 matrix speller using electrocorticographic signals (ECoG). Front Neurosci 5:5

    Article  Google Scholar 

  • Bullock TH, McClune MC, Achimowicz JZ, Iragui-Madoz VJ, Duckrow RB, Spencer SS (1995) EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings from epileptic patients. Electroencephalogr Clin Neurophysiol 95:161–177

    Article  Google Scholar 

  • Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM, Knight RT (2010) Categorical speech representation in human superior temporal gyrus. Nat Neurosci 13:1428–1432

    Google Scholar 

  • Chang EF, Edwards E, Nagarajan SS, Fogelson N, Dalal SS, Canolty RT, Kirsch HE, Barbaro NM, Knight RT (2011) Cortical spatio-temporal dynamics underlying phonological target detection in humans. J Cogn Neurosci 23:1437–1446

    Article  Google Scholar 

  • Chao ZC, Nagasaka Y, Fujii N (2010) Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front Neuroeng 3:3

    Google Scholar 

  • Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998a) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(Pt 12):2301–2315

    Google Scholar 

  • Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP (1998b) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 121(Pt 12):2271–2299

    Google Scholar 

  • DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93:2382–2386

    Article  Google Scholar 

  • Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 8:174–179

    Article  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  Google Scholar 

  • Guo F, Hong B, Gao X, Gao S (2008) A brain-computer interface using motion-onset visual evoked potential. J Neural Eng 5:477–485

    Article  Google Scholar 

  • Hermes D, Miller KJ, Vansteensel MJ, Aarnoutse EJ, Leijten FS, Ramsey NF (2012) Neurophysiologic correlates of fMRI in human motor cortex. Hum Brain Mapp 33:1689–1699

    Google Scholar 

  • Hong B, Guo F, Liu T, Gao X, Gao S (2009) N200-speller using motion-onset visual response. Clin Neurophysiol 120:1658–1666

    Article  Google Scholar 

  • Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22:7195–7205

    Google Scholar 

  • Jin J, Allison BZ, Wang X, Neuper C (2012) A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. J Neurosci Methods 205:265–276

    Article  Google Scholar 

  • Johansson BB (2011) Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol Scand 123:147–159

    Article  Google Scholar 

  • Kubanek J, Miller KJ, Ojemann JG, Wolpaw JR, Schalk G (2009) Decoding flexion of individual fingers using electrocorticographic signals in humans. J Neural Eng 6:66001

    Article  Google Scholar 

  • Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 1:63–71

    Article  Google Scholar 

  • Leuthardt EC, Freudenberg Z, Bundy D, Roland J (2009) Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces. Neurosurg Focus 27:E10

    Article  Google Scholar 

  • Leuthardt EC, Gaona C, Sharma M, Szrama N, Roland J, Freudenberg Z, Solis J, Breshears J, Schalk G (2011) Using the electrocorticographic speech network to control a brain-computer interface in humans. J Neural Eng 8:36004

    Article  Google Scholar 

  • Liu H, Agam Y, Madsen JR, Kreiman G (2009) Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 62:281–290

    Article  Google Scholar 

  • Matsumoto R, Ikeda A, Nagamine T, Matsuhashi M, Ohara S, Yamamoto J, Toma K, Mikuni N, Takahashi J, Miyamoto S, Fukuyama H, Shibasaki H (2004) Subregions of human MT complex revealed by comparative MEG and direct electrocorticographic recordings. Clin Neurophysiol 115:2056–2065

    Article  Google Scholar 

  • Mesgarani N, Chang EF (2012) Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485:233–236

    Article  Google Scholar 

  • Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RP (2010) Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA 107:4430–4435

    Article  Google Scholar 

  • Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10:861–872

    Article  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF (2012) Reconstructing speech from human auditory cortex. PLoS Biol 10:1001251

    Article  Google Scholar 

  • Pei X, Barbour DL, Leuthardt EC, Schalk G (2011a) Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans. J Neural Eng 8:46028

    Article  Google Scholar 

  • Pei X, Leuthardt EC, Gaona CM, Brunner P, Wolpaw JR, Schalk G (2011b) Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. Neuroimage 54:2960–2972

    Article  Google Scholar 

  • Rauschecker AM, Dastjerdi M, Weiner KS, Witthoft N, Chen J, Selimbeyoglu A, Parvizi J (2011) Illusions of visual motion elicited by electrical stimulation of human MT complex. PLoS ONE 6:e21798

    Article  Google Scholar 

  • Sheikh H, McFarland DJ, Sarnacki WA, Wolpaw JR (2003) Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans. Neurosci Lett 345:89–92

    Google Scholar 

  • Sperling MR (1997) Clinical challenges in invasive monitoring in epilepsy surgery. Epilepsia 38(Suppl 4):S6–S12

    Article  Google Scholar 

  • Vinjamuri R, Weber DJ, Mao ZH, Collinger JL, Degenhart AD, Kelly JW, Boninger ML, Tyler-Kabara EC, Wang W (2011) Toward synergy-based brain-machine interfaces. IEEE Trans Inf Technol Biomed 15:726–736

    Article  Google Scholar 

  • Wilson JA, Felton EA, Garell PC, Schalk G, Williams JC (2006) ECoG factors underlying multimodal control of a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14:246–250

    Article  Google Scholar 

  • Wonnacott TH, Wonnacott R (1977) Introductory statistics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    Google Scholar 

  • Zhang D, Song H, Xu R, Lin Z, Hong B (2013) Toward a minimally invasive brain-computer interface using single subdural electrode: a visual speller study. NeuroImage 71:30–41

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant #61071003, National Program on Key Basic Research Projects of China (2011CB933204), and China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, D., Song, H., Xu, R., Hong, B. (2014). fMRI-Guided Subdural Visual Motion BCI with Minimal Invasiveness. In: Guger, C., Vaughan, T., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09979-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09979-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09978-1

  • Online ISBN: 978-3-319-09979-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics