Skip to main content

A Data-Driven Investigation and Estimation of Optimal Topologies under Variable Loading Configurations

  • Conference paper
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8641))

Abstract

We explore the feasibility and performance of a data-driven approach to topology optimization problems involving structural mechanics. Our approach takes as input a set of images representing optimal 2-D topologies, each resulting from a random loading configuration applied to a common boundary support condition. These images represented in a high dimensional feature space are projected into a lower dimensional space using component analysis. Using the resulting components, a mapping between the loading configurations and the optimal topologies is learned. From this mapping, we estimate the optimal topologies for novel loading configurations. The results indicate that when there is an underlying structure in the set of existing solutions, the proposed method can successfully predict the optimal topologies in novel loading configurations. In addition, the topologies predicted by the proposed method can be used as effective initial conditions for conventional topology optimization routines, resulting in substantial performance gains. We discuss the advantages and limitations of the presented approach and show its performance on a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer (2004)

    Google Scholar 

  2. Schramm, U., Zhou, M.: Recent Developments in the Commercial Implementation of Topology Optimization. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, pp. 239–248. Springer Netherlands (2006)

    Google Scholar 

  3. Richardson, J.N., Coelho, R.F., Adriaenssens, S.: Robust Topology Optimization of 2D and 3D Continuum and Truss Structures Using a Spectral Stochastic Finite Element Method. In: 10th World Congress on Structural and Multidisciplinary Optimization (2010)

    Google Scholar 

  4. Chapman, C.D., Saitou, K., Jakiela, M.J.: Genetic Algorithms as an Approach to Configuration and Topology Design. Journal of Mechanical Design 116, 1005–1012 (1994)

    Article  Google Scholar 

  5. Jakiela, M.J., Chapman, C.D., Duda, J., Adewuya, A., Saitou, K.: Continuum Structural Topology Design with Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering 186, 339–356 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aage, N., Lazarov, B.S.: Parallel Framework for Topology Optimization Using the Method of Moving Asymptotes. Structural and Multidisciplinary Optimization 47, 493–505 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dijk, N.P., Maute, K., Langelaar, M., Keulen, F.: Level-Set Methods for Structural Topology Optimization: A Review. Structural and Multidisciplinary Optimization 48, 437–472 (2013)

    Article  MathSciNet  Google Scholar 

  8. Norato, J.A., Bendsoe, M.P., Haber, R.B., Tortorelli, D.A.: A Topological Derivative Method for Topology Optimization. Structural and Multidisciplinary Optimization 33, 375–386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bendsoe, M.P., Kikuchi, N.: Generating Optimal Topologies in Structural Design Using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering 71, 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  10. Suzuki, K., Kikuchi, N.: A Homogenization Method for Shape and Topology Optimization. Computer Methods in Applied Mechanics and Engineering 93, 291–318 (1991)

    Article  MATH  Google Scholar 

  11. Bendsoe, M.P.: Optimal Shape Design as a Material Distribution Problem. Structural Optimization 1, 193–202 (1989)

    Article  Google Scholar 

  12. Rozvany, G.I.N., Zhou, M., Birker, T.: Generalized Shape Optimization without Homogenization. Structural Optimization 4, 250–252 (1992)

    Article  Google Scholar 

  13. Hassani, B., Hinton, E.: A Review of Homogenization and Topology Optimization I–Homogenization Theory for Media with Periodic Structure. Computers and Structures 69, 707–717 (1998)

    Article  MATH  Google Scholar 

  14. Rozvany, G.I.N.: Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics. Structural and Multidisciplinary Optimization 21, 90–108 (2001)

    Article  Google Scholar 

  15. Rozvany, G.I.N.: A Critical Review of Established Methods of Structural Topology Optimization. Structural and Multidisciplinary Optimization 37, 217–237 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sethian, J.A., Wiegmann, A.: Structural Boundary Design via Level Set and Immersed Interface Methods. Journal of Computational Physics 163, 489–528 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, M.Y., Wang, X., Guo, D.: A Level Set Method for Structural Topology Optimization. Computer Methods in Applied Mechanics and Engineering 192, 227–246 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient Topology Optimization in MATLAB Using 88 Lines of Code. Structural and Multidisciplinary Optimization 43, 1–16 (2011)

    Article  MATH  Google Scholar 

  19. Sigmund, O.: A 99 Line Topology Optimization Code Written in MATLAB. Structural and Multidisciplinary Optimization 21, 120–127 (2001)

    Article  Google Scholar 

  20. Sirovich, L., Kirby, M.: Low-Dimensional Procedure for the Characterization of Human Faces. Journal of Optical Society of America 4, 519–524 (1987)

    Article  Google Scholar 

  21. Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 103–108 (1990)

    Article  Google Scholar 

  22. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  23. Allen, B., Curless, B., Popovic, Z.: The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans. ACM Transactions on Graphics 22, 587–594 (2003)

    Article  Google Scholar 

  24. Yumer, M.E., Kara, L.B.: Conceptual Design of Freeform Surfaces From Unstructured Point Sets Using Neural Network Regression. In: ASME International Design Engineering Technical Conferences/DAC (2011)

    Google Scholar 

  25. Yumer, M.E., Kara, L.B.: Surface Creation on Unstructured Point Sets Using Neural Networks. Computer-Aided Design 44, 644–656 (2012)

    Article  Google Scholar 

  26. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2005)

    Google Scholar 

  27. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  28. Tenenbaum, J.: Advances in Neural Information Processing, vol. 10, pp. 682–688. MIT Press, Cambridge (1998)

    Google Scholar 

  29. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  30. Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley (1999)

    Google Scholar 

  31. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ulu, E., Zhang, R., Yumer, M.E., Kara, L.B. (2014). A Data-Driven Investigation and Estimation of Optimal Topologies under Variable Loading Configurations. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics