Skip to main content

EasyCrypt: A Tutorial

  • Chapter
Book cover Foundations of Security Analysis and Design VII (FOSAD 2013, FOSAD 2012)

Abstract

Cryptography plays a key role in the security of modern communication and computer infrastructures; therefore, it is of paramount importance to design cryptographic systems that yield strong security guarantees. To achieve this goal, cryptographic systems are supported by security proofs that establish an upper bound for the probability that a resource-constrained adversary is able to break the cryptographic system. In most cases, security proofs are reductionist, i.e. they construct from an (arbitrary but computationally bounded) adversary that would break the security of the cryptographic construction with some reasonable probability another computationally bounded adversary that would break a hardness assumption with reasonable probability. This approach, known as provable security, is in principle able to deliver rigorous and detailed mathematical proofs. However, new cryptographic designs (and consequently their security analyses) are increasingly complex, and there is a growing emphasis on shifting from algorithmic descriptions to implementation-level descriptions that account for implementation details, recommendations from standards when they exist, and possibly side-channels. As a consequence, cryptographic proofs are becoming increasingly error-prone and difficult to check. One promising solution to address these concerns is to develop machine-checked frameworks that support the construction and automated verification of cryptographic systems. Although many such frameworks exist for the symbolic model of cryptography, comparatively little work has been done to develop machine-checked frameworks to reason directly in the computational model commonly used by cryptographers

An up-to-date and living version of this document and the EasyCrypt formalization and proofs it refers to can be found at https://www.easycrypt.info/Tutorial

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided cryptography: efficient provably secure machine code from high-level implementations. In: ACM Communications and Computer Security (CCS), pp. 1217–1230. ACM (2013)

    Google Scholar 

  2. Almeida, J.B., Barbosa, M., Barthe, G., Davy, G., Dupressoir, F., Grégoire, B., Strub, P.-Y.: Verified implementations for secure and verifiable computation. Cryptology ePrint Archive, Report 2014/456 (2014), http://eprint.iacr.org/

  3. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Lakhnech, Y., Schmidt, B., Béguelin, S.Z.: Fully automated analysis of padding-based encryption in the computational model. In: ACM Communications and Computer Security (CCS), pp. 1247–1260. ACM (2013)

    Google Scholar 

  4. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Barthe, G., Grégoire, B., Zanella-Béguelin, S.: Formal certification of code-based cryptographic proofs. In: ACM Principles of Programming Languages (POPL), pp. 90–101. ACM (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, PY. (2014). EasyCrypt: A Tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds) Foundations of Security Analysis and Design VII. FOSAD FOSAD 2013 2012. Lecture Notes in Computer Science, vol 8604. Springer, Cham. https://doi.org/10.1007/978-3-319-10082-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10082-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10081-4

  • Online ISBN: 978-3-319-10082-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics